The Evolution of Vocal Learning

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Vocal Learning Available online at www.sciencedirect.com ScienceDirect The evolution of vocal learning 1 2 Stephen Nowicki and William A Searcy Vocal learning, in which animals modify their vocalizations to across multiple lineages, as we attempt here in a qualita- imitate those of others, has evolved independently in scattered tive fashion. lineages of birds and mammals. Comparative evidence supports two hypotheses for the selective advantages leading When we speak of vocal learning, we are referring specifi- to the origin of vocal learning. The sexual selection hypothesis cally to vocal production learning, in which signalers alter proposes that vocal learning evolves to allow expansion of the form of their vocalizations by imitating the vocaliza- vocal repertoires in response to mating preferences for more tions of others [4]. Additional types of vocal learning complex vocalizations. The information-sharing hypothesis occur, such as usage learning, in which signalers learn also proposes that vocal learning evolves to allow expansion of the context in which to produce specific vocalizations, and vocal repertoires, but in this case in response to kin selection comprehension learning, in which receivers learn to favoring sharing of information among relatives. modify their response to vocalizations produced by Addresses others [4]. These additional forms of vocal learning have 1 Department of Biology, Duke University, Durham, NC 27708, USA a wider taxonomic occurrence [1] and perhaps can be 2 Department of Biology, University of Miami, Coral Gables, FL 33124, accomplished without the considerable neural apparatus USA that undergirds vocal production learning [2], and con- sequently their evolution seems less puzzling. Corresponding author: Nowicki, Stephen ([email protected]) Because vocal production learning requires complex Current Opinion in Neurobiology 2014, 28:48–53 neural adaptations that are presumably costly, this type of learning is not expected to evolve except in response to This review comes from a themed issue on Communication and language some compensating fitness advantage. Some of the hypothesized advantages of vocal learning are experi- Edited by Michael Brainard and Tecumseh Fitch enced by an individual only when most or all of the other For a complete overview see the Issue and the Editorial signalers in its population are vocal learners and receiver Available online 15th July 2014 response has evolved to adjust to this circumstance. http://dx.doi.org/10.1016/j.conb.2014.06.007 Advantages such as these are not relevant to the evol- 0959-4388/# 2014 Elsevier Ltd. All rights reserved. utionary origin of vocal learning because they only would accrue when the trait has already evolved, although they may be important to its evolutionary maintenance. Our focus here is principally on the origins of vocal production learning, and thus on the benefits that accrue to the first individuals that begin to modify their vocalizations based Introduction on the sounds they hear from others. Although vocal learning has evolved multiple times in vertebrates, relatively few lineages possess this ability Advantages of song learning in songbirds [1,2]. Vocal learning is especially rare among mammals, Many of the proposals on the selective advantages of and among primates is well developed only in humans [3]. vocal learning have emerged from the study of song The rarity of vocal learning may be explained in part by learning in songbirds. The songs of songbirds typically the complexity of the neurological underpinnings that have dual functions in mate attraction and territory this ability seems to require [2]. Given the complexity of defense [5]. Song development in songbirds appears to vocal learning as an adaptation, and its centrality to the be universally influenced by imitation learning, but as life histories of some species, it is not surprising that there are over 4000 species of songbirds (suborder Pas- attention has been given to explaining its evolution. seri), there is tremendous scope for variation in patterns of Because the evolution of vocal learning in any one lin- learning [6]. One typical pattern is for young males to eage, including our own, is typically a one-off affair, memorize songs or parts of songs in the first few months of progress in testing ideas on the evolution of vocal learning life [7] in the neighborhood where they will later establish requires a comparative approach. This approach is chal- their own territories [8]. The memorized sounds later lenging because the lineages that have evolved vocal guide song development when the young males begin to learning are few and diverse, hampering the application sing as they approach their first breeding season [9]. of formal comparative methods, which require a much larger number of taxa for statistical comparison. None- In an early and still influential paper, Nottebohm [10] theless, progress is