Bronchopneumonies Infectieuses Des Jeunes Bovins: De La Complexité Du Microbiome Aux Particularités Évolutives Et Cliniques De Virus Respiratoires Encore Méconnus

Total Page:16

File Type:pdf, Size:1020Kb

Bronchopneumonies Infectieuses Des Jeunes Bovins: De La Complexité Du Microbiome Aux Particularités Évolutives Et Cliniques De Virus Respiratoires Encore Méconnus En vue de l'obtention du DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE Délivré par : Institut National Polytechnique de Toulouse (Toulouse INP) Discipline ou spécialité : Pathologie, Toxicologie, Génétique et Nutrition Présentée et soutenue par : M. ELIAS SALEM le mercredi 24 octobre 2018 Titre : Bronchopneumonies infectieuses des jeunes bovins: de la complexité du microbiome aux particularités évolutives et cliniques de virus respiratoires encore méconnus. Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : Interactions Hôtes - Agents Pathogènes (IHAP) Directeur(s) de Thèse : M. GILLES MEYER MME MARIETTE DUCATEZ Rapporteurs : M. ETIENNE THIRY, UNIVERSITE DE LIEGE Mme CAROLINE LEROUX, INRA LYON Membre(s) du jury : Mme CAROLINE LEROUX, UNIVERSITE LYON 1, Président M. GILLES MEYER, ECOLE NATIONALE VETERINAIRE DE TOULOUSE, Membre Mme CECILE MALNOU, UNIVERSITE TOULOUSE 3, Membre Mme GAELLE SIMON, ANSES, Membre Mme MARIETTE DUCATEZ, ECOLE NATIONALE VETERINAIRE DE TOULOUSE, Membre TABLE DES MATIERES Table des matières .......................................................................................... i Liste des figures ............................................................................................. iv Liste des tableaux .......................................................................................... iv Liste des abréviations ..................................................................................... v ETUDE BIBLIOGRAPHIQUE ......................................................................... 1 I. importanceLes bronchopneumonies infectieuses chez les bovins : définition et 2 1. Définition .............................................................................................. 2 2. Importance des BPI ............................................................................. 4 II. Les agents pathogènes respiratoires bovins ....................................... 8 1. Fréquence des agents infectieux ......................................................... 8 2. Pouvoir pathogène des principales bactéries .................................... 13 3. Pouvoir pathogène des principaux virus ............................................ 17 4. Interactions entre agents pathogènes respiratoires ........................... 23 III. Identification de nouveaux agents pathogènes respiratoires ............. 29 1. Notions sur les maladies émergentes chez l’homme ......................... 29 2. Les nouvelles méthodes pour identifier de « nouveaux » agents pathogènes 33 IV. Les « nouveaux » virus respiratoires bovins : cas de l’influenzavirus de type D 38 1. Historique des infections à virus influenza A (IAV) chez les bovins ... 38 2. Découverte d’un nouveau virus influenza de type D chez les bovins 41 3. Propriétés générales des virus Influenza D ....................................... 42 4. Réservoir, spectre d’hôte et pouvoir pathogène ................................ 46 V. Environnement microbien et pathologie respiratoire .......................... 52 1. La notion de microbiote ..................................................................... 52 2. Le microbiote respiratoire de l’homme ............................................... 57 3. Interactions microbiome et agents pathogènes : le pathobiome ........ 64 4. Microbiome et pathobiome respiratoire bovin .................................... 66 DESCRIPTION DES TRAVAUX DE RECHERCHE ..................................... 77 Chapitre I : Identification des virus respiratoires bovins ............................... 78 I. Introduction et connaissances actuelles ............................................ 78 II. Détection des virus respiratoires par approche NGS chez des veaux affectés par la bronchopneumonie infectieuse ...................................................... 81 1. Matériel et Méthodes ......................................................................... 81 2. Résultats ............................................................................................ 86 III. Caractérisation génétique des coronavirus bovins : évolution et épidémiologie moléculaire ..................................................................................... 