Birds Have Primate-Like Numbers of Neurons in the Forebrain

Total Page:16

File Type:pdf, Size:1020Kb

Birds Have Primate-Like Numbers of Neurons in the Forebrain Birds have primate-like numbers of neurons in the forebrain Seweryn Olkowicza, Martin Kocoureka, Radek K. Lucanˇ a, Michal Porteša, W. Tecumseh Fitchb, Suzana Herculano-Houzelc,d,1, and Pavel Nemec a,2 aDepartment of Zoology, Faculty of Science, Charles University in Prague, CZ-12844 Prague, Czech Republic; bDepartment of Cognitive Biology, University of Vienna, 1090 Vienna, Austria; cInstituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CEP 21941-902, Rio de Janeiro, Brazil; and dInstituto Nacional de Neurociência Translacional, Ministério da Ciência e Tecnologia/Conselho Nacional de Pesquisas, CEP 04023-900, São Paulo, Brazil Edited by Dale Purves, Duke University, Durham, NC, and approved May 6, 2016 (received for review August 27, 2015) Some birds achieve primate-like levels of cognition, even though capacity? Not necessarily: it has recently been discovered that their brains tend to be much smaller in absolute size. This poses a the relationship between brain mass and number of brain neu- fundamental problem in comparative and computational neuro- rons differs starkly between mammalian clades (31). Avian science, because small brains are expected to have a lower brains seem to consist of small, tightly packed neurons, and it is information-processing capacity. Using the isotropic fractionator thus possible that they can accommodate numbers of neurons to determine numbers of neurons in specific brain regions, here that are comparable to those found in the much larger primate we show that the brains of parrots and songbirds contain on brains. However, to date, no quantitative data have been avail- average twice as many neurons as primate brains of the same able to test this hypothesis. Here, we analyze how numbers of neurons compare across mass, indicating that avian brains have higher neuron packing – densities than mammalian brains. Additionally, corvids and parrots birds and mammals (32 39) of equivalent brain mass, and de- termine the cellular scaling rules for brains of songbirds and have much higher proportions of brain neurons located in the parrots. Using the isotropic fractionator (40), we estimated the pallial telencephalon compared with primates or other mammals total numbers of neuronal and nonneuronal cells in the cerebral and birds. Thus, large-brained parrots and corvids have forebrain hemispheres, cerebellum, diencephalon, tectum, and brainstem neuron counts equal to or greater than primates with much larger in a sample of 11 parrot species, 13 vocal learning songbird species brains. We suggest that the large numbers of neurons concen- (including 6 corvids), and 4 additional model species representing trated in high densities in the telencephalon substantially contrib- other avian clades (Figs. S1 and S2). Because most of the cited ute to the neural basis of avian intelligence. mammalian studies analyzed cellular composition of only three brain subdivisions, namely the pallium (referred to as the cerebral intelligence | evolution | brain size | number of neurons | birds cortex in those papers), the cerebellum, and rest of brain, we divided the avian brain identically to ensure an accurate com- any birds have cognitive abilities that match or surpass parison of neuronal numbers, densities, and relative distribution those of mammals (1). Corvids and parrots appear to be of neurons in birds and mammals. Specifically, the avian pallium M (comprising the hyperpallium, mesopallium, nidopallium, arcopallium, cognitively superior to other birds, rivalling great apes in many — psychological domains (1–3). They manufacture and use tools (4, and hippocampus) was compared with its homolog the mam- malian pallium (comprising the neocortex, hippocampus, olfac- 5), solve problems insightfully (6), make inferences about causal tory cortices such as piriform and entorhinal cortex, and pallial mechanisms (7), recognize themselves in a mirror (8), plan for future needs (9), and use their own experience to anticipate future behavior of conspecifics (10) or even humans (11), to mention just Significance a few striking abilities. In addition, parrots and songbirds (in- cluding corvids) share with humans and a few other animal Birds are remarkably intelligent, although their brains are groups a rare capacity for vocal learning (12), and parrots can small. Corvids and some parrots are capable of cognitive feats learn words and use them to communicate with humans (13). comparable to those of great apes. How do birds achieve im- Superficially, the architecture of the avian brain appears very pressive cognitive prowess with walnut-sized brains? We in- different from that of mammals, but recent work demonstrates vestigated the cellular composition of the brains of 28 avian that, despite a lack