Birds Have Primate-Like Numbers of Neurons in the Forebrain
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Altriciality and the Evolution of Toe Orientation in Birds
Evol Biol DOI 10.1007/s11692-015-9334-7 SYNTHESIS PAPER Altriciality and the Evolution of Toe Orientation in Birds 1 1 1 Joa˜o Francisco Botelho • Daniel Smith-Paredes • Alexander O. Vargas Received: 3 November 2014 / Accepted: 18 June 2015 Ó Springer Science+Business Media New York 2015 Abstract Specialized morphologies of bird feet have trees, to swim under and above the water surface, to hunt and evolved several times independently as different groups have fish, and to walk in the mud and over aquatic vegetation, become zygodactyl, semi-zygodactyl, heterodactyl, pam- among other abilities. Toe orientations in the foot can be prodactyl or syndactyl. Birds have also convergently described in six main types: Anisodactyl feet have digit II evolved similar modes of development, in a spectrum that (dII), digit III (dIII) and digit IV (dIV) pointing forward and goes from precocial to altricial. Using the new context pro- digit I (dI) pointing backward. From the basal anisodactyl vided by recent molecular phylogenies, we compared the condition four feet types have arisen by modifications in the evolution of foot morphology and modes of development orientation of digits. Zygodactyl feet have dI and dIV ori- among extant avian families. Variations in the arrangement ented backward and dII and dIII oriented forward, a condi- of toes with respect to the anisodactyl ancestral condition tion similar to heterodactyl feet, which have dI and dII have occurred only in altricial groups. Those groups repre- oriented backward and dIII and dIV oriented forward. Semi- sent four independent events of super-altriciality and many zygodactyl birds can assume a facultative zygodactyl or independent transformations of toe arrangements (at least almost zygodactyl orientation. -
Understanding the Building Blocks of Avian Complex Cognition : The
Understanding the building blocks of avian complex cognition: the executive caudal nidopallium and the neuronal energy budget by Kaya von Eugen A thesis submitted in partial fulfilment of the requirements for the degree of Philosophiae Doctoris (PhD) in Neuroscience From the International Graduate School of Neuroscience Ruhr University Bochum September 30th 2020 This research was conducted at the Department of Biopsychology, within the Faculty of Psychology at the Ruhr University under the supervision of Prof. Dr. Dr. h.c. Onur Güntürkün Printed with the permission of the International Graduate School of Neuroscience, Ruhr University Bochum Statement I certify herewith that the dissertation included here was completed and written independently by me and without outside assistance. References to the work and theories of others have been cited and acknowledged completely and correctly. The “Guidelines for Good Scientific Practice” according to § 9, Sec. 3 of the PhD regulations of the International Graduate School of Neuroscience were adhered to. This work has never been submitted in this, or a similar form, at this or any other domestic or foreign institution of higher learning as a dissertation. The abovementioned statement was made as a solemn declaration. I conscientiously believe and state it to be true and declare that it is of the same legal significance and value as if it were made under oath. Bochum, 30.09.2020 Kaya von Eugen PhD Commission Chair: PD Dr. Dirk Jancke 1st Internal Examiner: Prof. Dr. Dr. h.c. Onur Güntürkün 2nd Internal Examiner: Prof. Dr. Carsten Theiß External Examiner: Prof. Dr. Andrew Iwaniuk Non-Specialist: Prof. -
Dopamine D1 Receptor Activation Drives Plasticity in the Songbird Auditory Pallium
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.09.330266; this version posted October 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Title: Dopamine D1 receptor activation drives plasticity in the songbird auditory pallium 2 3 Abbreviated title: D1 receptors drive plasticity in songbird pallium 4 5 Authors: Matheus Macedo-Lima1,2,3, Hannah M. Boyd2, Luke Remage-Healey1,2 6 7 Affiliations: 1Neuroscience and Behavior Program, 2Center for Neuroendocrine Studies, 8 University of Massachusetts Amherst, Amherst MA, USA 01003. 3CAPES Foundation, Ministry 9 of Education of Brazil, Brasília, DF, Brazil 70040-020. 10 11 Number of figures: 9 12 13 Competing interests: The authors declare no competing interests. 14 15 Acknowledgments: We thank current and former members of the Healey Lab at the University of 16 Massachusetts who helped with this project, especially Amanda Krentzel, Catherine de- 17 Bournonville, Christina Moschetto, Daniel Pollak, Daniel Vahaba, Garrett Scarpa, Jeremy Spool, 18 Katie Schroeder, Maaya Ikeda, Marcela Fernandez-Peters and Rachel Frazier. Finally, we thank 19 Geng-Lin Li, Joseph Bergan, Jeffrey Podos and Karine Fenelon for valuable input on this 20 project. 21 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.09.330266; this version posted October 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
The Evolution of Human Vocal Emotion