96 Article : « Global transmission, spatial segregation and recombination determine the long-term evolution and epidemiology of Bovine Coronaviruses » . 97 Chapitre 2 : Identification et caractérisation du bactériote respiratoire bovin ............................................................................................................................... 132 I. Introduction ...................................................................................... 132 II. Article : « Microbial ecology of the upper and lower respiratory tract in calves: interactions and dysbiosis during acute bronchopneumonia » ................ 136 Chapitre 3 : l’influenzavirus de type D : répartition géographique et pouvoir pathogène ............................................................................................................... 176 I. Introduction ...................................................................................... 176 II. Article : « Serologic evidence for influenza C and D virus among ruminants and Camelids, Africa, 1991-2015 » ..................................................... 178 III. Article : « Pathogenesis, host innate immune response and aerosol transmission of influenza D virus in cattle » ......................................................... 184 DISCUSSION GENERALE ET PERSPECTIVES ...................................... 229 BIBLIOGRAPHIE ....................................................................................... 243 ANNEXES .................................................................................................. 293 I. Résultats détaillés du virome respiratoire ........................................ 293 LISTE DES FIGURES Figure 1 : Arbre de décision sur l'émergence des maladies et agents pathogènes. .............................................................................................................. 32 Figure 2 : Représentation schématique d’un virus de type influenza D ....... 43 Figure 3 : Virus influenza D (C/OK) en microscopie électronique ................ 43 Figure 4 : Le génome du virus influenza D .................................................. 44 Figure 5 : Chronologie des études sur les communautés microbiennes ...... 58 Figure 6 : Evolution du nombre d’études sur le microbiome respiratoire ..... 59 Figure 7 : Résistance de colonisation .......................................................... 66 Figure 8 : Représentation du processus de préparation des échantillons pour le séquençage NGS métagénomique du virome respiratoire. .................................. 85 LISTE DES TABLEAUX Tableau 1 : Pouvoir pathogène des différents agents respiratoires bovins démontré lors d’infections expérimentales. ............................................................... 13 Tableau 2 : Abondances relatives trouvées dans les poumons et les nœuds lymphatiques (NL) .................................................................................................... 71 Tableau 3 : Résultats de détection des 7 agents pathogènes respiratoires dans les prélèvements respiratoires avec le LSI vetmax screening kit. .................... 88 Tableau 4 : Détection des principaux virus par NGS .................................. 89 Tableau 5 : Correspondance entre la détection par RT-qPCR et le séquençage NGS. .................................................................................................... 89 Tableau 6: Résultats détaillés du virome respiratoire ................................ 293 LISTE DES ABREVIATIONS ADN : acide désoxyribonucléique ADNc : acide désoxyribonucléique complémentaire ARN : acide ribonucléique ARNr : acide ribonucléique ribosomique ATT : aspiration trans-trachéale BAAV : bovine associated adenovirus BAD3 : bovine adenovirus type 3 BAT2 : bovine alveolar type 2 epithelial cells BAV : bovine astrovirus BRV : bovine rhinitis virus BCOV : bovine coronavirus BLAST : Basic Local Alignment Search Tool BOHV1: bovine herpesvirus type 1 BoNV : bovine nidovirus BPI : bronchopneumonie infectieuse BPI3 : bovine parainfluenza virus type 3 BPV : bovine parvovirus BRAV : bovine rhinitis virus type A BRBV : bovine rhinitis virus type B BRSV : bovine respiratory synctial virus BVDV : bovine viral diarrhea virus BWA : burrows-wheeler aligner CAR : Cilia-associated respiratory bacterium CFU : colony forming unit CMH : complexe majeur d’histocompatibilité cp : cytopathogène Cq : cycle de quantification ECP : effet cytopathique ENP : écouvillon nasal profond FISH : fluorescence in situ hybridization GAAS : genome relative abundance and average size Gb : gigabase H. s : Histphilus somni