Differential Features of Fusion Activation Within the Paramyxoviridae

Total Page:16

File Type:pdf, Size:1020Kb

Differential Features of Fusion Activation Within the Paramyxoviridae viruses Review Differential Features of Fusion Activation within the Paramyxoviridae Kristopher D. Azarm and Benhur Lee * Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-212-241-2552 Received: 17 December 2019; Accepted: 29 January 2020; Published: 30 January 2020 Abstract: Paramyxovirus (PMV) entry requires the coordinated action of two envelope glycoproteins, the receptor binding protein (RBP) and fusion protein (F). The sequence of events that occurs during the PMV entry process is tightly regulated. This regulation ensures entry will only initiate when the virion is in the vicinity of a target cell membrane. Here, we review recent structural and mechanistic studies to delineate the entry features that are shared and distinct amongst the Paramyxoviridae. In general, we observe overarching distinctions between the protein-using RBPs and the sialic acid- (SA-) using RBPs, including how their stalk domains differentially trigger F. Moreover, through sequence comparisons, we identify greater structural and functional conservation amongst the PMV fusion proteins, as compared to the RBPs. When examining the relative contributions to sequence conservation of the globular head versus stalk domains of the RBP, we observe that, for the protein-using PMVs, the stalk domains exhibit higher conservation and find the opposite trend is true for SA-using PMVs. A better understanding of conserved and distinct features that govern the entry of protein-using versus SA-using PMVs will inform the rational design of broader spectrum therapeutics that impede this process. Keywords: paramyxovirus; viral envelope proteins; type I fusion protein; henipavirus; virus entry; viral transmission; structure; rubulavirus; parainfluenza virus 1. Introduction The family Paramyxoviridae (Order: Mononegavirales, Class: Monjiviricetes, Subphylum: Haploviricotina, Phylum: Negarnaviricotina, Realm: Riboviria) comprises of enveloped, non-segmented negative-sense RNA viruses that have a vast host range, ranging from mammals and birds to reptiles and fish [1]. The most recent classification of Paramyxoviridae by the International Committee on Taxonomy of Viruses (ICTV) includes four subfamilies, 14 genera, and 72 recognized species (Figure1). Paramyxoviruses (PMVs) belonging to divergent genera such as measles virus (Morbillivirus), mumps virus (Orthorubulavirus), the human parainfluenza viruses (Orthorubulavirus, Respirovirus), and Nipah and Hendra viruses (Henipavirus) are major human-tropic pathogens of global biomedical importance. Human-to-human transmission of measles, mumps and the parainfluenza viruses likely occurs through airborne routes or fomites [2], while direct contact with infectious bodily fluids (respiratory secretions, saliva, urine) is required for transmission of henipaviruses (HNVs) [3–5]. HNVs, including the zoonotic Hendra and Nipah viruses (HeV and NiV), are highly pathogenic in humans and domestic animals when spillover occurs from their natural chiropteran (bat) hosts. While HeV outbreaks appear confined to northeastern Australia, NiV outbreaks occur with alarming regularity in South/Southeast Asia and result in mortality rates upward of 90% [5–7]. More recently, sampling of bat reservoirs in parts of South America and Africa—areas distinct from what was thought to be the normal geographical distribution for extant HNVs [8–10]—has not only shown evidence for divergent HNV species, but has also revealed that bats host PMVs from major genera (e.g., morbilliviruses, respiroviruses, orthorubulaviruses and Viruses 2020, 12, 161; doi:10.3390/v12020161 www.mdpi.com/journal/viruses Viruses 2020, 12, 161 2 of 