only possible by synthesizing patterns suggested that one of the two main advantages of vocal Current Opinion in Neurobiology 2014, 28:48–53 www.sciencedirect.com Evolution of vocal learning Nowicki and Searcy 49 learning in songbirds is the production of vocal dialects, does not happen [12], at least not at a relevant geographic which he argued would be advantageous in promoting scale. If geographic variation in song does not occur unless genetic adaptation to local environmental conditions. song learning is already established, then the vocal dialect Nottebohm assumed that males learn the local dialect hypothesis can explain the maintenance of vocal learning where they are born, and that females learn preferences for but not its origin. their own local dialects and then choose mates that sing those dialects. Song learning would thus promote assorta- The second main advantage of vocal learning proposed by tive mating between males and females that have been Nottebohm is in meeting female preferences for complex selected for adaptation to local conditions (Figure 1; Hy- sounds [10] (Figure 1; Hypothesis 2). Nottebohm assumed pothesis 1). Various aspects of this scenario have since that learned vocalizations can achieve greater complexity been challenged on empirical grounds [11,12]: whether than innate vocalizations, an assumption that still seems males actually learn songs where they are born rather than reasonable. He proposed that females generally prefer to after they disperse, whether females actually prefer to mate with males having more elaborate songs. Nottebohm mate with males singing their own natal dialects, and could adduce little evidence for this assumption at the whether dialect populations actually show genetic differ- time, but since then laboratory experiments and field ences indicative of local adaptation. Beyond these empiri- studies both have shown that female songbirds prefer more cal problems, the vocal dialect hypothesis also has some complex song in many species [13,14] though not all [15]. logical difficulties. First, a hypothesis to explain the evo- lution of vocal learning must provide a selective advantage In some songbirds, female preferences for complex song to the male that learns, not an advantage to the female that may currently be adaptive because of associations be- chooses to mate with him or to the population to which he tween song complexity and male quality [16 ]. The belongs. The vocal dialect hypothesis can be stated in ‘developmental stress hypothesis’ suggests that brain terms of an individual level advantage to the learner, structures underlying song learning develop during a though often it is stated otherwise. Second, and more period in which other aspects of the phenotype are critically, the vocal dialect hypothesis provides a selective developing, and in which the young bird is particularly advantage to song learning only if songs already vary susceptible to developmental stress. Those individuals geographically and females already prefer local variants. that escape stress, or whose genotypes are resistant to Although it seems logically possible for geographic vari- stress, develop more complex and more accurately imi- ation in song to occur without song learning, in practice this tated songs as well as more robust phenotypes overall Figure 1 evolution of vocal learning local repertoire fit of signals individual dialects expansion to environment distinctiveness assortative mate information improved individual mating choice sharing transmission recognition local genetic increased enhanced more effective enhanced social adaptation mating success fitness of kin signaling Interactions Hypothesis 1 Hypothesis 2 Hypothesis 3 Hypothesis 4 Hypothesis 5 Current Opinion in Neurobiology Five hypotheses on the selective benefits leading to the evolution of vocal learning. For each hypothesis, vocal learning has a proximate effect (in green) that translates by some mechanism (in blue) to a selective benefit (in red). The hypotheses are the (1) vocal dialect hypothesis, (2) sexual selection hypothesis, (3) information sharing hypothesis, (4) environmental adaptation hypothesis, and (5) individual recognition hypothesis. www.sciencedirect.com Current Opinion in Neurobiology 2014, 28:48–53 50 Communication and language [17,18,19 ]. The developmental stress hypothesis pre- been considered, abilities other than vocal learning have dicts associations between male quality and vocal com- drawn more attention, such as the capacity to use and plexity specifically for learned songs. Unlearned understand recursion [33] or the ability to use syntax to vocalizations
Recommended publications
  • The Evolution of Human Vocal Emotion