HCoV : human coronavirus HEF : hemagglutinine ésterase fusion HRT 18G : human rectal tumor IAV : influenza A virus IbpA : immunoglobulin binding protein type A IBR : infectious bovine rhinotracheatis IBV : influenza B virus ICV : influenza C virus IDV : influenza D virus IFHI1 : interferon induced with helicase C domain 1 IFNγ : interferon gamma IGV : integrative genomics viewer IHA : l’inhibition de l’hémagglutination IL-10 : interleukine 10 IL-12 : interleukine 12 IL-1β : interleukine 1 beta IL-4 : interleukine 4 ISG15 : Interferon-stimulated gene 15 LEfSe : Linear Discriminant Analysis using effect size LBA : lavage broncho-alvéolaire LDA : laboratoire départemental d’analyse LPS : lipopolysaccharide
Recommended publications
  • Non-Invasive Surveys of Mammalian Viruses Using Environmental DNA
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.26.009993; this version posted March 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title Non-invasive surveys of mammalian viruses using environmental DNA Highlights Environmental DNA (water and blood-sucking leeches) provided a non- invasive method of screening wildlife for viruses A comprehensive viral RNA oligonucleotide bait set was developed to capture known and unknown mammalian virus diversity Leech blood meal host determination and viruses identified were congruent Viruses determined from water correlated with known and observed species visiting the water sources In brief Alfano, Dayaram, et al. demonstrate that environmental DNA from southeast Asian leech bloodmeals and waterholes from Africa and Mongolia can be used as to detect viruses circulating in wildlife. These nucleic acid sources may represent an effective non-invasive resource for studying wildlife viral diversity and emerging viruses pre- emergence. bioRxiv preprint doi: https://doi.org/10.1101/2020.03.26.009993; this version posted March 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Non-invasive surveys of mammalian viruses using environmental DNA Niccolo Alfano1,2*, Anisha Dayaram3,4*, Jan Axtner1, Kyriakos Tsangaras5, Marie- Louise Kampmann1,6, Azlan Mohamed1,7, Seth T.
    [Show full text]
  • Parvoviridae Hanafy .M.Madbouly Professor of Virology Faculty of Veterinary Medicine Beni-Suef University
    Parvoviridae Hanafy .M.Madbouly Professor of Virology Faculty of Veterinary Medicine Beni-Suef University Definitions of the virus causative agents of several animal diseases. are most severe in fetuses and neonates. Parvovirus infections of the fetus or newborn during organogenesis may result in developmental defects. Replication of parvovirus is restricted in hemopoietic precursors, lymphocytes, and progenitor cells of intestinal mucosa of older animals. 2/38 Definitions of the virus cause acute infections for a few days, others persist for long periods in the feces of apparently robust host immune responses. Human Parvovirus B19 replication occurs only in human erythrocyte precursors The virus is found to survive in feces and other organic material such as soil for over 10 years. It survives extremely low and high temperatures. 3/38 Physical Properties of the virus . Family: Parvoviridae with two subfamilies . Parvovirinae. (vertebrate ). has 5 genera . Densovirinae. (invertebrate). Has3 genera .non-enveloped, 25 nm in diameter .Capsid: icosahederal. .Genome ssDNA Diseases caused by parvoviruses • As of 2014, there were no known human viruses in the remaining three recognized genera: • vi) Amdoparvovirus (e.g. Aleutian mink disease virus), • vii) Aveparvovirus (e.g. chicken parvovirus) and • viii) Copiparvovirus (e.g. bovine parvovirus 2). • Mouse parvovirus 1, however, causes no symptoms but can contaminate immunology experiments in biological research laboratories. • Porcine parvovirus causes a reproductive disease in swine known as SMEDI, which stands for stillbirth, mummification, embryonic death, and infertility. Diseases caused by parvoviruses • Many mammalian species sustain infection by multiple parvoviruses. • Feline panleukopenia is common in kittens and causes fever, low white blood cell count, diarrhea, and death.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Evolutionary Background Entities at the Cellular and Subcellular Levels in Bodies of Nonhuman Vertebrate Animals