28 Viruses 2020, 12, 161 2 of 28 pararubulaviruses) that comprise of species pathogenic to humans or domestic animals. Furthermore, species pathogenic to humans or domestic animals. Furthermore, serological evidence suggests the serological evidence suggests the divergent HNVs in Africa have previously spilled over into the divergent HNVs in Africa have previously spilled over into the human population [11]. Thus, both human population [11]. Thus, both extant and emerging PMVs pose a threat to global health. extant and emerging PMVs pose a threat to global health. Figure 1. Phylogenetic tree of the family Paramyxoviridae. L protein sequences from representative Figurespecies 1. Phylogenetic of the 14 genera— tree ofMetaavulavirus the family Paramyxoviridae(APMV-2-L,. YP_009513219.1),L protein sequencesOrthoavulavirus from representative(NDV-L, speciesAAS67167.1), of the 14Paraavulavirus genera—Metaavulavirus(APMV-3-L, (APMV-2-L, YP_009094217.1), YP_009513219.1),Orthorubulavirus Orthoavulavirus(MuV-L, NP_054714.1), (NDV-L, AAS67167.1),Pararubulavirus Paraavulavirus(SoRV-L, YP_009094034.1), (APMV-3-L, YP_009094217.1),Synodonvirus (WTLPV-L, Orthorubulavirus AVM87369.1), (MuV-L,Aquaparamyxovirus NP_054714.1), Pararubulavirus(ASPMV-L, YP_009094152.1), (SoRV-L, RespirovirusYP_009094034.1),(HPIV3-L, Synodonvirus ABY47607.1), Ferlavirus(WTLPV-L,(FDLV-L, AVM87369.1), NP_899661.1), AquaparamyxovirusSalemvirus (SalV-L, (ASPMV-L, YP_009094339.1), YP_009094152.1),Henipavirus Respirovirus(NiV-L, (HPIV3-L, NP_112028.1), ABY47607.1),Jeilongvirus Ferlavirus(BeiV-L, (FDLV-L,YP_512254.1), NP_899661.1),Narmovirus Salemvirus(MossV-L, (SalV-L, NP_958055.1), YP_009094339.1), and Morbillivirus Henipavirus(MeV-L, (NiV-L, NP_056924.1)—were NP_112028.1), Jeilongvirusaligned by (BeiV-L, ClustalW YP_512254.1), and a neighbor-joining Narmovirus tree (MossV-L, was generated NP_958055.1), using Geneious and Morbillivirus Prime 2019.2. (MeV-L, Scale bar NP_056924.1)—wereof the resultant neighbor-joining aligned by ClustalW tree indicates and a 0.2neighb aminoor-joining acid substitutions tree was gene perrated site. For using clarity, Geneious only the Primeparent 2019.2. genus Scale of the bar representative of the resultant species neighbor-joi is indicated.ning Members tree indicates in each 0.2 subfamily amino acid cluster substitutions are shaded in perblue site. (subfamily For clarity,Avulavirinae only the pare), greennt genus (subfamily of the representativeRubulavirinae), spec yellowies is (subfamily indicated.Metaparamyxovirinae Members in each ) subfamilyand red cluster (subfamily are shadedOrthoparamyxovirinae in blue (subfamily), respectively. Avulavirinae), green (subfamily Rubulavirinae), yellow (subfamily Metaparamyxovirinae) and red (subfamily Orthoparamyxovirinae), respectively. Paramyxovirus (PMV) entry occurs via pH-independent fusion of the viral envelope with the hostParamyxovirus cell membrane. (PMV) For the entry majority occurs of via PMVs, pH-independ this processent involves fusion theof the concerted viral envelope actions ofwith two the viral hostglycoproteins: cell membrane. the For receptor-binding the majority of proteinPMVs, this (RBP) process and fusioninvolves protein the concerted (F). There actions are various of two flavorsviral glycoproteins:of RBP [12–15 the]. HN,receptor-binding hemagglutinin-neuraminidase, protein (RBP) and fusion proteins protein bind (F). sialic There acid are (SA) various on red flavors blood cellsof RBP(RBCs) [12–15]. and HN, cause hemagglutinin-neuraminidase, them to aggregate (hemagglutination proteins activity), bind sialic in additionacid (SA) to on being red ableblood to cells cleave (RBCs)SA (neuraminidase and cause them activity) to aggregate to facilitate (hemagglutination virion release activity), from the infectedin addition cell to [16 being–21]. able Hemagglutinin to cleave SA(H) (neuraminidase proteins of the activity) genus Morbillivirus to facilitate virionsolely haverelease hemagglutination from the infected activity, cell [16–21]. aggregating Hemagglutinin RBCs from (H)certain proteins primates, of the genus but not Morbillivirus humans, bysolely binding have hemagglutination to CD46 [22]. For activity, systemic aggregating spread and RBCs respiratory from certaintransmission primates, in but humans, not humans, MeV-RBP by uses binding the physiologically to CD46 [22]. relevantFor systemic SLAM spread (or CD150) and respiratory and Nectin-4 transmissionproteins, respectively in humans,[ MeV-RBP23–27]. Finally, uses the remaining physiologically members relevant of the OrthoparamyxovirinaeSLAM (or CD150) and, thatNectin-4 do not proteins,express respectively HN or H proteins, [23–27]. possess Finally, G proteinsremaining that members are either of experimentally the Orthoparamyxovirinae confirmed, or that predicted do not to expressbind proteinaceousHN or H proteins, receptors possess [28 G–33 proteins]. More that recently, are either the RBP experimentally from members confirmed of the Pararubulavirus or predicted to generabind proteinaceous (e.g., Sosuga recept virus),ors presumed [28–33]. More to contain recently, HN the activity, RBP from has beenmembers shown of the to notPararubulavirus use SA-based generareceptors (e.g. [, 34Sosuga] (Figure virus),2 and presumed below for moreto contain detailed HN discussion). activity, has The been RBP shown binds theto not host use receptor SA-based on the receptorstarget cell. [34] Following (Figure 2 and receptor below binding, for more the detailed RBP undergoes discussion). a conformational The RBP binds change the host that receptor allosterically on thetriggers target thecell. metastable Following fusion receptor protein, binding, which th thene RBP undergoes undergoes its owna conformational conformational change cascade that that allostericallyeventually
Recommended publications
  • Entry, Replication and Immune Evasion
    University of Veterinary Medicine Hannover Institute of Virology & Research Center for Emerging Infections and Zoonoses Virus-cell interactions of mumps viruses and mammalian cells: Entry, replication and immune evasion THESIS Submitted in partial fulfilment of the requirements for the degree of Doctor of Natural Sciences Doctor rerum naturalium (Dr. rer. nat.) awarded by the University of Veterinary Medicine Hannover by Sarah Isabella Theresa Hüttl (Hannover) Hannover, Germany 2020 Main supervisor: PD Nadine Krüger, PhD Supervision group: PD Nadine Krüger, PhD Prof. Dr. Bernd Lepenies Prof. Dr. Jan Felix Drexler 1st Evaluation: PD Nadine Krüger, PhD Infection Biology Unit German Primate Center - Leibniz Institute for Primate Research, Göttingen Prof. Dr. Bernd Lepenies Institute of Infection Immunology Research Center for Emerging Infections and Zoonoses University of Veterinary Medicine Hannover Prof. Dr. Jan Felix Drexler Institute of Virology Charité - Universitätsmedizin Berlin 2nd Evaluation: PD Dr. Anne Balkema-Buschmann Institute of Novel and Emerging Infectious Diseases (INNT) Friedrich-Loeffler-Institut, Insel Riems Date of submission: 08.09.2020 Date of final exam: 29.10.2020 This project was funded by grants of the German Research Foundation (DFG) to Nadine Krüger (KR 4762/2-1). Parts of this thesis have been communicated or published previously in: Publications: N. Krüger, C. Sauder, S. Hüttl, J. Papies, K. Voigt, G. Herrler, K. Hardes, T. Steinmetzer, C. Örvell, J. F. Drexler, C. Drosten, S. Rubin, M. A. Müller, M. Hoffmann. 2018. Entry, Replication, Immune Evasion, and Neurotoxicity of Synthetically Engineered Bat-Borne Mumps Virus. Cell Rep. 25(2):312-320. S. Hüttl, M. Hoffmann, T. Steinmetzer, C. Sauder, N.
