Entry, Replication and Immune Evasion
Total Page:16
File Type:pdf, Size:1020Kb
University of Veterinary Medicine Hannover Institute of Virology & Research Center for Emerging Infections and Zoonoses Virus-cell interactions of mumps viruses and mammalian cells: Entry, replication and immune evasion THESIS Submitted in partial fulfilment of the requirements for the degree of Doctor of Natural Sciences Doctor rerum naturalium (Dr. rer. nat.) awarded by the University of Veterinary Medicine Hannover by Sarah Isabella Theresa Hüttl (Hannover) Hannover, Germany 2020 Main supervisor: PD Nadine Krüger, PhD Supervision group: PD Nadine Krüger, PhD Prof. Dr. Bernd Lepenies Prof. Dr. Jan Felix Drexler 1st Evaluation: PD Nadine Krüger, PhD Infection Biology Unit German Primate Center - Leibniz Institute for Primate Research, Göttingen Prof. Dr. Bernd Lepenies Institute of Infection Immunology Research Center for Emerging Infections and Zoonoses University of Veterinary Medicine Hannover Prof. Dr. Jan Felix Drexler Institute of Virology Charité - Universitätsmedizin Berlin 2nd Evaluation: PD Dr. Anne Balkema-Buschmann Institute of Novel and Emerging Infectious Diseases (INNT) Friedrich-Loeffler-Institut, Insel Riems Date of submission: 08.09.2020 Date of final exam: 29.10.2020 This project was funded by grants of the German Research Foundation (DFG) to Nadine Krüger (KR 4762/2-1). Parts of this thesis have been communicated or published previously in: Publications: N. Krüger, C. Sauder, S. Hüttl, J. Papies, K. Voigt, G. Herrler, K. Hardes, T. Steinmetzer, C. Örvell, J. F. Drexler, C. Drosten, S. Rubin, M. A. Müller, M. Hoffmann. 2018. Entry, Replication, Immune Evasion, and Neurotoxicity of Synthetically Engineered Bat-Borne Mumps Virus. Cell Rep. 25(2):312-320. S. Hüttl, M. Hoffmann, T. Steinmetzer, C. Sauder, N. Krüger. 2020. The amino acid at position 8 of the proteolytic cleavage site of the mumps virus fusion protein affects viral proteolysis and fusogenicity. J Virol. 94(22):e01732-20. S. Hüttl, T. Steinmetzer, J. F. Drexler, N. Krüger. 2020. Furin-independent cleavage of human and bat-derived mumps virus F proteins. Submitted. Oral presentations: 23/10/2019 Seminar in “Current Topics in Biomedicine” University of Veterinary Medicine Hannover, Germany Proteolytic activation and fusogenicity of human and bat-derived mumps viruses. S. Hüttl. Poster presentations: 03/2018 28th Annual Meeting of the Society for Virology, Würzburg, Germany Human and bat-derived mumps virus N, P and L proteins are able to interact for efficient replication activity. S. Hüttl, M. Hoffmann, N. Krüger. 10/2018 National Symposium on Zoonoses Research 2018, Berlin, Germany Immunomodulatory properties of the V and SH proteins of a bat-derived mumps virus. S. Hüttl, M. Hoffmann, N. Krüger. 03/2019 29th Annual Meeting of the Society for Virology, Düsseldorf, Germany Proteolytic activation of the fusion glycoprotein of a bat-derived mumps virus. S. Hüttl, C. Sauder, S. Rubin, M. Hoffmann, N. Krüger. 10/2019 National Symposium on Zoonoses Research 2019, Berlin, Germany Proteolytic activation and fusogenicity of human and bat-derived mumps viruses. S. Hüttl, T. Steinmetzer, C. Sauder, S. Rubin, M. Hoffmann, N. Krüger. Contents Contents I List of abbreviations ...................................................................................................... III II List of figures ................................................................................................................ VII III Summary ........................................................................................................................ IX IV Zusammenfassung........................................................................................................ XI 1 Introduction ..................................................................................................................... 1 1.1 Paramyxoviruses ........................................................................................................ 1 1.1.1 Taxonomy ....................................................................................................... 1 1.1.2 Morphology and genome organization ............................................................ 1 1.2 Replication cycle of paramyxoviruses ........................................................................ 3 1.2.1 Viral attachment .............................................................................................. 3 1.2.2 Virus-induced fusion ....................................................................................... 4 1.2.3 Viral replication ............................................................................................... 6 1.3 Host immune response and viral immune evasion ..................................................... 