PMG Phd Thesis FINAL
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Framework for Wireless Network Security Using Quantum Cryptography-Journal
FRAMEWORK FOR WIRELESS NETWORK SECURITY USING QUANTUM CRYPTOGRAPHY Priyanka Bhatia1 and Ronak Sumbaly2 1, 2 Department of Computer Science, BITS Pilani Dubai, United Arab Emirates ABSTRACT Data that is transient over an unsecured wireless network is always susceptible to being intercepted by anyone within the range of the wireless signal. Hence providing secure communication to keep the user’s information and devices safe when connected wirelessly has become one of the major concerns. Quantum cryptography provides a solution towards absolute communication security over the network by encoding information as polarized photons, which can be sent through the air. This paper explores on the aspect of application of quantum cryptography in wireless networks. In this paper we present a methodology for integrating quantum cryptography and security of IEEE 802.11 wireless networks in terms of distribution of the encryption keys. KEYWORDS IEEE 802.11, Key Distribution, Network Security, Quantum Cryptography, Wireless Network. 1. INTRODUCTION Wireless Networks are becoming increasing widespread, and majority of coffee shops, airports, hotels, offices, universities and other public places are making use of these for a means of communication today. They’re convenient due to their portability and high-speed information exchange in homes, offices and enterprises. The advancement in modern wireless technology has led users to switch to a wireless network as compared to a LAN based network connected using Ethernet cables. Unfortunately, they often aren’t secure and security issues have become a great concern. If someone is connected to a Wi-Fi network, and sends information through websites or mobile apps, it is easy for someone else to access this information. -
Arxiv:Quant-Ph/0509051V1 7 Sep 2005 Iiyapiue Satisfying Amplitudes Bility Ie Hs Ttscnb Ne-Orltdsc Htasingl a That Such Inter-Correlated Be Can States These Time
To appear in the 2005 International Symposium on Microarchitecture (MICRO-38) A Quantum Logic Array Microarchitecture: Scalable Quantum Data Movement and Computation Tzvetan S. Metodi†, Darshan D. Thaker†, Andrew W. Cross‡ Frederic T. Chong§ and Isaac L. Chuang‡ †University Of California at Davis, {tsmetodiev, ddthaker}@ucdavis.edu §University Of California at Santa Barbara, [email protected] ‡Massachusetts Institute of Technology, {awcross, ichuang}@mit.edu Abstract logic gate can act on all possible 2N states. The exponen- tial speedup offered by quantum computing, based on the ability to process quantum information through gate ma- Recent experimental advances have demonstrated tech- nipulation [2], has led to several quantum algorithms with nologies capable of supporting scalable quantum computa- substantial advantages over known algorithms with tradi- tion. A critical next step is how to put those technologies to- tional computation. The most significant is Shor’s algo- gether into a scalable, fault-tolerant system that is also fea- rithm for factoring the product of two large primes in poly- sible. We propose a Quantum Logic Array (QLA) microar- nomial time. Additional algorithms include Grover’s fast chitecture that forms the foundation of such a system. The database search [3]; adiabatic solution of optimization prob- QLA focuses on the communication resources necessary to lems [4]; precise clock synchronization [5]; quantum key efficiently support fault-tolerant computations. We leverage distribution [6]; and recently, Gauss sums [7] and Pell’s the extensive groundwork in quantum error correction the- equation [8]. ory and provide analysis that shows that our system is both asymptotically and empirically fault tolerant. -
A Coordinated Approach to Quantum Networking Research
