Dissertation the Use of Metagenomic Sequencing As

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation the Use of Metagenomic Sequencing As DISSERTATION THE USE OF METAGENOMIC SEQUENCING AS A TOOL FOR PATHOGEN DISCOVERY WITH FURTHER INVESTIGATION OF NOVEL REPTILIAN SERPENTOVIRUSES Submitted by Laura L. Hoon-Hanks Department of Microbiology, Immunology, and Pathology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2019 Doctoral Committee: Advisor: Mark Stenglein Gregory Ebel Daniel Sloan Sushan Han Copyright by Laura L. Hoon-Hanks 2019 All Rights Reserved ABSTRACT THE USE OF METAGENOMIC SEQUENCING AS A TOOL FOR PATHOGEN DISCOVERY WITH FURTHER INVESTIGATION OF NOVEL REPTILIAN SERPENTOVIRUSES Infectious diseases play a significant role in the health of all organisms, from the largest mammals to the smallest bacteria. The consistent identification of pathogens has been propelled by generations of perceptive scientists and the development of important biological tools for microbe detection. In recent years, a new technology has surfaced that has changed the face of pathogen discovery: next generation sequencing and metagenomics. This sequencing technology allows for unbiased sampling of genetic material from all organisms within a given sample, independent of our pre-conceived suspicions of the pathogens most likely to be present. Therefore, metagenomic sequencing has become a powerful tool for investigating both known and newly emerging infectious diseases that evade classical methods of diagnosis. The preliminary goal of this dissertation was to present metagenomic-based pathogen discovery projects that highlight the benefits and limitations to this technology. First, we assessed meningoencephalitis of unknown origin (MUO) in dogs, a suspected autoimmune disease, but for which an underlying infectious agent remains a possibility. We did not detect any infectious agents associated with disease, further supporting the hypothesis of an autoimmune pathogenesis. Second, we assessed two cases of malignant catarrhal fever (MCF)-like disease in free-ranging mule deer. In the U.S., MCF is most commonly associated with ovine herpesvirus-2 infection, however, we identified caprine herpesvirus-2 (CpHV-2) in both cases. CpHV-2 is an uncommon cause of MCF and has not been previously described in mule deer. Therefore, metagenomics aided in the identification of a known but unexpected pathogen of disease. Lastly, we investigated an outbreak of granulomatous nephritis in a collection of seahorses. We identified a novel paramyxovirus and parvovirus, but no clear association between infection and disease was drawn for case and control animals. Therefore, additional examination of these viruses will be necessary to determine their association with disease. In this case, metagenomics provided a new thread of ii investigation but did not provide a definitive answer. This is a common outcome with metagenomic projects and highlights its use an investigatory tool upon which future experimentation can be based. The second goal of this dissertation was to further characterize a virus discovered by metagenomic sequencing through confirmation of disease causality and epidemiologic investigation of species susceptibility and disease. Recently, a novel serpentovirus was discovered by metagenomic sequencing in association with fatal respiratory disease in pythons. Investigations of this virus included genome characterization, tissue tropisms, viral nucleic acid localization to areas of disease, and potential mechanisms of pathogenesis. However, these studies only provided circumstantial evidence linking serpentovirus infection to disease. In attempt to confirm disease causality, we conducted experimental infections in ball pythons (Python regius) with a serpentovirus known as ball python nidovirus (BPNV). Three ball pythons were inoculated orally and intratracheally with cell culture isolated BPNV and two were sham inoculated. Antemortem choanal, oroesophageal, and cloacal swabs and postmortem tissues of infected snakes were positive for viral RNA, protein, and infectious virus by qRT-PCR, immunohistochemistry, western blot and virus isolation. Clinical signs included oral mucosal reddening, abundant mucus secretions, open-mouthed breathing, and anorexia. Histologic lesions included chronic- active mucinous rhinitis, stomatitis, tracheitis, esophagitis and proliferative interstitial pneumonia. Control snakes remained negative and free of clinical and histologic disease throughout the experiment. Our findings establish a causal relationship between serpentovirus infection and respiratory disease in ball pythons and shed light on disease progression and transmission. Following an established disease causation, we sought to characterize the epidemiologic features of serpentovirus infection in captive snakes. We performed a large longitudinal study of serpentovirus