of layered neocortex, large areas of the avian species, uncovering a straightforward solution to the puzzle: forebrain are homologous to mammalian cortex (14–16), con- brains of songbirds and parrots contain very large numbers of form to the same organizational principles (15, 17, 18), and play neurons, at neuronal densities considerably exceeding those similar roles in higher cognitive functions (14, 19), including found in mammals. Because these “extra” neurons are pre- executive control (20, 21). However, bird brains are small and dominantly located in the forebrain, large parrots and corvids the computational mechanisms enabling corvids and parrots to have the same or greater forebrain neuron counts as monkeys achieve ape-like intelligence with much smaller brains remain with much larger brains. Avian brains thus have the potential unclear. The notion that higher encephalization (relative brain to provide much higher “cognitive power” per unit mass than size deviation from brain–body allometry) endows species with do mammalian brains. improved cognitive abilities has recently been challenged by data suggesting that intelligence instead depends on the absolute Author contributions: S.O., M.K., S.H.-H., and P.N. designed research; S.O., M.K., R.K.L., M.P., and number of cerebral neurons and their connections (22–25). This P.N. performed research; R.K.L. and M.P. collected experimental animals; S.O., M.K., S.H.-H., and is in line with recent findings that absolute rather than relative P.N. analyzed data; and S.O., M.K., W.T.F., S.H.-H., and P.N. wrote the paper. brain size is the best predictor of cognitive capacity (26–28). The authors declare no conflict of interest. However, although corvids and parrots feature encephalization This article is a PNAS Direct Submission. comparable to that of monkeys and apes, their absolute brain Freely available online through the PNAS open access option. size remains small (29, 30). The largest average brain size in 1Present address: Department of Psychology and Department of Biological Sciences, corvids and parrots does not exceed 15.4 g found in the common Vanderbilt University, Nashville, TN 37240. raven (29) and 24.7 g found in the hyacinth macaw (30), re- 2To whom correspondence should be addressed. Email: [email protected]. spectively. Do corvids and parrots provide a strong case for re- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. NEUROSCIENCE viving encephalization as a valid measure of brain functional 1073/pnas.1517131113/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1517131113 PNAS | June 28, 2016 | vol. 113 | no. 26 | 7255–7260 Downloaded by guest on September 29, 2021 Birds Mammals amygdala) (14–16, 41). The avian subpallium (formed by the A Goldcrest Mouse striatum, pallidum, and septum), diencephalon, tectum, and brain- stem were pooled and compared with the same regions of “ ” 0.36 g 164 0.42 g 71 mammalian brains that are referred to as the rest of brain. The Starling Rat cerebellum is directly compared between the two clades. The results of our study reveal that avian brains contain many more pallial neurons than equivalently sized mammalian brains. 1.86 g 483 1.80 g 200 Rook Marmoset Results Total Numbers of Neurons. We found that the bird brains have more neurons than mammalian brains and even primate brains of similar mass (Fig. 1 A and B), and have very high neuronal densities (Fig. 2 B and C). Among the songbirds studied, weighing 8.36 g 1,509 7.78 g 636 between 4.5 and 1,070 g, brain mass ranges from 0.36 to 14.13 g, Sulphur-crested Cockatoo Galago and total numbers of neurons in the brain from 136 million to 2.17 billion (Fig. S3 and Table S1; for complete data see Datasets S1 and S2). In the parrots studied, body mass ranges between 23 and 1,008 g, brain mass from 1.15 to 20.73 g, and numbers of brain neurons from 227 million to 3.14 billion. Interestingly, the re- 10.1 g 2,122 10.2 g 936 lationship between brain mass and the number of brain neurons x106 x106 can be described by similar power functions in these two bird BC 103 103 A Cerebellum Telencephalon 102 102 Diencephalon Brainstem DN DN Tectum 10 Songbirds 10 Parrots TA Brain mass (g) GG CL TA Primates Brain mass (g) GG Parrots Songbirds Artiodactyls CL B C and other birds 1 Rodents 1 Other birds 106 106 CL 108 109 1010 1011 108 109 1010 1011 GG TA DE# neurons # non-neuronal cells DN 1011 105 105 103 Corvid songbirds Non-corvid songbirds Parrots Primates 10 2 10 10 Artiodactyls 4 Neuronal density (N/mg) 4 Rodents 10 Neuronal density (N/mg) 10 Other birds DN 10 TA 109 DN 110 110 # neurons TA Brain mass (g) Brain mass (g) GG D E Brain mass (g) CL CL GG 1 6 6 108 10 10 CL 10 102 103 104 105 106 10 102 103 104 105 106 GG TA Body mass (g) Body mass (g) DN 105 105 Fig. 1. Cellular scaling rules for brains of songbirds and parrots compared with those for mammals. (A) Avian and mammalian brains depicted at the same scale.