EMR0010.1177/1754073920930791Emotion ReviewBryant 930791research-article2020 SPECIAL SECTION: EMOTION IN THE VOICE Emotion Review Vol. 13, No. 1 (January 2021) 25 –33 © The Author(s) 2020 ISSN 1754-0739 DOI:https://doi.org/10.1177/1754073920930791 10.1177/1754073920930791 The Evolution of Human Vocal Emotion https://journals.sagepub.com/home/emr Gregory A. Bryant Department of Communication, Center for Behavior, Evolution, and Culture, University of California, Los Angeles, USA Abstract Vocal affect is a subcomponent of emotion programs that coordinate a variety of physiological and psychological systems. Emotional vocalizations comprise a suite of vocal behaviors shaped by evolution to solve adaptive social communication problems. The acoustic forms of vocal emotions are often explicable with reference to the communicative functions they serve. An adaptationist approach to vocal emotions requires that we distinguish between evolved signals and byproduct cues, and understand vocal affect as a collection of multiple strategic communicative systems subject to the evolutionary dynamics described by signaling theory. We should expect variability across disparate societies in vocal emotion according to culturally evolved pragmatic rules, and universals in vocal production and perception to the extent that form–function relationships are present. Keywords emotion, evolution, signaling, vocal affect Emotional communication is central to social life for many ani- 2001; Pisanski, Cartei, McGettigan, Raine, & Reby, 2016; mals. Beginning with Darwin -
Predictors of Juvenile Survival in Birds
Ornithological Monographs Volume (2013), No. 78, 1–55 © The American Ornithologists’ Union, 2013. Printed in USA. PREDICTORS OF JUVENILE SURVIVAL IN BIRDS TERRI J. MANESS1,2,3 AND DAVID J. ANDERSON2 1School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana 71272, USA; and 2Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27106, USA ABSTRACT.—The survival probability of birds during the juvenile period, between the end of parental care and adulthood, is highly variable and has a major effect on population dynamics and parental fitness. As such, a large number of studies have attempted to evaluate potential predictors of juvenile survival in birds, especially predictors related to parental care. Lack’s hypothesis linking body reserves accumulated from parental care to the survival of naive juveniles has organized much of this research, but various other predictors have also been investigated and received some support. We reviewed the literature in this area and identified a variety of methodological problems that obscure interpretation of the body of results. Most studies adopted statistical techniques that missed the opportunities to (1) evaluate the relative importance of several predictors, (2) control the confounding effect of correlation among predictor variables, and (3) exploit the information content of collinearity by evaluating indirect (via correlation) as well as direct effects of potential predictors on juvenile survival. Ultimately, we concluded that too few reliable studies exist to allow robust evaluations of any hypothesis regarding juvenile survival in birds. We used path analysis to test potential predictors of juvenile survival of 2,631 offspring from seven annual cohorts of a seabird, the Nazca Booby (Sula granti). -
Perspectives
PERSPECTIVES reptiles, to birds and mammals, to primates OPINION and, finally, to humans — ascending from ‘lower’ to ‘higher’ intelligence in a chrono- logical series. They believed that the brains Avian brains and a new understanding of extant vertebrates retained ancestral structures, and, therefore, that the origin of of vertebrate brain evolution specific human brain subdivisions could be traced back in time by examining the brains of extant non-human vertebrates. In The Avian Brain Nomenclature Consortium* making such comparisons, they noted that the main divisions of the human CNS — Abstract | We believe that names have a pallium is nuclear, and the mammalian the spinal cord, hindbrain, midbrain, thala- powerful influence on the experiments we cortex is laminar in organization, the avian mus, cerebellum and cerebrum or telen- do and the way in which we think. For this pallium supports cognitive abilities similar cephalon — were present in all vertebrates reason, and in the light of new evidence to, and for some species more advanced than, (FIG. 1a). Edinger, however, noted that the about the function and evolution of the those of many mammals. To eliminate these internal organization of the telencephala vertebrate brain, an international consortium misconceptions, an international forum of showed the most pronounced differences of neuroscientists has reconsidered the neuroscientists (BOX 1) has, for the first time between species. In mammals, the outer traditional, 100-year-old terminology that is in 100 years, developed new terminology that part of the telencephalon was found to have used to describe the avian cerebrum. Our more accurately reflects our current under- prominently layered grey matter (FIG. -
Science News | December 19, 2009 Feature | Humans Wonder, Anybody Home?