    EMR0010.1177/1754073920930791Emotion ReviewBryant 930791research-article2020 SPECIAL SECTION: EMOTION IN THE VOICE Emotion Review Vol. 13, No. 1 (January 2021) 25 –33 © The Author(s) 2020 ISSN 1754-0739 DOI:https://doi.org/10.1177/1754073920930791 10.1177/1754073920930791 The Evolution of Human Vocal Emotion https://journals.sagepub.com/home/emr Gregory A. Bryant Department of Communication, Center for Behavior, Evolution, and Culture, University of California, Los Angeles, USA Abstract Vocal affect is a subcomponent of emotion programs that coordinate a variety of physiological and psychological systems. Emotional vocalizations comprise a suite of vocal behaviors shaped by evolution to solve adaptive social communication problems. The acoustic forms of vocal emotions are often explicable with reference to the communicative functions they serve. An adaptationist approach to vocal emotions requires that we distinguish between evolved signals and byproduct cues, and understand vocal affect as a collection of multiple strategic communicative systems subject to the evolutionary dynamics described by signaling theory. We should expect variability across disparate societies in vocal emotion according to culturally evolved pragmatic rules, and universals in vocal production and perception to the extent that form–function relationships are present. Keywords emotion, evolution, signaling, vocal affect Emotional communication is central to social life for many ani- 2001; Pisanski, Cartei, McGettigan, Raine, & Reby, 2016; mals. Beginning with Darwin
    [Show full text]
  • Science News | December 19, 2009 Feature | Humans Wonder, Anybody Home?
    FEATURE | HUMANS WONDER, ANYBODY HOME? To prevent Shania the octopus from becom- Humans wonder, ing bored, keepers at the National Aquarium in Washington, D.C., gave her a Mr. Potato Head filled with fish to snuggle. Researchers anybody are now looking beyond behavior into the brain for signs of awareness in birds and invertebrates. home? Brain structure and circuitry offer clues to consciousness in nonmammals By Susan Gaidos ne afternoon while participat­ except for the fact that Betty was a New ing in studies in a University Caledonian crow. of Oxford lab, Abel snatched Betty isn’t the only crow with such a hook away from Betty, leav­ conceptual ingenuity. Nor are crows the Oing her without a tool to complete a task. only members of the animal kingdom to Spying a piece of straight wire nearby, exhibit similar mental powers. Animals POST WASHINGTON THE she picked it up, bent one end into a can do all sorts of clever things: Studies EARY/ L ’ hook and used it to finish the job. Noth­ of chimpanzees, gorillas, dolphins and O ILL ing about this story was remarkable, birds have found that some can add, B 22 | SCIENCE NEWS | December 19, 2009 www.sciencenews.org FEATURE | HUMANS WONDER, ANYBODY HOME? subtract, create sentences, plan ahead objects in their visual field. “This raises or deceive others. the intriguing question whether con­ Brain-on-brain comparisons To carry out such tasks, these animals scious experience requires the specific In an effort to find signs of conscious- ness, scientists are identifying analo- must be drawing on past experiences and structure of human or primate brains,” gous structures (same coloring) among then using them along with immediate biologist Donald Griffin wrote inAnimal the brains of humans, birds, octopuses perceptions to make sense of it all.
    [Show full text]
  • Going Beyond Just-So Stories Response to Commentary on Key on Fish Pain
    Animal Sentience 2016.022: Response to Commentary on Key on Fish Pain Going beyond just-so stories Response to Commentary on Key on Fish Pain Brian Key School of Biomedical Sciences University of Queensland Abstract: Colloquial arguments for fish feeling pain are deeply rooted in anthropometric tendencies that confuse escape responses to noxious stimuli with evidence for consciousness. More developed arguments often rely on just-so stories of fish displaying complex behaviours as proof of consciousness. In response to commentaries on the idea that fish do not feel pain, I raise the need to go beyond just-so stories and to rigorously analyse the neural circuitry responsible for specific behaviours using new and emerging technologies in neuroscience. By deciphering the causal relationship between neural information processing and conscious behaviour, it should be possible to assess cogently the likelihood of whether a vertebrate species has the neural hardware necessary to — at least — support the feeling of pain. Brian Key [email protected] is Head of the Brain Growth and Regeneration Lab at the University of Queensland. He is dedicated to understanding the principles of stem cell biology, differentiation, axon guidance, plasticity, regeneration and development of the brain. http://www.uq.edu.au/sbms/staff/brian-key Just-so stories In this response to commentaries on the target article “Fish do not feel pain” (Key), I do not plan to interrogate either the putative behavioural evidence or the just-so stories previously proposed as supportive of fish feeling pain (Balcombe; Braithwaite & Droege; Broom; Brown; Dinets; Ng). These claims have been adequately addressed and refuted in recent literature (Key, 2015a and 2015b; Rose et al., 2014).