Recommended publications
  • Altriciality and the Evolution of Toe Orientation in Birds
    Evol Biol DOI 10.1007/s11692-015-9334-7 SYNTHESIS PAPER Altriciality and the Evolution of Toe Orientation in Birds 1 1 1 Joa˜o Francisco Botelho • Daniel Smith-Paredes • Alexander O. Vargas Received: 3 November 2014 / Accepted: 18 June 2015 Ó Springer Science+Business Media New York 2015 Abstract Specialized morphologies of bird feet have trees, to swim under and above the water surface, to hunt and evolved several times independently as different groups have fish, and to walk in the mud and over aquatic vegetation, become zygodactyl, semi-zygodactyl, heterodactyl, pam- among other abilities. Toe orientations in the foot can be prodactyl or syndactyl. Birds have also convergently described in six main types: Anisodactyl feet have digit II evolved similar modes of development, in a spectrum that (dII), digit III (dIII) and digit IV (dIV) pointing forward and goes from precocial to altricial. Using the new context pro- digit I (dI) pointing backward. From the basal anisodactyl vided by recent molecular phylogenies, we compared the condition four feet types have arisen by modifications in the evolution of foot morphology and modes of development orientation of digits. Zygodactyl feet have dI and dIV ori- among extant avian families. Variations in the arrangement ented backward and dII and dIII oriented forward, a condi- of toes with respect to the anisodactyl ancestral condition tion similar to heterodactyl feet, which have dI and dII have occurred only in altricial groups. Those groups repre- oriented backward and dIII and dIV oriented forward. Semi- sent four independent events of super-altriciality and many zygodactyl birds can assume a facultative zygodactyl or independent transformations of toe arrangements (at least almost zygodactyl orientation.
    [Show full text]
  • Understanding the Building Blocks of Avian Complex Cognition : The
    Understanding the building blocks of avian complex cognition: the executive caudal nidopallium and the neuronal energy budget by Kaya von Eugen A thesis submitted in partial fulfilment of the requirements for the degree of Philosophiae Doctoris (PhD) in Neuroscience From the International Graduate School of Neuroscience Ruhr University Bochum September 30th 2020 This research was conducted at the Department of Biopsychology, within the Faculty of Psychology at the Ruhr University under the supervision of Prof. Dr. Dr. h.c. Onur Güntürkün Printed with the permission of the International Graduate School of Neuroscience, Ruhr University Bochum Statement I certify herewith that the dissertation included here was completed and written independently by me and without outside assistance. References to the work and theories of others have been cited and acknowledged completely and correctly. The “Guidelines for Good Scientific Practice” according to § 9, Sec. 3 of the PhD regulations of the International Graduate School of Neuroscience were adhered to. This work has never been submitted in this, or a similar form, at this or any other domestic or foreign institution of higher learning as a dissertation. The abovementioned statement was made as a solemn declaration. I conscientiously believe and state it to be true and declare that it is of the same legal significance and value as if it were made under oath. Bochum, 30.09.2020 Kaya von Eugen PhD Commission Chair: PD Dr. Dirk Jancke 1st Internal Examiner: Prof. Dr. Dr. h.c. Onur Güntürkün 2nd Internal Examiner: Prof. Dr. Carsten Theiß External Examiner: Prof. Dr. Andrew Iwaniuk Non-Specialist: Prof.