infection with the aim of generating an improved understanding of the course and clinical outcome of infection, assessing the susceptibility of different types of snakes to infection and disease, surveying viral genetic diversity, and defining effective management practices. We collected 777 antemortem choanal or oral swabs from 639 snakes from 12 collections across the United States. These included snakes from 62 species, 28 genera, and 6 families: Pythonidae (N=414 snakes), Boidae (79), Colubridae (116), iii Lamprophiidae (4), Elapidae (12), and Viperidae (14). Infection was more common in pythons (40% infected), and in boas (10% infected) than in other types of snakes, which had infection rates of 0-1%. Pythons were more likely to exhibit signs of respiratory disease: 85 of 144 infected pythons displayed signs of mild to severe respiratory disease, but only 1 of 8 infected boas did. Infected snakes had increased mortality: the percentage of infected pythons that died of respiratory disease during the course of this study ranged from 45 to 75% in two different collections. Genetically distinct serpentoviruses, including divergent genotypes, were detected in pythons, boas, and colubrids, suggesting a potential species barrier between snakes of different families. In some cases, nearly identical viruses were found to infect pythons of different genera, indicating host plasticity amongst python serpentoviruses. Older snakes were more likely to be serpentovirus-positive, but males and females were equally likely to be infected. Neither age nor sex were statistically associated with disease. Longitudinal sampling of forty pythons over 28 months revealed serpentovirus infection is chronic, and definitive evidence of viral clearance was not observed. We followed offspring of infected parents and found that vertical transmission either does not occur or occurs at a much lower efficiency than horizontal transmission. Management strategies that could reduce the spread of serpentoviruses include rapid physical separation of infected snakes, testing snakes multiple times over several months to ensure true negative results, and rigorous quarantine when introducing pythons into a collection. Our findings regarding serpentovirus infection in snakes provide a solid foundation for future investigations of related serpentoviruses. In addition to snakes, serpentoviruses have also been identified in lizards and turtles in Australia. Serpentovirus infection in lizards has been associated with a respiratory disease similar to that seen in snakes, but disease causation is only circumstantial. We further develop our understanding of serpentovirus-associated disease in lizards by describing novel serpentoviruses in a collection of veiled chameleons with respiratory disease-associated mortalities. Over the course of 1 year, a reptile collection lost 24 of 30 veiled chameleons. Clinical signs included wheezing and vertical head tilting with gasping, increased mucus in the oral cavity, anorexia, and reduced water intake. Histopathology included severe proliferative and mucinous interstitial pneumonia, tracheitis, and rhinitis. Tissue pools from iv 3 chameleons were evaluated by metagenomic sequencing and two novel serpentoviruses were detected; coinfection with both serpentoviruses was found in 1 chameleon. Antemortem oral swabs were sampled from the remaining 6 live chameleons in the collection and were tested for serpentovirus infection by PCR. Five of 6 chameleons were serpentovirus positive, one of which was exhibiting mild signs of respiratory disease. Genomic assessment revealed approximately 50% nucleotide identity between each of the chameleon serpentoviruses, as well as to other reptile serpentoviruses in snakes, lizards, and turtles. These findings further support the hypothesis that serpentoviruses cause disease in lizard species. In the future, serpentovirus should be considered a possible differential for respiratory disease in chameleons. v ACKNOWLEDGMENTS There is an immense community of people that I would like to thank for the support and encouragement I have received throughout this process. First, I would like to thank Craig Kuchel for instilling in me a love of science at an early age. I would like to thank the Samuels’ laboratory at the University of Montana for creating such a wonderful and encouraging environment in which to learn and appreciate research. Their continued support has been immensely important to my growth as a scientist. I would like to thank Dr. Paula Schaffer, Dr. Chad Frank, Dr. EJ Ehrhart, Dr. Gary Mason, Dr. Colleen Duncan, and the pathology residents at CSU for making my residency a fruitful and fulfilling experience. I wouldn’t
Recommended publications
  • Comparative Evolutionary and Phylogenomic Analysis of Avian Avulaviruses 1 to 20