    [Show full text]
  • Comparative Evolutionary and Phylogenomic Analysis of Avian Avulaviruses 1 to 20
    Accepted Manuscript Comparative evolutionary and phylogenomic analysis of Avian avulaviruses 1 to 20 Aziz-ul-Rahman, Muhammad Munir, Muhammad Zubair Shabbir PII: S1055-7903(17)30947-8 DOI: https://doi.org/10.1016/j.ympev.2018.06.040 Reference: YMPEV 6223 To appear in: Molecular Phylogenetics and Evolution Received Date: 1 January 2018 Revised Date: 15 May 2018 Accepted Date: 25 June 2018 Please cite this article as: Aziz-ul-Rahman, Munir, M., Zubair Shabbir, M., Comparative evolutionary and phylogenomic analysis of Avian avulaviruses 1 to 20, Molecular Phylogenetics and Evolution (2018), doi: https:// doi.org/10.1016/j.ympev.2018.06.040 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Comparative evolutionary and phylogenomic analysis of Avian avulaviruses 1 to 20 Aziz-ul-Rahman1,3, Muhammad Munir2, Muhammad Zubair Shabbir3# 1Department of Microbiology University of Veterinary and Animal Sciences, Lahore 54600, Pakistan https://orcid.org/0000-0002-3342-4462 2Division of Biomedical and Life Sciences, Furness College, Lancaster University, Lancaster LA1 4YG United Kingdomhttps://orcid.org/0000-0003-4038-0370 3 Quality Operations Laboratory University of Veterinary and Animal Sciences 54600 Lahore, Pakistan https://orcid.org/0000-0002-3562-007X # Corresponding author: Muhammad Zubair Shabbir E.
    [Show full text]
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Murdoch Research Repository
    MURDOCH RESEARCH REPOSITORY This is the author’s final version of the work, as accepted for publication following peer review but without the publisher’s layout or pagination. The definitive version is available at http://dx.doi.org/10.1016/j.meegid.2012.04.022 Hyndman, T., Marschang, R.E., Wellehan, J.F.X. and Nicholls, P.K. (2012) Isolation and molecular identification of Sunshine virus, a novel paramyxovirus found in Australian snakes. Infection, Genetics and Evolution, 12 (7). pp. 1436-1446. http://researchrepository.murdoch.edu.au/10552/ Copyright: © 2012 Elsevier B.V. It is posted here for your personal use. No further distribution is permitted. Accepted Manuscript Isolation and molecular identification of sunshine virus, a novel paramyxovirus found in australian snakes Timothy H. Hyndman, Rachel E. Marschang, James F.X. Wellehan, Philip K. Nicholls PII: S1567-1348(12)00168-2 DOI: http://dx.doi.org/10.1016/j.meegid.2012.04.022 Reference: MEEGID 1292 To appear in: Infection, Genetics and Evolution Please cite this article as: Hyndman, T.H., Marschang, R.E., Wellehan, J.F.X., Nicholls, P.K., Isolation and molecular identification of sunshine virus, a novel paramyxovirus found in australian snakes, Infection, Genetics and Evolution (2012), doi: http://dx.doi.org/10.1016/j.meegid.2012.04.022 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form.