    [Show full text]
  • A Novel Reinforcement Model of Birdsong Vocalization Learning
    A Novel Reinforcement Model of Birdsong Vocalization Learning Kenji Doya Terrence J. Sejnowski ATR Human Infonnation Processing Howard Hughes Medical Institute Research Laboratories UCSD and Salk Institute, 2-2 Hikaridai, Seika, Kyoto 619-02, Japan San Diego, CA 92186-5800, USA Abstract Songbirds learn to imitate a tutor song through auditory and motor learn­ ing. We have developed a theoretical framework for song learning that accounts for response properties of neurons that have been observed in many of the nuclei that are involved in song learning. Specifically, we suggest that the anteriorforebrain pathway, which is not needed for song production in the adult but is essential for song acquisition, provides synaptic perturbations and adaptive evaluations for syllable vocalization learning. A computer model based on reinforcement learning was con­ structed that could replicate a real zebra finch song with 90% accuracy based on a spectrographic measure. The second generation of the bird­ song model replicated the tutor song with 96% accuracy. 1 INTRODUCTION Studies of motor pattern generation have generally focussed on innate motor behaviors that are genetically preprogrammed and fine-tuned by adaptive mechanisms (Harris-Warrick et al., 1992). Birdsong learning provides a favorable opportunity for investigating the neuronal mechanisms for the acquisition of complex motor patterns. Much is known about the neuroethology of bird song and its neuroanatomical substrate (see Nottebohm, 1991 and Doupe, 1993 for reviews), but relatively little is known about the overall system from a computational viewpoint. We propose a set of hypotheses for the functions of the brain nuclei in the song system and explore their computational strength in a model based on biological constraints.
    [Show full text]
  • Quantification of Developmental Birdsong Learning from The
    Quantification of developmental birdsong learning from the subsyllabic scale to cultural evolution Dina Lipkind1 and Ofer Tchernichovski Department of Psychology, Hunter College, City University of New York, New York, NY 10065 Edited by Donald W. Pfaff, The Rockefeller University, New York, NY, and approved February 4, 2011 (received for review August 31, 2010) Quantitative analysis of behavior plays an important role in bird- The genome of a songbird was sequenced earlier this year (12), song neuroethology, serving as a common denominator in studies motivated in part by the goal of discovering the genetic spanning molecular to system-level investigation of sensory-motor changes (as revealed by comparison with the chicken genome) conversion, developmental learning, and pattern generation in that led to the evolution of vocal learning. In contrast to auditory the brain. In this review, we describe the role of behavioral analysis learning (the ability to discriminate between sounds), vocal in facilitating cross-level integration. Modern sound analysis ap- learning (the ability to imitate complex sounds) is rare in nature, but in birds it probably evolved in three out of the 25–28 known proaches allow investigation of developmental song learning across – multiple time scales. Combined with novel methods that allow orders: songbirds, parrots, and hummingbirds (13 17). Aside experimental control of vocal changes, it is now possible to test from humans, vocal learning in mammals has been conclusively hypotheses about mechanisms of vocal learning. Further, song demonstrated only in dolphins, whales (18), and bats (19), but not in apes. Vocal learners share similar forebrain structures neces- analysis can be done at the population level across generations to sary to produce and acquire their learned vocalization (whether track cultural evolution and multigenerational behavioral processes.