    Accepted Manuscript Comparative evolutionary and phylogenomic analysis of Avian avulaviruses 1 to 20 Aziz-ul-Rahman, Muhammad Munir, Muhammad Zubair Shabbir PII: S1055-7903(17)30947-8 DOI: https://doi.org/10.1016/j.ympev.2018.06.040 Reference: YMPEV 6223 To appear in: Molecular Phylogenetics and Evolution Received Date: 1 January 2018 Revised Date: 15 May 2018 Accepted Date: 25 June 2018 Please cite this article as: Aziz-ul-Rahman, Munir, M., Zubair Shabbir, M., Comparative evolutionary and phylogenomic analysis of Avian avulaviruses 1 to 20, Molecular Phylogenetics and Evolution (2018), doi: https:// doi.org/10.1016/j.ympev.2018.06.040 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Comparative evolutionary and phylogenomic analysis of Avian avulaviruses 1 to 20 Aziz-ul-Rahman1,3, Muhammad Munir2, Muhammad Zubair Shabbir3# 1Department of Microbiology University of Veterinary and Animal Sciences, Lahore 54600, Pakistan https://orcid.org/0000-0002-3342-4462 2Division of Biomedical and Life Sciences, Furness College, Lancaster University, Lancaster LA1 4YG United Kingdomhttps://orcid.org/0000-0003-4038-0370 3 Quality Operations Laboratory University of Veterinary and Animal Sciences 54600 Lahore, Pakistan https://orcid.org/0000-0002-3562-007X # Corresponding author: Muhammad Zubair Shabbir E.
    [Show full text]
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Differential Features of Fusion Activation Within the Paramyxoviridae
    viruses Review Differential Features of Fusion Activation within the Paramyxoviridae Kristopher D. Azarm and Benhur Lee * Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-212-241-2552 Received: 17 December 2019; Accepted: 29 January 2020; Published: 30 January 2020 Abstract: Paramyxovirus (PMV) entry requires the coordinated action of two envelope glycoproteins, the receptor binding protein (RBP) and fusion protein (F). The sequence of events that occurs during the PMV entry process is tightly regulated. This regulation ensures entry will only initiate when the virion is in the vicinity of a target cell membrane. Here, we review recent structural and mechanistic studies to delineate the entry features that are shared and distinct amongst the Paramyxoviridae. In general, we observe overarching distinctions between the protein-using RBPs and the sialic acid- (SA-) using RBPs, including how their stalk domains differentially trigger F. Moreover, through sequence comparisons, we identify greater structural and functional conservation amongst the PMV fusion proteins, as compared to the RBPs. When examining the relative contributions to sequence conservation of the globular head versus stalk domains of the RBP, we observe that, for the protein-using PMVs, the stalk domains exhibit higher conservation and find the opposite trend is true for SA-using PMVs. A better understanding of conserved and distinct features that govern the entry of protein-using versus SA-using PMVs will inform the rational design of broader spectrum therapeutics that impede this process. Keywords: paramyxovirus; viral envelope proteins; type I fusion protein; henipavirus; virus entry; viral transmission; structure; rubulavirus; parainfluenza virus 1.
    [Show full text]
  • Final Rule to List Reticulated Python And
    Vol. 80 Tuesday, No. 46 March 10, 2015 Part II Department of the Interior Fish and Wildlife 50 CFR Part 16 Injurious Wildlife Species; Listing Three Anaconda Species and One Python Species as Injurious Reptiles; Final Rule VerDate Sep<11>2014 18:14 Mar 09, 2015 Jkt 235001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\10MRR2.SGM 10MRR2 mstockstill on DSK4VPTVN1PROD with RULES2 12702 Federal Register / Vol. 80, No. 46 / Tuesday, March 10, 2015 / Rules and Regulations DEPARTMENT OF THE INTERIOR Services Office, U.S. Fish and Wildlife 3330) to list Burmese (and Indian) Service, 1339 20th Street, Vero Beach, pythons, Northern African pythons, Fish and Wildlife Service FL 32960–3559; telephone 772–562– Southern African pythons, and yellow 3909 ext. 256; facsimile 772–562–4288. anacondas as injurious wildlife under 50 CFR Part 16 FOR FURTHER INFORMATION CONTACT: Bob the Lacey Act. The remaining five RIN 1018–AV68 Progulske, Everglades Program species (reticulated python, boa Supervisor, South Florida Ecological constrictor, green anaconda, [Docket No. FWS–R9–FHC–2008–0015; Services Office, U.S. Fish and Wildlife DeSchauensee’s anaconda, and Beni FXFR13360900000–145–FF09F14000] Service, 1339 20th Street, Vero Beach, anaconda) were not listed at that time and remained under consideration for Injurious Wildlife Species; Listing FL 32960–3559; telephone 772–469– 4299. If you use a telecommunications listing. With this final rule, we are Three Anaconda Species and One listing four of those species (reticulated Python Species as Injurious Reptiles device for the deaf (TDD), please call the Federal Information Relay Service python, green anaconda, AGENCY: Fish and Wildlife Service, (FIRS) at 800–877–8339.