A COORDINATED APPROACH TO QUANTUM NETWORKING RESEARCH A Report by the SUBCOMMITTEE ON QUANTUM INFORMATION SCIENCE COMMITTEE ON SCIENCE of the NATIONAL SCIENCE & TECHNOLOGY COUNCIL January 2021 – 0 – A COORDINATED APPROACH TO QUANTUM NETWORKING RESEARCH About the National Science and Technology Council The National Science and Technology Council (NSTC) is the principal means by which the Executive Branch coordinates science and technology policy across the diverse entities that make up the Federal research and development enterprise. A primary objective of the NSTC is to ensure science and technology policy decisions and programs are consistent with the President's stated goals. The NSTC prepares research and development strategies that are coordinated across Federal agencies aimed at accomplishing multiple national goals. The work of the NSTC is organized under committees that oversee subcommittees and working groups focused on different aspects of science and technology. More information is available at https://www.whitehouse.gov/ostp/nstc. About the Office of Science and Technology Policy The Office of Science and Technology Policy (OSTP) was established by the National Science and Technology Policy, Organization, and Priorities Act of 1976 to provide the President and others within the Executive Office of the President with advice on the scientific, engineering, and technological aspects of the economy, national security, homeland security, health, foreign relations, the environment, and the technological recovery and use of resources, among other topics. OSTP leads interagency science and technology policy coordination efforts, assists the Office of Management and Budget with an annual review and analysis of Federal research and development in budgets, and serves as a source of scientific and technological analysis and judgment for the President with respect to major policies, plans, and programs of the Federal Government. -
Synthesis of Quantum-Logic Circuits Vivek V
1000 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 6, 2006 Synthesis of Quantum-Logic Circuits Vivek V. Shende, Stephen S. Bullock, and Igor L. Markov, Senior Member, IEEE Abstract—The pressure of fundamental limits on classical com- I. INTRODUCTION putation and the promise of exponential speedups from quantum effects have recently brought quantum circuits (Proc. R. Soc. S THE ever-shrinking transistor approaches atomic pro- Lond. A, Math. Phys. Sci., vol. 425, p. 73, 1989) to the atten- A portions, Moore’s law must confront the small-scale tion of the electronic design automation community (Proc. 40th granularity of the world: We cannot build wires thinner than ACM/IEEE Design Automation Conf., 2003), (Phys.Rev.A,At.Mol. atoms. Worse still, at atomic dimensions, we must contend with Opt. Phy., vol. 68, p. 012318, 2003), (Proc. 41st Design Automation Conf., 2004), (Proc. 39th Design Automation Conf., 2002), (Proc. the laws of quantum mechanics. For example, suppose 1 bit Design, Automation, and Test Eur., 2004), (Phys. Rev. A, At. Mol. is encoded as the presence or the absence of an electron in a Opt. Phy., vol. 69, p. 062321, 2004), (IEEE Trans. Comput.-Aided small region.1 Since we know very precisely where the electron Des. Integr. Circuits Syst., vol. 22, p. 710, 2003). Efficient quantum– is located, the Heisenberg uncertainty principle dictates that logic circuits that perform two tasks are discussed: 1) implement- we cannot know its momentum with high accuracy. Without ing generic quantum computations, and 2) initializing quantum registers. In contrast to conventional computing, the latter task a reasonable upper bound on the electron’s momentum, there is nontrivial because the state space of an n-qubit register is not is no alternative but to use a large potential to keep it in place, finite and contains exponential superpositions of classical bit- and expend significant energy during logic switching. -
Quantum Cryptography in Practice Chip Elliott Dr
Quantum Cryptography in Practice Chip Elliott Dr. David Pearson Dr. Gregory Troxel BBN Technologies BBN Technologies BBN Technologies 10 Moulton Street 10 Moulton Street 10 Moulton Street Cambridge, MA 02138 Cambridge, MA 02138 Cambridge, MA 02138 [email protected] [email protected] [email protected] ABSTRACT BBN, Harvard, and Boston University are building the DARPA Alice Bob Quantum Network, the world’s first network that delivers end- (the sender) Eve (the receiver) to-end network security via high-speed Quantum Key plaintext (the eavesdropper) plaintext Distribution, and testing that Network against sophisticated eavesdropping attacks. The first network link has been up and encryption public channel decryption steadily operational in our laboratory since December 2002. It algorithm (i.e. telephone or internet) algorithm provides a Virtual Private Network between private enclaves, with user traffic protected by a weak-coherent implementation key key of quantum cryptography. This prototype is suitable for deployment in