    [Show full text]
  • Dopamine D1 Receptor Activation Drives Plasticity in the Songbird Auditory Pallium
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.09.330266; this version posted October 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Title: Dopamine D1 receptor activation drives plasticity in the songbird auditory pallium 2 3 Abbreviated title: D1 receptors drive plasticity in songbird pallium 4 5 Authors: Matheus Macedo-Lima1,2,3, Hannah M. Boyd2, Luke Remage-Healey1,2 6 7 Affiliations: 1Neuroscience and Behavior Program, 2Center for Neuroendocrine Studies, 8 University of Massachusetts Amherst, Amherst MA, USA 01003. 3CAPES Foundation, Ministry 9 of Education of Brazil, Brasília, DF, Brazil 70040-020. 10 11 Number of figures: 9 12 13 Competing interests: The authors declare no competing interests. 14 15 Acknowledgments: We thank current and former members of the Healey Lab at the University of 16 Massachusetts who helped with this project, especially Amanda Krentzel, Catherine de- 17 Bournonville, Christina Moschetto, Daniel Pollak, Daniel Vahaba, Garrett Scarpa, Jeremy Spool, 18 Katie Schroeder, Maaya Ikeda, Marcela Fernandez-Peters and Rachel Frazier. Finally, we thank 19 Geng-Lin Li, Joseph Bergan, Jeffrey Podos and Karine Fenelon for valuable input on this 20 project. 21 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.09.330266; this version posted October 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • The Evolution of Human Vocal Emotion
    EMR0010.1177/1754073920930791Emotion ReviewBryant 930791research-article2020 SPECIAL SECTION: EMOTION IN THE VOICE Emotion Review Vol. 13, No. 1 (January 2021) 25 –33 © The Author(s) 2020 ISSN 1754-0739 DOI:https://doi.org/10.1177/1754073920930791 10.1177/1754073920930791 The Evolution of Human Vocal Emotion https://journals.sagepub.com/home/emr Gregory A. Bryant Department of Communication, Center for Behavior, Evolution, and Culture, University of California, Los Angeles, USA Abstract Vocal affect is a subcomponent of emotion programs that coordinate a variety of physiological and psychological systems. Emotional vocalizations comprise a suite of vocal behaviors shaped by evolution to solve adaptive social communication problems. The acoustic forms of vocal emotions are often explicable with reference to the communicative functions they serve. An adaptationist approach to vocal emotions requires that we distinguish between evolved signals and byproduct cues, and understand vocal affect as a collection of multiple strategic communicative systems subject to the evolutionary dynamics described by signaling theory. We should expect variability across disparate societies in vocal emotion according to culturally evolved pragmatic rules, and universals in vocal production and perception to the extent that form–function relationships are present. Keywords emotion, evolution, signaling, vocal affect Emotional communication is central to social life for many ani- 2001; Pisanski, Cartei, McGettigan, Raine, & Reby, 2016; mals. Beginning with Darwin
    [Show full text]
  • Predictors of Juvenile Survival in Birds
    Ornithological Monographs Volume (2013), No. 78, 1–55 © The American Ornithologists’ Union, 2013. Printed in USA. PREDICTORS OF JUVENILE SURVIVAL IN BIRDS TERRI J. MANESS1,2,3 AND DAVID J. ANDERSON2 1School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana 71272, USA; and 2Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27106, USA ABSTRACT.—The survival probability of birds during the juvenile period, between the end of parental care and adulthood, is highly variable and has a major effect on population dynamics and parental fitness. As such, a large number of studies have attempted to evaluate potential predictors of juvenile survival in birds, especially predictors related to parental care. Lack’s hypothesis linking body reserves accumulated from parental care to the survival of naive juveniles has organized much of this research, but various other predictors have also been investigated and received some support. We reviewed the literature in this area and identified a variety of methodological problems that obscure interpretation of the body of results. Most studies adopted statistical techniques that missed the opportunities to (1) evaluate the relative importance of several predictors, (2) control the confounding effect of correlation among predictor variables, and (3) exploit the information content of collinearity by evaluating indirect (via correlation) as well as direct effects of potential predictors on juvenile survival. Ultimately, we concluded that too few reliable studies exist to allow robust evaluations of any hypothesis regarding juvenile survival in birds. We used path analysis to test potential predictors of juvenile survival of 2,631 offspring from seven annual cohorts of a seabird, the Nazca Booby (Sula granti).