    [Show full text]
  • RETICULATED PYTHON Malayopython Reticulatus (SCHNEIDER 1801) : RESCUE, RECOVERY and RECENT SIGHTINGS from GREAT NICOBAR ISLAND-A CONSERVATION APPROACH
    ECOPRINT 22: 50-55, 2015 ISSN 1024-8668 DOI: http://dx.doi.org/10.3126/eco.v22i0.15470 Ecological Society (ECOS), Nepal www.nepjol.info/index.php/eco; www.ecosnepal.com RETICULATED PYTHON Malayopython reticulatus (SCHNEIDER 1801) : RESCUE, RECOVERY AND RECENT SIGHTINGS FROM GREAT NICOBAR ISLAND-A CONSERVATION APPROACH S. Rajeshkumar 1*, C. Raghunathan 1 and Kailash Chandra 2 1Zoological Survey of India, Andaman and Nicobar Regional Centre Port Blair-744 102, Andaman and Nicobar Islands, India 2Zoological Survey of India, M-Block, New Alipore, Kolkatta-700 053, India *Email: [email protected] ABSTRACT Previously the Reticulated python was recorded by few researchers from Nicobar Islands In 2006, four individuals were observed, but there was no more information added in their literature about sightings in Great Nicobar Island. Pythons were considered as an uncommon and rare encountered species in India also to the Nicobar Islands. Pythons considered relatively rare appearance to have declined due to frequent eradication by habitat destruction On 25 th August 2013, first individual of reticulated python was caught by the local people at Govind Nagar (Lat: 07° 00.074' N, Long: 093° 54.128' E, Altitude at 49.4 meter) in Great Nicobar Island The second one was rescued on 31 st August 2013 in the same area by the local people. Both the recovered individuals were appeared as juvenile. Investigations on population census of this threatened species and their habitat have been felt from the present incidences. Key words : .................................... INTRODUCTION as Malayopython reticulatus (Schneider 1801). Snakes are perhaps one of the most difficult Python is locally (in Nicobarese) called as vertebrate groups to survey (Groombridge and ‘Yammai’ or ‘Tulanth’ (Chandi 2006) and Luxmoore 1991).
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Investigations Into the Presence of Nidoviruses in Pythons Silvia Blahak1, Maria Jenckel2,3, Dirk Höper2, Martin Beer2, Bernd Hoffmann2 and Kore Schlottau2*
    Blahak et al. Virology Journal (2020) 17:6 https://doi.org/10.1186/s12985-020-1279-5 RESEARCH Open Access Investigations into the presence of nidoviruses in pythons Silvia Blahak1, Maria Jenckel2,3, Dirk Höper2, Martin Beer2, Bernd Hoffmann2 and Kore Schlottau2* Abstract Background: Pneumonia and stomatitis represent severe and often fatal diseases in different captive snakes. Apart from bacterial infections, paramyxo-, adeno-, reo- and arenaviruses cause these diseases. In 2014, new viruses emerged as the cause of pneumonia in pythons. In a few publications, nidoviruses have been reported in association with pneumonia in ball pythons and a tiger python. The viruses were found using new sequencing methods from the organ tissue of dead animals. Methods: Severe pneumonia and stomatitis resulted in a high mortality rate in a captive breeding collection of green tree pythons. Unbiased deep sequencing lead to the detection of nidoviral sequences. A developed RT-qPCR was used to confirm the metagenome results and to determine the importance of this virus. A total of 1554 different boid snakes, including animals suffering from respiratory diseases as well as healthy controls, were screened for nidoviruses. Furthermore, in addition to two full-length sequences, partial sequences were generated from different snake species. Results: The assembled full-length snake nidovirus genomes share only an overall genome sequence identity of less than 66.9% to other published snake nidoviruses and new partial sequences vary between 99.89 and 79.4%. Highest viral loads were detected in lung samples. The snake nidovirus was not only present in diseased animals, but also in snakes showing no typical clinical signs.