8 1.3.1 Interferon pathway .......................................................................................... 8 1.3.2 NF-κB signaling pathway .............................................................................. 10 1.4 Mumps virus infection ............................................................................................... 12 1.4.1 The infectious disease mumps ..................................................................... 13 1.4.2 Vaccination ................................................................................................... 13 1.4.3 Mumps virus outbreaks ................................................................................. 14 1.5 Bats and zoonotic viruses ......................................................................................... 15 1.5.1 Zoonotic diseases and pathogens ................................................................ 15 1.5.2 Bats as reservoir hosts of zoonotic viruses ................................................... 16 1.5.3 Bat-derived mumps virus .............................................................................. 17 1.6 Aims of the study ...................................................................................................... 18 2 Entry, replication, immune evasion and neurotoxicity of a synthetically-engineered bat-borne mumps virus ................................................................................................ 21 3 The amino acid at position 8 of the proteolytic cleavage site of the mumps virus fusion protein affects viral proteolysis and fusogenicity ......................................... 23 4 Furin-independent cleavage of human and bat-derived mumps virus F proteins .. 25 5 Discussion ..................................................................................................................... 37 5.1 batMuV is capable of infecting human cells and circumventing the host immune response ................................................................................................................... 37 5.2 A single amino acid modifies fusogenicity and proteolysis of MuV F ....................... 40 5.3 Furin-independent cleavage of MuV F ..................................................................... 43 6 References ..................................................................................................................... 47 I Contents 7 Supplementary data ...................................................................................................... 61 8 Appendix ........................................................................................................................ 63 8.1 Sequences ................................................................................................................ 63 8.2 Primers ..................................................................................................................... 77 8.3 Sequences of F peptides used in the FRET assay .................................................. 81 II List of abbreviations I List of abbreviations 88-1961 hMuV strain MuVi/1961.USA/0.88 aa Amino acid batMuV BatPV/Epo_spe/AR1/DCR/2009, bat-derived MuV CD Cytoplasmic domain CNS Central nervous system CoV Coronavirus CPE Cytopathic effect C-terminus COOH terminus of proteins DNA Deoxyribonucleic acid EBOV Ebola virus ED Ectodomain e.g. Exempli gratia (for example) F Fusion glycoprotein Fig. Figure FP Fusion peptide FRET Fluorescence resonance energy transfer G Glycoprotein H Hemagglutinin HAT Human airway trypsin-like protease HCV Hepatitis C virus HeV Hendra virus HIV Human immunodeficiency virus hMuV Human mumps virus HN Hemagglutinin-neuraminidase HPIV Human parainfluenza virus HR Heptad repeat region IFN Interferon IFNAR Interferon alpha/beta receptor IκBα NF-κB inhibitor alpha IKK Inhibitor of NF-κB kinase IL Interleukin IL-1R Interleukin 1 receptor IRF Interferon-regulatory factor ISG Interferon-stimulated gene ISGF Interferon-stimulated gene factor III List of abbreviations ISRE Interferon-stimulated response elements JAK Janus kinase kDa Kilodalton L Large protein (RNA polymerase) M Matrix protein MAPK Mitogen-activated protein kinase MeV Measles virus MMR Measles, mumps and rubella vaccine mRNA Messenger RNA MuV Mumps virus MYD88 Myeloid differentiation primary response 88 N Nucleoprotein NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells NiV Nipah virus NSP Non-structural protein nt Nucleotide N-terminus NH2-terminal end of proteins ORF Open reading frame P Phosphoprotein P8 Position 8 within cleavage site of fusion glycoprotein PAMP Pathogen-associated molecular patterns PIV Parainfluenza virus rbatMuV Recombinant batMuV RdRp RNA-dependent RNA polymerase RIP Receptor-interacting protein kinase