    [Show full text]
  • Perspectives
    PERSPECTIVES reptiles, to birds and mammals, to primates OPINION and, finally, to humans — ascending from ‘lower’ to ‘higher’ intelligence in a chrono- logical series. They believed that the brains Avian brains and a new understanding of extant vertebrates retained ancestral structures, and, therefore, that the origin of of vertebrate brain evolution specific human brain subdivisions could be traced back in time by examining the brains of extant non-human vertebrates. In The Avian Brain Nomenclature Consortium* making such comparisons, they noted that the main divisions of the human CNS — Abstract | We believe that names have a pallium is nuclear, and the mammalian the spinal cord, hindbrain, midbrain, thala- powerful influence on the experiments we cortex is laminar in organization, the avian mus, cerebellum and cerebrum or telen- do and the way in which we think. For this pallium supports cognitive abilities similar cephalon — were present in all vertebrates reason, and in the light of new evidence to, and for some species more advanced than, (FIG. 1a). Edinger, however, noted that the about the function and evolution of the those of many mammals. To eliminate these internal organization of the telencephala vertebrate brain, an international consortium misconceptions, an international forum of showed the most pronounced differences of neuroscientists has reconsidered the neuroscientists (BOX 1) has, for the first time between species. In mammals, the outer traditional, 100-year-old terminology that is in 100 years, developed new terminology that part of the telencephalon was found to have used to describe the avian cerebrum. Our more accurately reflects our current under- prominently layered grey matter (FIG.
    [Show full text]
  • Science News | December 19, 2009 Feature | Humans Wonder, Anybody Home?
    FEATURE | HUMANS WONDER, ANYBODY HOME? To prevent Shania the octopus from becom- Humans wonder, ing bored, keepers at the National Aquarium in Washington, D.C., gave her a Mr. Potato Head filled with fish to snuggle. Researchers anybody are now looking beyond behavior into the brain for signs of awareness in birds and invertebrates. home? Brain structure and circuitry offer clues to consciousness in nonmammals By Susan Gaidos ne afternoon while participat­ except for the fact that Betty was a New ing in studies in a University Caledonian crow. of Oxford lab, Abel snatched Betty isn’t the only crow with such a hook away from Betty, leav­ conceptual ingenuity. Nor are crows the Oing her without a tool to complete a task. only members of the animal kingdom to Spying a piece of straight wire nearby, exhibit similar mental powers. Animals POST WASHINGTON THE she picked it up, bent one end into a can do all sorts of clever things: Studies EARY/ L ’ hook and used it to finish the job. Noth­ of chimpanzees, gorillas, dolphins and O ILL ing about this story was remarkable, birds have found that some can add, B 22 | SCIENCE NEWS | December 19, 2009 www.sciencenews.org FEATURE | HUMANS WONDER, ANYBODY HOME? subtract, create sentences, plan ahead objects in their visual field. “This raises or deceive others. the intriguing question whether con­ Brain-on-brain comparisons To carry out such tasks, these animals scious experience requires the specific In an effort to find signs of conscious- ness, scientists are identifying analo- must be drawing on past experiences and structure of human or primate brains,” gous structures (same coloring) among then using them along with immediate biologist Donald Griffin wrote inAnimal the brains of humans, birds, octopuses perceptions to make sense of it all.