    [Show full text]
  • Aspidites Melanocephalus) in the Wild
    Northern Territory Naturalist (2019) 29: 37-39 Short Note An observation of excavating behaviour by a Black-headed Python (Aspidites melanocephalus) in the wild Gerry Swan1 and Christy Harvey2 12 Acron Road, St Ives, NSW 2075, Australia Email: [email protected] 216 Fleetwood Cres, Frankston South, VIC 3199, Australia Abstract The Black-headed Python (Aspidites melanocephalus) and the Woma (Aspidites ramsayi) have both been reported as carrying out burrowing or excavating behaviour. These reports have been based mainly on observations of captive individuals, with the only observations of specimens in the wild being those of Bruton (2013) on Womas. Here we report on a Black-headed Python scooping out sand with its head and fore-body to create a depression in the wild. The pythonid genus Aspidites has been reported as exhibiting burrowing behaviour (Ross & Marzec 1990; Ehmann 1993; Barker & Barker 1994), based mainly on the report by Murphy, Lamoreaux & Barker (1981) that four captive Black-headed Pythons (A. melanocephalus) excavated gravel by using their head and neck to scoop loose material and create a cavity. O’Brien & Naylor (1987) reported that a young specimen that had been recently removed from the wild and was being held pending release, was observed digging beneath rocks and logs, ultimately creating a cavity in which it concealed itself. Fyfe & Harvey (1981) recorded similar behaviour by six captive Womas (Aspidites ramsayi). The floor of the vivaria in which they were housed was covered with 5–15 cm of sand and the pythons scooped this out in large quantities until they reached the base of the vivarium.
    [Show full text]
  • Bearded Dragon Care Notes
    CHILDREN’S, STIMSON’S AND SPOTTED PYTHON CARE This group of pythons are non-venomous snakes native to Australia. They belong to the genus Antaresia. There are four known species in this genus including the Children’s python A.childreni, Stimson’s python A.stimsoni, Spotted python A.maculosa & Pygmy python A.perthensis. They are generally relatively easy & low maintenance reptiles to keep in captivity. They are gentle creatures though some individuals may be more temperamental. These pythons rarely grow over 1m in length & may live for over 20 years. Below outlines some ‘basic’ requirements for keeping these pythons as pets. Please note: All Australian snakes are protected species in Australia. Seek individual state & territory requirements for legalities on keeping snakes as pets. Housing .Pythons can be housed indoors. They require suitable artificial heat & light sources as outlined below .Suitable enclosures include ventilated glass/clear plastic fronted wooden or plastic cabinets at least 0.8m long x 0.5m wide x 0.4m high. Juveniles can be kept in smaller plastic tubs – beware their ability to escape! .Furnish the cage with a hide box, branches for climbing & a water bowl heavy/large enough for the snake to bathe in .Substrates (enclosure floor covering) are most simply & hygienically provided by means of newspaper sheets. These pythons may like to ‘burrow’ so using recycled paper ‘cat litter’ pellets is suitable. They can also be housed on Artificial grass .Enclosures should be disinfected at least once weekly (use household bleach diluted 1:10 with water & rinse well afterwards) & ‘spot’ cleaned as necessary .Pythons can be housed individually or in pairs, but beware that fighting may occur.