    [Show full text]
  • Isochrony, Vocal Learning and the Acquisition of Rhythm and Melody - Andrea Ravignani in Press: Behavioral and Brain Sciences
    Isochrony, vocal learning and the acquisition of rhythm and melody - Andrea Ravignani In press: Behavioral and Brain Sciences Isochrony, vocal learning and the acquisition of rhythm and melody Andrea Ravignani Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, NL [email protected] ABSTRACT A cross-species perspective can extend and provide testable predictions for Savage et al.’s framework. Rhythm and melody, I argue, could bootstrap each other in the evolution of musicality. Isochrony may function as a temporal grid to support rehearsing and learning modulated, pitched vocalizations. Once this melodic plasticity is acquired, focus can shift back to refining rhythm processing and beat induction. Musicality consists of the lobster rattles to sea lion barks: Patek & (neuro)biological underpinnings to perceive Caldwell, 2006; Schusterman, 1977), and produce music. Research in the evolution autonomously-regulated behavior or of musicality needs cross-species evidence. As (neuro)physiology. Synchrony is widespread a parallel, to understand the evolution of bat but scattered across taxonomic groups wings, one asks why all other mammals lack (Ravignani et al., 2014; Wilson & Cook, 2016). wings and why other flying animals have Vocal learning is rare but potentially arose evolved them. Likewise, our species only multiple times in evolution due to different constitutes one datapoint to construct pressures across species (Nowicki & Searcy, evolutionary hypotheses on musicality. 2014; Garcia & Ravignani, 2020; Martins & Comparisons with other species are necessary Boeckx, 2020). Beat induction has only been to avoid post-hoc explanations of evolutionary found in a few animals, as acknowledged by traits. Savage and colleagues (Kotz et al., 2018; cf.
    [Show full text]
  • Birds Have Primate-Like Numbers of Neurons in the Forebrain
    Birds have primate-like numbers of neurons in the forebrain Seweryn Olkowicza, Martin Kocoureka, Radek K. Lucanˇ a, Michal Porteša, W. Tecumseh Fitchb, Suzana Herculano-Houzelc,d,1, and Pavel Nemec a,2 aDepartment of Zoology, Faculty of Science, Charles University in Prague, CZ-12844 Prague, Czech Republic; bDepartment of Cognitive Biology, University of Vienna, 1090 Vienna, Austria; cInstituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CEP 21941-902, Rio de Janeiro, Brazil; and dInstituto Nacional de Neurociência Translacional, Ministério da Ciência e Tecnologia/Conselho Nacional de Pesquisas, CEP 04023-900, São Paulo, Brazil Edited by Dale Purves, Duke University, Durham, NC, and approved May 6, 2016 (received for review August 27, 2015) Some birds achieve primate-like levels of cognition, even though capacity? Not necessarily: it has recently been discovered that their brains tend to be much smaller in absolute size. This poses a the relationship between brain mass and number of brain neu- fundamental problem in comparative and computational neuro- rons differs starkly between mammalian clades (31). Avian science, because small brains are expected to have a lower brains seem to consist of small, tightly packed neurons, and it is information-processing capacity. Using the isotropic fractionator thus possible that they can accommodate numbers of neurons to determine numbers of neurons in specific brain regions, here that are comparable to those found in the much larger primate we show that the brains of parrots and songbirds contain on brains. However, to date, no quantitative data have been avail- average twice as many neurons as primate brains of the same able to test this hypothesis.