    [Show full text]
  • Going Beyond Just-So Stories Response to Commentary on Key on Fish Pain
    Animal Sentience 2016.022: Response to Commentary on Key on Fish Pain Going beyond just-so stories Response to Commentary on Key on Fish Pain Brian Key School of Biomedical Sciences University of Queensland Abstract: Colloquial arguments for fish feeling pain are deeply rooted in anthropometric tendencies that confuse escape responses to noxious stimuli with evidence for consciousness. More developed arguments often rely on just-so stories of fish displaying complex behaviours as proof of consciousness. In response to commentaries on the idea that fish do not feel pain, I raise the need to go beyond just-so stories and to rigorously analyse the neural circuitry responsible for specific behaviours using new and emerging technologies in neuroscience. By deciphering the causal relationship between neural information processing and conscious behaviour, it should be possible to assess cogently the likelihood of whether a vertebrate species has the neural hardware necessary to — at least — support the feeling of pain. Brian Key [email protected] is Head of the Brain Growth and Regeneration Lab at the University of Queensland. He is dedicated to understanding the principles of stem cell biology, differentiation, axon guidance, plasticity, regeneration and development of the brain. http://www.uq.edu.au/sbms/staff/brian-key Just-so stories In this response to commentaries on the target article “Fish do not feel pain” (Key), I do not plan to interrogate either the putative behavioural evidence or the just-so stories previously proposed as supportive of fish feeling pain (Balcombe; Braithwaite & Droege; Broom; Brown; Dinets; Ng). These claims have been adequately addressed and refuted in recent literature (Key, 2015a and 2015b; Rose et al., 2014).
    [Show full text]
  • A Novel Reinforcement Model of Birdsong Vocalization Learning
    A Novel Reinforcement Model of Birdsong Vocalization Learning Kenji Doya Terrence J. Sejnowski ATR Human Infonnation Processing Howard Hughes Medical Institute Research Laboratories UCSD and Salk Institute, 2-2 Hikaridai, Seika, Kyoto 619-02, Japan San Diego, CA 92186-5800, USA Abstract Songbirds learn to imitate a tutor song through auditory and motor learn­ ing. We have developed a theoretical framework for song learning that accounts for response properties of neurons that have been observed in many of the nuclei that are involved in song learning. Specifically, we suggest that the anteriorforebrain pathway, which is not needed for song production in the adult but is essential for song acquisition, provides synaptic perturbations and adaptive evaluations for syllable vocalization learning. A computer model based on reinforcement learning was con­ structed that could replicate a real zebra finch song with 90% accuracy based on a spectrographic measure. The second generation of the bird­ song model replicated the tutor song with 96% accuracy. 1 INTRODUCTION Studies of motor pattern generation have generally focussed on innate motor behaviors that are genetically preprogrammed and fine-tuned by adaptive mechanisms (Harris-Warrick et al., 1992). Birdsong learning provides a favorable opportunity for investigating the neuronal mechanisms for the acquisition of complex motor patterns. Much is known about the neuroethology of bird song and its neuroanatomical substrate (see Nottebohm, 1991 and Doupe, 1993 for reviews), but relatively little is known about the overall system from a computational viewpoint. We propose a set of hypotheses for the functions of the brain nuclei in the song system and explore their computational strength in a model based on biological constraints.
    [Show full text]
  • Whole Transcriptome Profiling Supports the Continuum Hypothesis of Avian Dorsal and Ventral Pallium Organization
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.13.375055; this version posted November 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. As above, so below: Whole transcriptome profiling supports the continuum hypothesis of avian dorsal and ventral pallium organization Gregory Gedman1, Bettina Haase1,2, Gillian Durieux3, Matthew Biegler1, Olivier Fedrigo1,2, and Erich D. Jarvis1,2,4* 1. Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, New York, 10065 2. Vertebrate Genome Laboratory, The Rockefeller University, New York, New York, 10065 3. Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany, 24306 4. Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815 *Correspondence: Erich D. Jarvis, Ph.D. and Gregory Gedman The Rockefeller University, Box 54 1230 York Avenue, New York, New York 10065 [email protected]; [email protected] Acknowledgements We thank Samara Brown for editing and constructive feedback on the manuscript, and Thomas Carrol of the Rockefeller University Bioinformatics Core Facility for his advice on several analyses. This project was funded by the Howard Hughes Medical Institute (OSU1013377) and Rockefeller University start-up funds to E.D.J., and National Science Graduate Research Fellowship 2015202850 to G.G. Abstract Over the last two decades, beginning with the Avian Brain Nomenclature Forum in 2000, major revisions have been made to our understanding of the organization and nomenclature of the avian brain.