    The Journal of Theoretical Fimpology Volume 2, Issue 3: e-20081017-2-3-13 December 23, 2014 www.fimpology.com Evolutionary Background Entities at the Cellular and Subcellular Levels in Bodies of Nonhuman Vertebrate Animals Shu-dong Yin Cory H. E. R. & C. Inc. Burnaby, British Columbia, Canada Email: [email protected] ________________________________________________________________________ Abstract During the past two decades, it has been revealed by culture-independent approaches that individual bodies of normal animals are actually inhabited by subcellular viral entities and membrane-enclosed microentities, prokaryotic bacterial and archaeal cells, and unicellular eukaryotes such as fungi and protists. And however, the relationship between animals including human beings and their environmental microentities or microorganisms reflected in such phenomenon cannot be accounted for by our traditional pathogenic recognition in human medicine and veterinary medicine. It’s well known that as one of humans’ environmental macroorganisms, some nonhuman animal species were initially concerned for their practical values in nutrition, medicine and economy, and have been studied within the scope of traditional macro-biology for a long time and that our primary interest on the microorganisms of nonhuman animals was for their potential risk of zoonotic transmission of pathogenetic bacteria and viruses from animals to humans. In recent novel evolution theories, the relationship between animals and their environments has been deciphered to be the interaction
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID- 19 Pandemic: A
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID- 19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. March 2021 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Raphael Freitas de Souza, Faculty of Dentistry, McGill University Paul Allison, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University March 31, 2021 1 Contents Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. .................................................................................................................................. 1 Foreword to the second update ............................................................................................. 4 Introduction ............................................................................................................................. 5 Project goal............................................................................................................................. 5 Specific objectives .................................................................................................................. 6 Methods used to identify and include relevant literature ......................................................
    [Show full text]
  • Annual Conference 2017
    Annual Conference 2017 3–6 APRIL, EICC, EDINBURGH, UK POSTER ABSTRACT BOOK @MicrobioSoc #Microbio17 Annual Conference 2017 EICC, Edinburgh 3-6 April Posters displayed Monday to Thursday Virus Workshop: Antivirals and Vaccines Virus Workshop: Clinical Virology Network Virus Workshop: Evolution and Virus Populations Virus Workshop: Gene expression and replication Virus Workshop: Innate Immunity Virus Workshop: Morphogenesis, egress and entry Virus Workshop: Pathogenesis Annual Meeting of Protistology-UK society: Intracellular infection and endosymbiosis within protists Aquatic Microbiology Cell biology of pathogen entry into host cells Circadian Rhythms Critical health challenges in medical mycology Epigenetic and Non Coding RNAs in Eukaryotes Synthetic and Systems Biology Approaches to Microbiology Posters displayed on Monday and Tuesday Geomicrobiology Macromolecular Machines Microbial Mechanisms of Plant pathology Prokaryotic Genetics and Genomics Forum Prokaryotic Microbial Infection Forum Posters displayed on Wednesday and Thursday Anaerobes in infection Environmental and Applied Microbiology Forum Heterogeneity and Polymicrobial Interactions in Biofilms Microbial Cell Surfaces Microbial Genomics: Whole Population to Single Cell Microbial Physiology, Metabolism and Molecular Mechanisms Forum Please note: Abstracts are published as received from the authors and are not subject to editing Annual Conference 2017 EICC, Edinburgh 3-6 April Virus Workshop: Antivirals and Vaccines 1 Investigating membrane viral bending proteins in coronavirus replication. Entedar Alsaadi1, Benjamin W.Neuman1 1University of Reading, Reading, UK, 2University of Reading, Reading, UK The coronavirus envelope spike (S) glycoprotein, a class I viral fusion protein, is responsible for the fusion between the membranes of the virus and the host cell. The fusion peptide has yet to be definitively identified, but bioinformatics analysis suggests that at least part of the fusion peptide is located near the amino terminus of the S2 region of S.