    [Show full text]
  • Chapter 9. Vocal Learning and Auditory-Vocal Feedback
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by St Andrews Research Repository Chapter 9. Vocal Learning and Auditory-Vocal Feedback Peter L Tyack Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, KY16 8LB, Scotland UK from Suthers et al. (eds.) Vertebrate Sound Production and Acoustic Communication Springer Handbook of Auditory Research 53, DOI 10.1007/978-3-319-27721-9_9 Abstract Vocal learning is usually studied in songbirds and humans, species that can form auditory templates by listening to acoustic models and then learn to vocalize to match the template. Most other species are thought to de- velop vocalizations without auditory feedback. However, auditory input influences the acoustic structure of vocalizations in a broad distribution of birds and mammals. Vocalizations are defined here as sounds generated by forcing air past vibrating membranes. A vocal motor program may generate vocalizations such as crying or laughter, but auditory feedback may be required for matching precise acoustic features of vocalizations. This chapter discriminates limited vocal learning, which uses auditory in- put to fine-tune acoustic features of an inherited auditory template, from complex vocal learning, in which novel sounds are learned by matching a learned auditory template. Two or three songbird taxa and four or five mammalian taxa are known for complex vocal learning. A broader range of mammals converge in the acoustic structure of vocalizations when in socially interacting groups, which qualifies as limited vocal learning. All birds and mammals tested use auditory-vocal feedback to adjust their vocalizations to compensate for the effects of noise, and many species modulate their signals as the costs and benefits of communicating vary.
    [Show full text]
  • TRANS - Revista Transcultural De Música - Transcultural Music Review
    TRANS - Revista Transcultural de Música - Transcultural Music Review http://www.sibetrans.com/trans/articulo/98/decoding-the-song-of-the-pie... Sibetrans Trans Grupos de trabajo Etno Instrumentos para la investigación musical Intranet Home PRESENTACIÓN EQUIPO EDITORIAL INFORMACIÓN PARA LOS AUTORES CÓMO CITAR TRANS INDEXACIÓN CONTACTO Última publicación Números publicados < Volver TRANS 12 (2008) Explorar TRANS: Por Número > Decoding the song of the pied butcherbird: an initial survey Por Artículo > Por Autor > Hollis Taylor Buscar “Of course viewing culture as something which originates in a natural function, and imagining that it turned out to bring a new end beyond pure survival, may look heretical both to a large majority of biologists and to many musicians as well… I can only say, as a composer, that Cracticus nigrogularis, the pied butcherbird, is a kind of colleague.” François-Bernard Mâche (2000: 479) Share | Suscribir RSS Feed Abstract Definitions of music invoking the human cutoff point are reviewed. The pied butcherbird Cracticus nigrogularis is suggested for a zoömusicological case study on how birdsong might be like the human animal’s music (whether homologous or analogous). Portamento as an impediment to “off-the-shelf” musicology in the case of birdsong analysis is discussed. It is proposed that the employment of different types and levels of description could facilitate the most fecund survey and analysis. An initial survey on how pied butcherbirds use notes, calls, and song is presented, including sonograms and standard music notation, followed by an elucidation of a repertoire of procedures found in both “music” and pied butcherbird song. It is concluded that their elaborate song culture seems to overreach biological necessity, indicating an aesthetic appreciation of sound is present in the pied butcherbird.
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE Vocal Learning in the Costa's Hummingbird a Dissertation Submitted in Partial Satisfaction
    UNIVERSITY OF CALIFORNIA RIVERSIDE Vocal Learning in the Costa’s Hummingbird A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Evolution, Ecology, and Organismal Biology by Katherine Elizabeth Johnson September 2019 Dissertation Committee: Dr. Christopher Clark, Chairperson Dr. Mark Chappell Dr. Jessica Purcell Copyright by Katherine Elizabeth Johnson 2019 The Dissertation of Katherine Elizabeth Johnson is approved: Committee Chairperson University of California, Riverside Acknowledgements It is amazing how many people it took to complete this dissertation and I am so grateful to them all for their kind assistance. My study had unique animal care demands and many people helped to keep the hummingbirds alive and thriving. So special thanks to David Rankin, Sean Wilcox, Krista LePiane, Brian Myers, Emily Mistick, Ayala Berger, Lilly Collins, Jenny Hazelhurst for their efforts! Thanks to my lab mates, Sean Wilcox, Krista LePiane, Ayala Berger, for their friendship and support. Also, a very sincere appreciation to David Ranking who is one of the world’s greatest hummingbird nest finders! So much of my success depended on your efforts and I can never thank you enough! Dr. Erin Rankin was also most generous with her time and assistance. I also want to express my appreciation to the Anza Borrego Paul Jorgenson Bird Grant, the Animal Behavior Society, San Diego Global Zoo, and the Fairchild Tropical Botanical Garden for their invaluable assistance. I wish to especially thank my Committee Members Dr. Mark Chappell, Dr. Jessica Purcell, Dr. Khaleel Razak, Dr. Wendy Saltzman, and Dr. Rachel Wu who by refusing to accept my first proposal, made the project so much better! And finally, I wish to express my sincere appreciation to my advisor and mentor Chris Clark.