    [Show full text]
  • Neural Correlates of Executive Control in the Avian Brain
    Open access, freely available online PLoS BIOLOGY Neural Correlates of Executive Control in the Avian Brain Jonas Rose, Michael Colombo* Department of Psychology, University of Otago, Dunedin, New Zealand Executive control, the ability to plan one’s behaviour to achieve a goal, is a hallmark of frontal lobe function in humans and other primates. In the current study we report neural correlates of executive control in the avian nidopallium caudolaterale, a region analogous to the mammalian prefrontal cortex. Homing pigeons (Columba livia) performed a working memory task in which cues instructed them whether stimuli should be remembered or forgotten. When instructed to remember, many neurons showed sustained activation throughout the memory period. When instructed to forget, the sustained activation was abolished. Consistent with the neural data, the behavioural data showed that memory performance was high after instructions to remember, and dropped to chance after instructions to forget. Our findings indicate that neurons in the avian nidopallium caudolaterale participate in one of the core forms of executive control, the control of what should be remembered and what should be forgotten. This form of executive control is fundamental not only to working memory, but also to all cognition. Citation: Rose J, Colombo M (2005) Neural correlates of executive control in the avian brain. PLoS Biol 3(6): e190. Introduction integrate information across different senses [21–23] have all been taken as evidence for its role in executive control In 1861, Paul Broca [1] proclaimed that the ‘‘majesty of the processes. human’’ could be attributed to its superior faculties, such as Part of the reason for the varied evidence for executive abstraction and judgement, and that these superior faculties control processes in both human and monkey studies is that lie within the province of the ‘‘anterior lobes of the brain.’’ the term executive control is itself somewhat poorly defined [24].
    [Show full text]
  • Evidence That Artificial Light at Night Induces Structure-Specific Changes
    biomolecules Article Evidence That Artificial Light at Night Induces Structure-Specific Changes in Brain Plasticity in a Diurnal Bird Stan Moaraf 1,2,*, Rachel Heiblum 2, Monika Okuliarová 3 , Abraham Hefetz 1, Inon Scharf 1 , Michal Zeman 3 and Anat Barnea 2 1 Faculty of Life Sciences, School of Zoology, Tel-Aviv University, Tel-Aviv 6997801, Israel; [email protected] (A.H.); scharfi@tauex.tau.ac.il (I.S.) 2 Department of Natural and Life Sciences, The Open University of Israel, Ra’anana 43710, Israel; [email protected] (R.H.); [email protected] (A.B.) 3 Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia; [email protected] (M.O.); [email protected] (M.Z.) * Correspondence: [email protected]; Tel.: +97-25-8590-3936 Abstract: We recently reported that artificial light at night (ALAN), at ecologically relevant intensities (1.5, 5 lux), increases cell proliferation in the ventricular zone and recruitment of new neurons in several forebrain regions of female zebra finches (Taeniopygia guttata), along with a decrease of total neuronal densities in some of these regions (indicating possible neuronal death). In the present study, we exposed male zebra finches to the same ALAN intensities, treated them with 50-bromo-20- deoxyuridine, quantified cell proliferation and neuronal recruitment in several forebrain regions, and compared them to controls that were kept under dark nights. ALAN increased cell proliferation in the ventricular zone, similar to our previous findings in females. We also found, for the first time, that Citation: Moaraf, S.; Heiblum, R.; ALAN increased new neuronal recruitment in HVC and Area X, which are part of the song system Okuliarová, M.; Hefetz, A.; Scharf, I.; in the brain and are male-specific.
    [Show full text]