metro-size areas via standard telecom (dark) quantum state quantum channel quantum state fiber. In this paper, we introduce quantum cryptography, generator (i.e. optical fiber or free space) detector discuss its relation to modern secure networks, and describe its unusual physical layer, its specialized quantum cryptographic protocol suite (quite interesting in its own right), and our Figure 1. Quantum Key Distribution. extensions to IPsec to integrate it with quantum cryptography. authentication and establishment of secret “session” keys, and then protecting all or part of a traffic flow with these session Categories and Subject Descriptors keys. Certain other systems transport secret keys “out of C.2.1 [Network Architecture and Design]: quantum channel,” e.g. -
Building a QKD Network out of Theories and Devices December 17, 2005
Building the DARPA Quantum Network Building a QKD Network out of Theories and Devices December 17, 2005 David Pearson BBN Technologies [email protected] Building the DARPA Quantum Network Harvard Copyright © 2005 by BBN Technologies. University Why QKD? Why now? • Unconditional security, guaranteed by the laws of physics, is very compelling • Public-key cryptography gets weaker the more we learn – even for classical algorithms • If we had quantum computers tomorrow we’d have a disaster on our hands. • Future proofing – secrets that you transmit today using classical cryptography may become vulnerable next year (RSA ’78 predicted 4 x 10 9 years to factor a 200-digit key, but it was done last May) • The technology of QKD seems to be mature enough that we can start to create usable systems. Building the DARPA Quantum Network Harvard Copyright © 2005 by BBN Technologies. University 2 DARPA Quantum Network - Goals Encrypted Traffic Private via Internet Private Enclave Enclave End-to-End Key Distribution QKD Repeater QKD Switch QKD QKD Endpoint Endpoint QKD Switch QKD Switch Ultra-Long- Distance Fiber QKD Switch WeWe areare designingdesigning andand buildingbuilding thethe world’sworld’s firstfirst QuantumQuantum Network,Network,deliveringdelivering end-to-endend-to-end networknetwork securitysecurity viavia high-speedhigh-speed QuantumQuantum KeyKey Distribution,Distribution, andand testingtesting thatthat NetworkNetwork againstagainst sophisticated sophisticated eavesdroppingeavesdropping attacks.attacks. AsAs anan option,option, wewe willwill fieldfield thisthis ultra-high-securityultra-high-security networknetwork intointo commercicommercialal fiberfiber acrossacross thethe metrometro BostonBoston areaarea andand operateoperate itit betweenbetween BU,BU, Harvard,Harvard, andand BBN.BBN. Building the DARPA Quantum Network Harvard Copyright © 2005 by BBN Technologies. -
Quantum Key Distribution In-Field Implementations
Quantum Key Distribution in-field implementations Technology assessment of QKD deployments Travagnin, Martino Lewis, Adam, M. 2019 EUR 29865 EN This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. Contact information Name: Adam M. Lewis Address: Centro Comune di Ricerca, Via E. Fermi 2749, I-21027 Ispra (VA) ITALY Email: [email protected] Tel.: +39 0332 785786 EU Science Hub https://ec.europa.eu/jrc JRC118150 EUR 29865 EN PDF ISBN 978-92-76-11444-4 ISSN 1831-9424 doi:10.2760/38407 Luxembourg: Publications Office of the European Union, 2019 © European Union, 2019 The reuse policy of the European Commission is implemented by Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Reuse is authorised, provided the source of the document is acknowledged and its original meaning or message is not distorted. The European Commission shall not be liable for any consequence stemming from the reuse. For any use or reproduction of photos or other material that is not owned by the EU, permission must be sought directly from the copyright holders. All content © European Union, 2019, except figures, where the sources are stated How to cite this report: Travagnin, Martino and Lewis, Adam, M., “Quantum Key Distribution in-field implementations: technology assessment of QKD deployments”, EUR 29865 EN, Publications Office of the European Union, Luxembourg, 2019, ISBN 978-92-76-11444-4, doi:10.2760/38407, JRC118150 Contents Abstract .............................................................................................................. -
Quantum Key Distribution Networks: Challenges and Future Research Issues in Security