    [Show full text]
  • Oncolytic Viruses for Canine Cancer Treatment
    cancers Review Oncolytic Viruses for Canine Cancer Treatment Diana Sánchez 1, Gabriela Cesarman-Maus 2 , Alfredo Amador-Molina 1 and Marcela Lizano 1,* 1 Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; [email protected] (D.S.); [email protected] (A.A.-M.) 2 Department of Hematology, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +51-5628-0400 (ext. 31035) Received: 19 September 2018; Accepted: 23 October 2018; Published: 27 October 2018 Abstract: Oncolytic virotherapy has been investigated for several decades and is emerging as a plausible biological therapy with several ongoing clinical trials and two viruses are now approved for cancer treatment in humans. The direct cytotoxicity and immune-stimulatory effects make oncolytic viruses an interesting strategy for cancer treatment. In this review, we summarize the results of in vitro and in vivo published studies of oncolytic viruses in different phases of evaluation in dogs, using PubMed and Google scholar as search platforms, without time restrictions (to date). Natural and genetically modified oncolytic viruses were evaluated with some encouraging results. The most studied viruses to date are the reovirus, myxoma virus, and vaccinia, tested mostly in solid tumors such as osteosarcomas, mammary gland tumors, soft tissue sarcomas, and mastocytomas. Although the results are promising, there are issues that need addressing such as ensuring tumor specificity, developing optimal dosing, circumventing preexisting antibodies from previous exposure or the development of antibodies during treatment, and assuring a reasonable safety profile, all of which are required in order to make this approach a successful therapy in dogs.
    [Show full text]
  • Meta-Transcriptomic Analysis of Virus Diversity in Urban Wild Birds
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.07.982207; this version posted March 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Meta-transcriptomic analysis of virus diversity in urban wild birds 2 with paretic disease 3 4 Wei-Shan Chang1†, John-Sebastian Eden1,2†, Jane Hall3, Mang Shi1, Karrie Rose3,4, Edward C. 5 Holmes1# 6 7 8 1Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and 9 Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW, 10 Australia. 11 2Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW, 12 Australia. 13 3Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, 14 NSW, Australia. 15 4James Cook University, College of Public Health, Medical & Veterinary Sciences, Townsville, 16 QLD, Australia. 17 18 †Authors contributed equally 19 20 #Author for correspondence: 21 Professor Edward C. Holmes 22 Email: [email protected] 23 Phone: +61 2 9351 5591 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.07.982207; this version posted March 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 24 25 Abstract: 248 words 26 Importance: 109 words 27 Text: 6296 words 28 Running title: Virome of urban wild birds with neurological signs.
    [Show full text]
  • Arenaviridae Astroviridae Filoviridae Flaviviridae Hantaviridae
    Hantaviridae 0.7 Filoviridae 0.6 Picornaviridae 0.3 Wenling red spikefish hantavirus Rhinovirus C Ahab virus * Possum enterovirus * Aronnax virus * * Wenling minipizza batfish hantavirus Wenling filefish filovirus Norway rat hunnivirus * Wenling yellow goosefish hantavirus Starbuck virus * * Porcine teschovirus European mole nova virus Human Marburg marburgvirus Mosavirus Asturias virus * * * Tortoise picornavirus Egyptian fruit bat Marburg marburgvirus Banded bullfrog picornavirus * Spanish mole uluguru virus Human Sudan ebolavirus * Black spectacled toad picornavirus * Kilimanjaro virus * * * Crab-eating macaque reston ebolavirus Equine rhinitis A virus Imjin virus * Foot and mouth disease virus Dode virus * Angolan free-tailed bat bombali ebolavirus * * Human cosavirus E Seoul orthohantavirus Little free-tailed bat bombali ebolavirus * African bat icavirus A Tigray hantavirus Human Zaire