    [Show full text]
  • The Different Roles of Social Learning in Vocal Communication
    ANIMAL BEHAVIOUR, 2000, 60, 1–11 doi:10.1006/anbe.2000.1410 available online at http://www.idealibrary.com on REVIEW The different roles of social learning in vocal communication VINCENT M. JANIK* & PETER J. B. SLATER† *Biology Department, Woods Hole Oceanographic Institution †School of Biology, University of St Andrews (Received 6 October 1999; initial acceptance 19 November 1999; final acceptance 2 February 2000; MS. number: RV-14) While vocal learning has been studied extensively in birds and mammals, little effort has been made to define what exactly constitutes vocal learning and to classify the forms that it may take. We present such a theoretical framework for the study of social learning in vocal communication. We define different forms of social learning that affect communication and discuss the required methodology to show each one. We distinguish between contextual and production learning in animal communication. Contextual learning affects the behavioural context or serial position of a signal. It can affect both usage and comprehension. Production learning refers to instances where the signals themselves are modified in form as a result of experience with those of other individuals. Vocal learning is defined as production learning in the vocal domain. It can affect one or more of three systems: the respiratory, phonatory and filter systems. Each involves a different level of control over the sound production apparatus. We hypothesize that contextual learning and respiratory production learning preceded the evolution of phonatory and filter production learning. Each form of learning potentially increases the complexity of a communication system. We also found that unexpected genetic or environmental factors can have considerable effects on vocal behaviour in birds and mammals and are often more likely to cause changes or differences in vocalizations than investigators may assume.
    [Show full text]
  • Ontogeny of Vocal Rhythms in Harbor Seal Pups: an Exploratory Study
    Current Zoology, 2019, 65(1), 107–120 doi: 10.1093/cz/zoy055 Advance Access Publication Date: 7 July 2018 Article Article Downloaded from https://academic.oup.com/cz/article-abstract/65/1/107/5050400 by Erasmus University Rotterdam user on 22 August 2019 Ontogeny of vocal rhythms in harbor seal pups: an exploratory study a,b, c a Andrea RAVIGNANI *, Christopher T. KELLO , Koen DE REUS , d,e,f f,g,h a Sonja A KOTZ , Simone DALLA BELLA , Margarita MENDEZ -AROSTEGUI , a a b Beatriz RAPADO-TAMARIT , Ana RUBIO-GARCIA , and Bart DE BOER aResearch Department, Sealcentre Pieterburen, Pieterburen, The Netherlands, bArtificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium, cCognitive and Information Sciences, University of California, Merced, CA, USA, dBasic and Applied NeuroDynamics Lab, Faculty of Psychology and Neuroscience, Department of Neuropsychology & Psychopharmacology, Maastricht University, Maastricht, The Netherlands, eDepartment of Neuropsychology, Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, fInternational Laboratory for Brain, Music and Sound Research (BRAMS), Montre´al, QC, Canada, gDepartment of Psychology, University of Montreal, Montre´al, QC, Canada and hDepartment of Cognitive Psychology, WSFiZ in Warsaw, Warsaw, Poland *Address correspondence to Andrea Ravignani. E-mail: [email protected]. Handling editor: Zhi-Yun Jia Received on 3 April 2018; accepted on 2 July 2018 Abstract Puppyhood is a very active social and vocal period in a harbor seal’s life Phoca vitulina. An import- ant feature of vocalizations is their temporal and rhythmic structure, and understanding vocal timing and rhythms in harbor seals is critical to a cross-species hypothesis in evolutionary neuro- science that links vocal learning, rhythm perception, and synchronization.
    [Show full text]