    [Show full text]
  • LIVE REPTILE PRICE LIST JULY 2012 Call 07850 054697 Or E-Mail [email protected]
    LIVE REPTILE PRICE LIST JULY 2012 Call 07850 054697 or E-mail [email protected] ALL PRICES EXCLUDE VAT & SHIPPING FREE SHIPPING ON ALL ORDERS OVER £300 TO MAINLAND UK Here at Trade Exotics we only supply the best quality captive bred animals. We do not import any wild caught species and many of our animals are bred right here in our own facility. We specialise in all the most popular pet reptiles including Leopard Geckos, Bearded Dragons, Corn Snakes and Royal Pythons. If you breed your own reptiles and are interested in supplying us your surplus, please let us know what you have and we would be interested to hear from you. SNAKES Amelanistic Corn Snake Pantherophis guttatus guttatus A young breeder male surplus to requirements. Adult Male: £45.00 Kenyan Sand Boa (66% Possible Het Albino) Gongylophis colubrinus loveridgei Produced from breeding a pair of het albinos together. These guys can provide a cheap alternative to breeders with low budgets and want to produce albinos. CB 2012: £35.00 Spider Royal Python Python regius A beautiful and more affordable Royal Python morph, we have just the one female 1 Only left. 2012 Female: £200.00 2012 Males: £300.00 Bumblebee Royal Python Python regius COMING SOON A stunning combination of the Spider and Pastel morphs. 2012 Females: £350.00 Royal Python Python regius COMING SOON Captive bred normal Royal Pythons. CB2012: £35.00 100% Het Albino Royal Python COMING SOON Python regius Males: £45.00 Captive bred normal Royal Pythons. Females: £97.50 LEOPARD GECKOS The majority of the Leopard Geckos on our list are bred by ourselves.
    [Show full text]
  • A Rapid Survey of Online Trade in Live Birds and Reptiles in The
    S H O R T R E P O R T 0ൾඍඁඈൽඌ A rapid online survey was undertaken EHWZHHQDQG)HEUXDU\ GD\V DSSUR[LPDWHO\KRXUVVXUYH\GD\ RQ pre-selected Facebook groups specializing in the trade of live pets. Ten groups each for reptiles and birds were selected based on trading activities in the previous six months. The survey was carried out during ZHHN GD\V 0RQGD\ WR )ULGD\ E\ JRLQJ through each advertisement posted in A rapid survey of online trade in the groups. Information, including that live birds and reptiles in the Philippines relating to species, quantity, and asking HYDROSAURUS PUSTULATUS WWF / URS WOY WOY WWF / URS PUSTULATUS HYDROSAURUS SULFH ZDV QRWHG 6SHFLHV ZHUH LGHQWL¿HG Report by Cristine P. Canlas, Emerson Y. Sy, to the lowest taxonomic level whenever and Serene Chng possible. Taxonomy follows Gill and 'RQVNHU IRU ELUGV DQG 8HW] et al. IRUUHSWLOHV7KHDXWKRUVFDOFXODWHG ,ඇඍඋඈൽඎർඍංඈඇ WKH WRWDO SRWHQWLDO YDOXH R൵HUHG IRU ELUGV and reptiles based on prices indicated he Philippines is the second largest archipelago in the world by traders. Advertisements that did not comprising 7641 islands and is both a mega-biodiverse specify prices were assigned the lowest country for harbouring wildlife species found nowhere known price for each taxon. Valuations in else in the world, and one of eight biodiversity hotspots this report were based on a conversion rate having a disproportionate number of species threatened with RI86' 3+3 $QRQ ,WLV ,//8675$7,213+,/,33,1(6$,/),1/,=$5' TH[WLQFWLRQIXUWKHULWKDVVRPHRIWKHKLJKHVWUDWHVRIHQGHPLFLW\LQWKH not always possible during online surveys world (Myers et al 7KHLOOHJDOZLOGOLIHWUDGHLVRQHRIWKHPDLQ WRYHULI\WKDWDOOR൵HUVDUHJHQXLQH UHDVRQVEHKLQGVLJQL¿FDQWGHFOLQHVRIVRPHZLOGOLIHSRSXODWLRQVLQ$VLD LQFOXGLQJWKH3KLOLSSLQHV $QRQ6RGKLet al1LMPDQDQG 5ൾඌඎඅඍඌ 6KHSKHUG'LHVPRVet al5DRet al 7KHWildlife Act of 2001 (Republic Act No.
    [Show full text]
  • Biosecurity Risk Assessment
    An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries RIRDC Publication No. 11/141 RIRDCInnovation for rural Australia An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries by Dr Robert C Keogh February 2012 RIRDC Publication No. 11/141 RIRDC Project No. PRJ-007347 © 2012 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-320-8 ISSN 1440-6845 An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries Publication No. 11/141 Project No. PRJ-007347 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]