ebolavirus * Saffold virus * Human choclo virus *Little collared fruit bat ebolavirus Peleg virus * Eastern red scorpionfish picornavirus * Reed vole hantavirus Human bundibugyo ebolavirus * * Isla vista hantavirus * Seal picornavirus Human Tai forest ebolavirus Chicken orivirus Paramyxoviridae 0.4 * Duck picornavirus Hepadnaviridae 0.4 Bildad virus Ned virus Tiger rockfish hepatitis B virus Western African lungfish picornavirus * Pacific spadenose shark paramyxovirus * European eel hepatitis B virus Bluegill picornavirus Nemo virus * Carp picornavirus * African cichlid hepatitis B virus Triplecross lizardfish paramyxovirus * * Fathead minnow picornavirus
    [Show full text]
  • Viruses Associated with Antarctic Wildlife from Serology Based
    Virus Research 243 (2018) 91–105 Contents lists available at ScienceDirect Virus Research journal homepage: www.elsevier.com/locate/virusres Review Viruses associated with Antarctic wildlife: From serology based detection to MARK identification of genomes using high throughput sequencing ⁎ Zoe E. Smeelea,b, David G. Ainleyc, Arvind Varsania,b,d, a The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA b School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand c HT Harvey and Associates, Los Gatos, CA 95032, USA d Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa ARTICLE INFO ABSTRACT Keywords: The Antarctic, sub-Antarctic islands and surrounding sea-ice provide a unique environment for the existence of Penguin organisms. Nonetheless, birds and seals of a variety of species inhabit them, particularly during their breeding Seal seasons. Early research on Antarctic wildlife health, using serology-based assays, showed exposure to viruses in Petrel the families Birnaviridae, Flaviviridae, Herpesviridae, Orthomyxoviridae and Paramyxoviridae circulating in seals Sharp spined notothen (Phocidae), penguins (Spheniscidae), petrels (Procellariidae) and skuas (Stercorariidae). It is only during the last Antarctica decade or so that polymerase chain reaction-based assays have been used to characterize viruses associated with Wildlife disease Antarctic animals. Furthermore, it is only during the last five years that full/whole genomes of viruses (ade- noviruses, anelloviruses, orthomyxoviruses, a papillomavirus, paramyoviruses, polyomaviruses and a togavirus) have been sequenced using Sanger sequencing or high throughput sequencing (HTS) approaches.
    [Show full text]
  • A New Bat-Derived Paramyxovirus of the Genus Pararubulavirus
    viruses Article Achimota Pararubulavirus 3: A New Bat-Derived Paramyxovirus of the Genus Pararubulavirus Kate S. Baker 1,2,3,* , Mary Tachedjian 4, Jennifer Barr 4 , Glenn A. Marsh 4 , Shawn Todd 4, Gary Crameri 4, Sandra Crameri 4, Ina Smith 5, Clare E.G. Holmes 4, Richard Suu-Ire 6,7, Andres Fernandez-Loras 2 , Andrew A. Cunningham 2 , James L.N. Wood 1 and Lin-Fa Wang 4,8,* 1 Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK; [email protected] 2 Institute of Zoology, Zoological Society of London, London NW1 4RY, UK; [email protected] (A.F.-L.); [email protected] (A.A.C.) 3 Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK 4 CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Portarlington Road, East Geelong, VIC 3220, Australia; [email protected] (M.T.); [email protected] (J.B.); [email protected] (G.A.M.); [email protected] (S.T.); [email protected] (G.C.); [email protected] (S.C.); [email protected] (C.E.G.H.) 5 CSIRO Health & Biosecurity, Clunies Ross Street, Black Mountain, ACT 2601, Australia; [email protected] 6 Wildlife Division of the Forestry Commission, Accra PO Box M239, Ghana; [email protected] 7 Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra PO Box LG 581, Ghana 8 Programme in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore * Correspondence: [email protected] (K.S.B.); [email protected] (L.-F.W.) Received: 7 September 2020; Accepted: 27 October 2020; Published: 30 October 2020 Abstract: Bats are an important source of viral zoonoses, including paramyxoviruses.