FEATURE | HUMANS WONDER, ANYBODY HOME? To prevent Shania the octopus from becom- Humans wonder, ing bored, keepers at the National Aquarium in Washington, D.C., gave her a Mr. Potato Head filled with fish to snuggle. Researchers anybody are now looking beyond behavior into the brain for signs of awareness in birds and invertebrates. home? Brain structure and circuitry offer clues to consciousness in nonmammals By Susan Gaidos ne afternoon while participat except for the fact that Betty was a New ing in studies in a University Caledonian crow. of Oxford lab, Abel snatched Betty isn’t the only crow with such a hook away from Betty, leav conceptual ingenuity. Nor are crows the Oing her without a tool to complete a task. only members of the animal kingdom to Spying a piece of straight wire nearby, exhibit similar mental powers. Animals POST WASHINGTON THE she picked it up, bent one end into a can do all sorts of clever things: Studies EARY/ L ’ hook and used it to finish the job. Noth of chimpanzees, gorillas, dolphins and O ILL ing about this story was remarkable, birds have found that some can add, B 22 | SCIENCE NEWS | December 19, 2009 www.sciencenews.org FEATURE | HUMANS WONDER, ANYBODY HOME? subtract, create sentences, plan ahead objects in their visual field. “This raises or deceive others. the intriguing question whether con Brain-on-brain comparisons To carry out such tasks, these animals scious experience requires the specific In an effort to find signs of conscious- ness, scientists are identifying analo- must be drawing on past experiences and structure of human or primate brains,” gous structures (same coloring) among then using them along with immediate biologist Donald Griffin wrote inAnimal the brains of humans, birds, octopuses perceptions to make sense of it all. -
Going Beyond Just-So Stories Response to Commentary on Key on Fish Pain
Animal Sentience 2016.022: Response to Commentary on Key on Fish Pain Going beyond just-so stories Response to Commentary on Key on Fish Pain Brian Key School of Biomedical Sciences University of Queensland Abstract: Colloquial arguments for fish feeling pain are deeply rooted in anthropometric tendencies that confuse escape responses to noxious stimuli with evidence for consciousness. More developed arguments often rely on just-so stories of fish displaying complex behaviours as proof of consciousness. In response to commentaries on the idea that fish do not feel pain, I raise the need to go beyond just-so stories and to rigorously analyse the neural circuitry responsible for specific behaviours using new and emerging technologies in neuroscience. By deciphering the causal relationship between neural information processing and conscious behaviour, it should be possible to assess cogently the likelihood of whether a vertebrate species has the neural hardware necessary to — at least — support the feeling of pain. Brian Key [email protected] is Head of the Brain Growth and Regeneration Lab at the University of Queensland. He is dedicated to understanding the principles of stem cell biology, differentiation, axon guidance, plasticity, regeneration and development of the brain. http://www.uq.edu.au/sbms/staff/brian-key Just-so stories In this response to commentaries on the target article “Fish do not feel pain” (Key), I do not plan to interrogate either the putative behavioural evidence or the just-so stories previously proposed as supportive of fish feeling pain (Balcombe; Braithwaite & Droege; Broom; Brown; Dinets; Ng). These claims have been adequately addressed and refuted in recent literature (Key, 2015a and 2015b; Rose et al., 2014). -
A Novel Reinforcement Model of Birdsong Vocalization Learning
A Novel Reinforcement Model of Birdsong Vocalization Learning Kenji Doya Terrence J. Sejnowski ATR Human Infonnation Processing Howard Hughes Medical Institute Research Laboratories UCSD and Salk Institute, 2-2 Hikaridai, Seika, Kyoto 619-02, Japan San Diego, CA 92186-5800, USA Abstract Songbirds learn to imitate a tutor song through auditory and motor learn ing. We have developed a theoretical framework for song learning that accounts for response properties of neurons that have been observed in many of the nuclei that are involved in song learning. Specifically, we suggest that the anteriorforebrain pathway, which is not needed for song production in the adult but is essential for song acquisition, provides synaptic perturbations and adaptive evaluations for syllable vocalization learning. A computer model based on reinforcement learning was con structed that could replicate a real zebra finch song with 90% accuracy based on a spectrographic measure. The second generation of the bird song model replicated the tutor song with 96% accuracy. 1 INTRODUCTION Studies of motor pattern generation have generally focussed on innate motor behaviors that are genetically preprogrammed and fine-tuned by adaptive mechanisms (Harris-Warrick et al., 1992). Birdsong learning provides a favorable opportunity for investigating the neuronal mechanisms for the acquisition of complex motor patterns. Much is known about the neuroethology of bird song and its neuroanatomical substrate (see Nottebohm, 1991 and Doupe, 1993 for reviews), but relatively little is known about the overall system from a computational viewpoint. We propose a set of hypotheses for the functions of the brain nuclei in the song system and explore their computational strength in a model based on biological constraints. -