applied sciences Article Quantum Key Distribution Networks: Challenges and Future Research Issues in Security Chia-Wei Tsai 1 , Chun-Wei Yang 2 , Jason Lin 3 , Yao-Chung Chang 1,* and Ruay-Shiung Chang 4 1 Department of Computer Science and Information Engineering, National Taitung University, No. 369, University Rd., Taitung 95092, Taiwan; [email protected] 2 Master Program for Digital Health Innovation, College of Humanities and Sciences, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung 406040, Taiwan; [email protected] 3 Department of Computer Science and Engineering, National Chung Hsing University, No. 145, Xingda Rd., South District, Taichung 40227, Taiwan; [email protected] 4 Department of Institute of Information and Decision Sciences, National Taipei University of Business, No.321, Sec. 1, Jinan Rd., Jhongjheng Dist., Taipei City 100025, Taiwan; [email protected] * Correspondence: [email protected] Abstract: A quantum key distribution (QKD) network is proposed to allow QKD protocols to be the infrastructure of the Internet for distributing unconditional security keys instead of existing public-key cryptography based on computationally complex mathematical problems. Numerous countries and research institutes have invested enormous resources to execute correlation studies on QKD networks. Thus, in this study, we surveyed existing QKD network studies and practical field experiments to summarize the research results (e.g., type and architecture of QKD networks, key generating rate, maximum communication distance, and routing protocol). Furthermore, we highlight the three challenges and future research issues in the security of QKD networks and then provide some feasible resolution strategies for these challenges. -
Using Quantum Key Distribution for Cryptographic Purposes: Asurvey✩ ∗ R
Theoretical Computer Science 560 (2014) 62–81 Contents lists available at ScienceDirect Theoretical Computer Science www.elsevier.com/locate/tcs Using quantum key distribution for cryptographic purposes: Asurvey✩ ∗ R. Alléaume a,b, , C. Branciard c, J. Bouda d, T. Debuisschert e, M. Dianati f, N. Gisin c, M. Godfrey g, P. Grangier h, T. Länger i, N. Lütkenhaus j, C. Monyk i, P. Painchault k, M. Peev i, A. Poppe i, T. Pornin l, J. Rarity g, R. Renner m, G. Ribordy n, M. Riguidel a, L. Salvail o, A. Shields p, H. Weinfurter q, A. Zeilinger r a Telecom ParisTech & CNRS LTCI, Paris, France b SeQureNet SARL, Paris, France c University of Geneva, Switzerland d Masaryk University, Brno, Czech Republic e Thales Research and Technology, Orsay, France f University of Surrey, Guildford, United Kingdom g University of Bristol, United Kingdom h CNRS, Institut d’Optique, Palaiseau, France i Austrian Research Center, Vienna, Austria j Institute for Quantum Computing, Waterloo, Canada k Thales Communications, Colombes, France l Cryptolog International, Paris, France m Eidgenössische Technische Hochschule Zürich, Switzerland n Id Quantique SA, Geneva, Switzerland o Université de Montréal, Canada p Toshiba Research Europe Ltd, Cambridge, United Kingdom q Ludwig-Maximilians-University Munich, Germany r University of Vienna, Austria a r t i c l e i n f o a b s t r a c t Article history: The appealing feature of quantum key distribution (QKD), from a cryptographic viewpoint, Received 1 April 2009 is the ability to prove the information-theoretic security (ITS) of the established keys. As a Accepted 1 August 2013 key establishment primitive, QKD however does not provide a standalone security service Available online 17 September 2014 in its own: the secret keys established by QKD are in general then used by a subsequent cryptographic applications for which the requirements, the context of use and the security Keywords: properties can vary. -
Reading for Week 13: Quantum Computing: Pages 139-167
Reading for Week 13: Quantum computing: pages 139-167 Quantum communications: pages 189-193; 200-205; 217-223 Law and Policy for the Quantum Age Draft: Do not circulate without permission Chris Jay Hoofnagle and Simson Garfinkel April 2, 2021 Note to reviewers Thank you for taking the time to look through our draft! We are most interested finding and correcting text that is factually wrong, technically inaccurate, or misleading. Please do not concern yourself with typos or grammar errors. We will be focusing on those later when we have all of the text in its near-final form. (However, we are interest in word usage errors, or in misspelling that are the result of homophones, as