    [Show full text]
  • Patogenicidad Microbiana En Medicina Veterinaria Volumen: Virología
    Patogenicidad microbiana en Medicina Veterinaria Volumen: Virología Fabiana A. Moredo, Alejandra E. Larsen, Nestor O. Stanchi (Coordinadores) FACULTAD DE CIENCIAS VETERINARIAS PATOGENICIDAD MICROBIANA EN MEDICINA VETERINARIA VOLUMEN: VIROLOGÍA Fabiana A. Moredo Alejandra E. Larsen Nestor O. Stanchi (Coordinadores) Facultad de Ciencias Veterinarias 1 A nuestras familias 2 Agradecimientos Nuestro agradecimiento a todos los colegas docentes de la Facultad de Ciencias Veterinarias y en especial a la Universidad Nacional de La Plata por darnos esta oportunidad. 3 Índice VOLUMEN 2 Virología Capítulo 1 Características generales de los virus Cecilia M. Galosi, Nadia A. Fuentealba____________________________________________6 Capítulo 2 Arterivirus Germán E. Metz y María M. Abeyá______________________________________________28 Capítulo 3 Herpesvirus Cecilia M. Galosi, María E. Bravi, Mariela R. Scrochi ________________________________37 Capítulo 4 Orthomixovirus Guillermo H. Sguazza y María E. Bravi___________________________________________49 Capítulo 5 Paramixovirus Marco A. Tizzano____________________________________________________________61 Capítulo 6 Parvovirus Nadia A Fuentealba, María S. Serena____________________________________________71 Capítulo 7 Retrovirus Carlos J. Panei, Viviana Cid de la Paz____________________________________________81 Capítulo 8 Rhabdovirus Marcelo R. Pecoraro, Leandro Picotto____________________________________________92 Capítulo 9 Togavirus María G. Echeverría, María Laura Susevich______________________________________104
    [Show full text]
  • Parvoviruses: Small Does Not Mean Simple
    VI01CH25-Tattersall ARI 20 August 2014 13:33 Parvoviruses: Small Does Not Mean Simple Susan F. Cotmore1 and Peter Tattersall1,2 Departments of 1Laboratory Medicine and 2Genetics, Yale University Medical School, New Haven, Connecticut 06510; email: [email protected] Annu. Rev. Virol. 2014. 1:517–37 Keywords First published online as a Review in Advance on viral diversity, limited coding capacity, dynamic protein cylinder, capsid July 9, 2014 portals, rolling hairpin replication, early virion release by 98.156.86.215 on 10/05/14. For personal use only. The Annual Review of Virology is online at virology.annualreviews.org Abstract This article’s doi: Parvoviruses are small, rugged, nonenveloped protein particles containing 10.1146/annurev-virology-031413-085444 a linear, nonpermuted, single-stranded DNA genome of ∼5 kb. Their lim- Copyright c 2014 by Annual Reviews. ited coding potential requires optimal adaptation to the environment of Annual Review of Virology 2014.1:517-537. Downloaded from www.annualreviews.org All rights reserved particular host cells, where entry is mediated by a variable program of cap- sid dynamics, ultimately leading to genome ejection from intact particles within the host nucleus. Genomes are amplified by a continuous unidirec- tional strand-displacement mechanism, a linear adaptation of rolling circle replication that relies on the repeated folding and unfolding of small hairpin telomeres to reorient the advancing fork. Progeny genomes are propelled by the viral helicase into the preformed capsid via a pore at one of its icosahedral fivefold axes. Here we explore how the fine-tuning of this unique replication system and the mechanics that regulate opening and closing of the capsid fivefold portals have evolved in different viral lineages to create a remarkably complex spectrum of phenotypes.
    [Show full text]
  • The Parvovirus Minute Virus of Mice Modulates the Dna Damage Response
    THE PARVOVIRUS MINUTE VIRUS OF MICE MODULATES THE DNA DAMAGE RESPONSE TO FACILITATE VIRAL REPLICATION AND A PRE-MITOTIC CELL CYCLE BLOCK A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By MATTHEW S. FULLER David J. Pintel, Dissertation Supervisor May 2017 The undersigned, appointed by the dean of the Graduate School, have examined the Dissertation entitled THE PARVOVIRUS MINUTE VIRUS OF MICE MODULATES THE DNA DAMAGE RESPONSE TO FACILITATE VIRAL REPLICATION AND A PRE-MITOTIC CELL CYCLE BLOCK Presented by Matthew S. Fuller A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. David J. Pintel Dr. Dongsheng Duan Dr. Mark Hannink Dr. Christian Lorson Dr. Stefanos Sarafianos ACKNOWLEDGEMENTS First and foremost I would like to thank David Pintel for graciously accepting me into his laboratory and patiently mentoring me for nearly six years. Hands down, without question, the single best choice I made during my entire tenure in graduate school occurred early on, when I decided to join your lab. Your patience and understanding afforded me the freedom to make and learn from my, at times quite plentiful, mistakes and to gain the confidence needed to become an independent thinker and scientist. Although demanding, and at times exceptionally challenging, your persistence and insistence of adhering to the highest standards of scientific rigor and intellectual discourse allows each of us to stand out in the scientific community and generate exceptional work and ideas.