Whole Transcriptome Profiling Supports the Continuum Hypothesis of Avian Dorsal and Ventral Pallium Organization
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.13.375055; this version posted November 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. As above, so below: Whole transcriptome profiling supports the continuum hypothesis of avian dorsal and ventral pallium organization Gregory Gedman1, Bettina Haase1,2, Gillian Durieux3, Matthew Biegler1, Olivier Fedrigo1,2, and Erich D. Jarvis1,2,4* 1. Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, New York, 10065 2. Vertebrate Genome Laboratory, The Rockefeller University, New York, New York, 10065 3. Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany, 24306 4. Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815 *Correspondence: Erich D. Jarvis, Ph.D. and Gregory Gedman The Rockefeller University, Box 54 1230 York Avenue, New York, New York 10065 [email protected]; [email protected] Acknowledgements We thank Samara Brown for editing and constructive feedback on the manuscript, and Thomas Carrol of the Rockefeller University Bioinformatics Core Facility for his advice on several analyses. This project was funded by the Howard Hughes Medical Institute (OSU1013377) and Rockefeller University start-up funds to E.D.J., and National Science Graduate Research Fellowship 2015202850 to G.G. Abstract Over the last two decades, beginning with the Avian Brain Nomenclature Forum in 2000, major revisions have been made to our understanding of the organization and nomenclature of the avian brain. -
Neural Correlates of Executive Control in the Avian Brain
Open access, freely available online PLoS BIOLOGY Neural Correlates of Executive Control in the Avian Brain Jonas Rose, Michael Colombo* Department of Psychology, University of Otago, Dunedin, New Zealand Executive control, the ability to plan one’s behaviour to achieve a goal, is a hallmark of frontal lobe function in humans and other primates. In the current study we report neural correlates of executive control in the avian nidopallium caudolaterale, a region analogous to the mammalian prefrontal cortex. Homing pigeons (Columba livia) performed a working memory task in which cues instructed them whether stimuli should be remembered or forgotten. When instructed to remember, many neurons showed sustained activation throughout the memory period. When instructed to forget, the sustained activation was abolished. Consistent with the neural data, the behavioural data showed that memory performance was high after instructions to remember, and dropped to chance after instructions to forget. Our findings indicate that neurons in the avian nidopallium caudolaterale participate in one of the core forms of executive control, the control of what should be remembered and what should be forgotten. This form of executive control is fundamental not only to working memory, but also to all cognition. Citation: Rose J, Colombo M (2005) Neural correlates of executive control in the avian brain. PLoS Biol 3(6): e190. Introduction integrate information across different senses [21–23] have all been taken as evidence for its role in executive control In 1861, Paul Broca [1] proclaimed that the ‘‘majesty of the processes. human’’ could be attributed to its superior faculties, such as Part of the reason for the varied evidence for executive abstraction and judgement, and that these superior faculties control processes in both human and monkey studies is that lie within the province of the ‘‘anterior lobes of the brain.’’ the term executive control is itself somewhat poorly defined [24]. -
Evidence That Artificial Light at Night Induces Structure-Specific Changes
biomolecules Article Evidence That Artificial Light at Night Induces Structure-Specific Changes in Brain Plasticity in a Diurnal Bird Stan Moaraf 1,2,*, Rachel Heiblum 2, Monika Okuliarová 3 , Abraham Hefetz 1, Inon Scharf 1 , Michal Zeman 3 and Anat Barnea 2 1 Faculty of Life Sciences, School of Zoology, Tel-Aviv University, Tel-Aviv 6997801, Israel; [email protected] (A.H.); scharfi@tauex.tau.ac.il (I.S.) 2 Department of Natural and Life Sciences, The Open University of Israel, Ra’anana 43710, Israel; [email protected] (R.H.); [email protected] (A.B.) 3 Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia; [email protected] (M.O.); [email protected] (M.Z.) * Correspondence: [email protected]; Tel.: +97-25-8590-3936 Abstract: We recently reported that artificial light at night (ALAN), at ecologically relevant intensities (1.5, 5 lux), increases cell proliferation in the ventricular zone and recruitment of new neurons in several forebrain regions of female zebra finches (Taeniopygia guttata), along with a decrease of total neuronal densities in some of these regions (indicating possible neuronal death). In the present study, we exposed male zebra finches to the same ALAN intensities, treated them with 50-bromo-20- deoxyuridine, quantified cell proliferation and neuronal recruitment in several forebrain regions, and compared them to controls that were kept under dark nights. ALAN increased cell proliferation in the ventricular zone, similar to our previous findings in females. We also found, for the first time, that Citation: Moaraf, S.; Heiblum, R.; ALAN increased new neuronal recruitment in HVC and Area X, which are part of the song system Okuliarová, M.; Hefetz, A.; Scharf, I.; in the brain and are male-specific.