they are much harder to detect and correct in editing.) You can find the current draft of this book (as well as previous PDFs)here: https://simson.net/quantum-2021-slgcjh/ Thank you again! Please email us at: [email protected] and [email protected] 5 (NEAR FINAL) Quantum Computing Applications “A good way of pumping funding into the building of an actual quantum computer would be to find an efficient quantum factoring algo- rithm!”1 The risk of wide-scale cryptanalysis pervades narratives about quantum com- puting. We argue in this chapter that Feynman’s vision for quantum computing will ultimately prevail, despite the discovery of Peter Shor’s factoring algorithm that generated excitement about a use of quantum computers that people could understand—and dread. Feynman’s vision of quantum devices that simulate com- plex quantum interactions is more exciting and strategically relevant, yet also more difficult to portray popular descriptions of technology. -
Industry-Academia Collaboration in Government-Funded Research and Development
Industry-Academia Collaboration in Government-Funded Research and Development Talib Hussain and David Montana BBN Technologies for GECCO-2006: Evolutionary Computing in Practice (ECP): Technology Transfer from Academia to Industry Copyright © 2006 BBN Technologies www.bbn.com Contents • Overview of BBN Technologies • BBN’s Interactions with Academia • Industry-Academia Strengths • Aspects of I-A Collaboration • BBN and Evolutionary Computation • EC personnel at BBN Copyright © 2006 BBN Technologies www.bbn.com BBN Technologies • 650 employees, headquarters in Cambridge, MA • Perform R&D, technology transfer and systems development and integration activities in multiple areas that span the physical, computer, and information sciences • Primary focus is on developing state of the art solutions for military and security customers – Mostly 6.2 and 6.3 levels • Also develop solutions for commercial customers and transition inventions into commercially available products and services • Comprised of multiple departments covering variety of domains – Intelligent distributed computing, Internet research, Mobile networking systems, Decision and security technologies, High performance computing, Sensor systems, Speech and language processing, Applied physics and tactical sonar • Frequently work with university partners • Rated CMM Level 2 Copyright © 2006 BBN Technologies www.bbn.com BBN Interactions with Academia • As prime on a team with university (and industry) partners – e.g., POIROT, ADROIT, KineVis, Quantum Network • As partner on a team -
Current Status of the DARPA Quantum Network
Current status of the DARPA Quantum Network Chip Elliott1, Alexander Colvin, David Pearson, Oleksiy Pikalo, John Schlafer, Henry Yeh BBN Technologies, 10 Moulton Street, Cambridge MA 02138 ABSTRACT This paper reports the current status of the DARPA Quantum Network, which became fully operational in BBN’s laboratory in October 2003, and has been continuously running in 6 nodes operating through telecommunications fiber between Harvard University, Boston University, and BBN since June 2004. The DARPA Quantum Network is the world’s first quantum cryptography network, and perhaps also the first QKD systems providing continuous operation across a metropolitan area. Four more nodes are now being added to bring the total to 10 QKD nodes. This network supports a variety of QKD technologies, including phase-modulated lasers through fiber, entanglement through fiber, and freespace QKD. We provide a basic introduction and rational for this network, discuss the February 2005 status of the various QKD hardware suites and software systems in the network, and describe our operational experience with the DARPA Quantum Network to date. We conclude with a discussion of our ongoing work. Keywords: quantum cryptography, quantum key distribution, QKD, BB84, entanglement, Cascade 1. INTRODUCTION It now seems likely that Quantum Key Distribution (QKD) techniques can provide practical building blocks for highly secure networks, and in fact may offer valuable cryptographic services, such as unbounded secrecy lifetimes, that can be difficult to achieve by other techniques. Unfortunately, however, QKD’s impressive claims for information assurance have been to date at least partly offset by a variety of limitations. For example, traditional QKD is distance limited, can only be used across a single physical channel (e.g.