    [Show full text]
  • University of Florida Thesis Or Dissertation
    CHARACTERIZATION AND COMPARISON OF SQUAMATE DEPENDOPARVOVIRUS TYPE I TO MAMMALIAN ADENO-ASSOCIATED VIRUSES By VICTORIA E. FIELDING A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2016 © 2016 Victoria E. Fielding This work is dedicated to Trevor, my parents, Marshall, Rebekah, my grandparents, and all of the friends that have always believed in me. ACKNOWLEDGMENTS I would like to thank my parents, Charles and Angela, and my siblings, Marshall and Rebekah, for their love and support throughout this process. My heart-felt thanks is also extended to my grandparents, who have been my biggest fans and strongest supporters throughout my scientific career. I would also like to extend my sincere thanks to my mentor, Dr. Mavis Agbandje-McKenna, for pushing me to be the best scientist that I can be, for her endless patience, and for believing in me. I would like to thank Dr. Robert McKenna for his unique constructive insight into my project, and his encouragement. I would also like to thank my committee members, Dr. James B. Flanegan, Dr. Joanna Long, Dr. Arun Srivastava, and Dr. Gail Fanucci, for their time, invaluable ideas, and encouragement. I would also like to extend my thanks to our collaborators, Dr. Peter Tijssen, Qian Yu, Maude Boisvert, and Judit Pénzes (Institut National de la Recherché Scientifique, Québec) for providing us with the original sAAV constructs that were used throughout the course of this project, and to Dr. Mario Mietzsch (UF, Charité Medical School) and Dr.
    [Show full text]
  • Genetic Diversity, Molecular Evolution and Classification of the Viruses In
    Genetic diversity, molecular evolution and classification of the viruses in the genus Amdoparvovirus circulating in free-ranging mink in Nova Scotia and detection of novel species By Faezeh Kharazyan Submitted in partial fulfilment of the requirements for the degree of Master of Science at Dalhousie University Halifax, Nova Scotia December 2016 © Copyright by Faezeh Kharazyan, 2016 TABLE OF CONTENT LIST OF TABLES .................................................................................................vi LIST OF FIGURES ...............................................................................................ix ABSTRACT ......................................................................................................... xii LIST OF ABBREVIATIONS USED ..................................................................... xiii ACKNOWLEDGMENTS ..................................................................................... xiv CHAPTER 1. INTRODUCTION ............................................................................ 1 CHAPTER 2. LITERATURE REVIEW .................................................................. 3 2.1 Permissive and restricted infections of AMDV ..................................... 3 2.2 Pathogenicity of AMDV strains ............................................................ 5 2.3 Transmission, host range and epidemiology of AMDV ........................ 6 2.4 Genome structure and viral proteins .................................................... 8 2.4.1 Caspase recognition sites in the NS1
    [Show full text]
  • WO 2018/035387 Al 22 February 2018 (22.02.2018) W ! P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization III International Bureau (10) International Publication Number (43) International Publication Date WO 2018/035387 Al 22 February 2018 (22.02.2018) W ! P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12N 15/10 (2006.01) C12N 15/85 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12N 15/63 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2017/047458 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TH, TJ, TM, TN, 17 August 2017 (17.08.2017) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/376,372 17 August 2016 (17.08.2016) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 62/437,03 1 20 December 2016 (20.12.2016) US EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (71) Applicants: THE BROAD INSTITUTE, INC.
    [Show full text]