    [Show full text]
  • Taxonomy of the Order Mononegavirales: Update 2017
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Arch Virol Manuscript Author . Author manuscript; Manuscript Author available in PMC 2018 August 01. Published in final edited form as: Arch Virol. 2017 August ; 162(8): 2493–2504. doi:10.1007/s00705-017-3311-7. *Corresponding author: JHK: Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA; Phone: +1-301-631-7245; Fax: +1-301-631-7389; [email protected]. $The members of the International Committee on Taxonomy of Viruses (ICTV) Bornaviridae Study Group #The members of the ICTV Filoviridae Study Group †The members of the ICTV Mononegavirales Study Group ‡The members of the ICTV Nyamiviridae Study Group ^The members of the ICTV Paramyxoviridae Study Group &The members of the ICTV Rhabdoviridae Study Group ORCIDs: Amarasinghe: orcid.org/0000-0002-0418-9707 Bào: orcid.org/0000-0002-9922-9723 Basler: orcid.org/0000-0003-4195-425X Bejerman: orcid.org/0000-0002-7851-3506 Blasdell: orcid.org/0000-0003-2121-0376 Bochnowski: orcid.org/0000-0002-3247-3991 Briese: orcid.org/0000-0002-4819-8963 Bukreyev: orcid.org/0000-0002-0342-4824 Chandran: orcid.org/0000-0003-0232-7077 Dietzgen: orcid.org/0000-0002-7772-2250 Dolnik: orcid.org/0000-0001-7739-4798 Dye: orcid.org/0000-0002-0883-5016 Easton: orcid.org/0000-0002-2288-3882 Formenty: orcid.org/0000-0002-9482-5411 Fouchier:
    [Show full text]
  • Evolution and Diversity of Bat and Rodent Paramyxoviruses from North America Brendan B
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.01.450817; this version posted July 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Evolution and diversity of bat and rodent Paramyxoviruses from North America Brendan B. Larsen1, Sophie Gryseels1,2*, Hans W. Otto1, Michael Worobey1 1Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 2 Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Laboratory of Clinical and Evolutionary Virology, Leuven, Belgium * Current addresses: Evolutionary Ecology group, Department Biology, University of Antwerp, Belgium OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Belgium Abstract Paramyxoviruses are a diverse group of negative-sense, single-stranded RNA viruses of which several species cause significant mortality and morbidity. In recent years the collection of paramyxoviruses sequences detected in wild mammals has substantially grown, however little is known about paramyxovirus diversity in North American mammals. To better understand natural paramyxovirus diversity, host range, and host specificity, we sought to comprehensively characterize paramyxoviruses across a range of diverse co-occurring wild small mammals in Southern Arizona. We used highly degenerate primers to screen fecal and urine samples and obtained a total of 55 paramyxovirus sequences from 12 rodent species and 6 bat species. We also performed illumina RNA-seq and de novo assembly on 14 of the positive samples to recover a total of 5 near full-length viral genomes.
    [Show full text]
  • Taxonomy of the Order Mononegavirales: Update 2018
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Arch Virol Manuscript Author . Author manuscript; Manuscript Author available in PMC 2019 August 01. Published in final edited form as: Arch Virol. 2018 August ; 163(8): 2283–2294. doi:10.1007/s00705-018-3814-x. TAXONOMY OF THE ORDER MONONEGAVIRALES: UPDATE 2018 A full list of authors and affiliations appears at the end of the article. Abstract In 2018, the order Mononegavirales was expanded by inclusion of 1 new genus and 12 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future. Keywords Anphevirus; Arlivirus; Bornaviridae; bornavirus; Chengtivirus; Crustavirus; Filoviridae; filovirus; ICTV; International Committee on Taxonomy of Viruses; mononegavirad; Mononegavirales; mononegavirus; Mymonaviridae; mymonavirid; mymonavirus; Nyamiviridae; nyamivirid; nyamivirus; Paramyxoviridae; paramyxovirid; paramyxovirus; Pneumoviridae; pneumovirid; pneumovirus; Rhabdoviridae; rhabdovirid; rhabdovirus; Sunviridae; sunvirid; sunvirus; virus classification; virus nomenclature; virus taxonomy INTRODUCTION The virus order Mononegavirales was established in 1991 to accommodate related viruses with nonsegmented, linear, single-stranded, negative-sense RNA genomes distributed among three families [19, 20 ]. Today, the order includes 8 families [1, 2, 11, 21 ]. Amended/ *Corresponding
    [Show full text]