Unique Tropism and Entry Mechanism of Mumps Virus

Total Page:16

File Type:pdf, Size:1020Kb

Unique Tropism and Entry Mechanism of Mumps Virus viruses Review Unique Tropism and Entry Mechanism of Mumps Virus Marie Kubota 1,*,† and Takao Hashiguchi 2,* 1 Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan 2 Laboratory of Medical Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan * Correspondence: [email protected] (M.K.); [email protected] (T.H.) † Current address: Department of Otolaryngology-Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA. Abstract: Mumps virus (MuV) is an important human pathogen that causes parotitis, orchitis, oophoritis, meningitis, encephalitis, and sensorineural hearing loss. Although mumps is a vaccine- preventable disease, sporadic outbreaks have occurred worldwide, even in highly vaccinated popula- tions. MuV not only causes systemic infection but also has a unique tropism to glandular tissues and the central nervous system. In general, tropism can be defined by multiple factors in the viral life cycle, including its entry, interaction with host factors, and host-cell immune responses. Although the underlying mechanisms of MuV tropism remain to be fully understood, recent studies on virus–host interactions have provided insights into viral pathogenesis. This review was aimed at summarizing the entry process of MuV by focusing on the glycan receptors, particularly the recently identified receptors with a trisaccharide core motif, and their interactions with the viral attachment proteins. Here, we describe the receptor structures, their distribution in the human body, and the recently identified host factors for MuV and analyze their relationship with MuV tropism. Keywords: mumps virus; tropism; entry; glycan receptors; attachment protein; structure Citation: Kubota, M.; Hashiguchi, T. Unique Tropism and Entry Mechanism of Mumps Virus. Viruses 2021, 13, 1746. https://doi.org/ 1. Introduction 10.3390/v13091746 Mumps is a well-known infectious disease caused by the mumps virus (MuV). It Academic Editor: Hironori Sato occurs worldwide, with an average of 500,000 cases reported annually. After an incubation period of 2–4 weeks, mild symptoms of the infection appear, including low fever, headache, Received: 7 August 2021 and malaise, typically followed by bilateral swelling of the parotid glands. Following the Accepted: 30 August 2021 initial viral infection in the upper respiratory mucosa and regional lymph nodes, MuV Published: 1 September 2021 spreads systemically throughout the body [1–3]. MuV shows tropism to glandular and neural tissues, to organs, such as the kidney and heart, and to joint tissues. Parotitis occurs Publisher’s Note: MDPI stays neutral in 60–70% of infections. Infrequently, other salivary glands, such as the submandibular with regard to jurisdictional claims in and sublingual glands, may also be affected. Orchitis is found in 20–30% of infected published maps and institutional affil- adult males, mostly in conjunction with epididymitis. Approximately 15% of orchitis iations. cases may progress to testicular atrophy, leading to decreased fertility [2,4]. Oophoritis is observed in 5% of infected adult females. Pancreatitis has been reported in 4% of cases. Central nervous system (CNS) involvement is another common manifestation of MuV infection. The most common neurological symptom is aseptic meningitis, which occurs Copyright: © 2021 by the authors. in 1–10% of cases. Cerebrospinal fluid (CSF) pleocytosis has been reported in up to 50% Licensee MDPI, Basel, Switzerland. of infected cases, with increased cytokine levels reflecting meningeal inflammation [2,5,6]. This article is an open access article Encephalitis is another manifestation that is observed less commonly. Sensorineural distributed under the terms and hearing loss is a well-known complication, previously estimated to occur in 1/15,000 conditions of the Creative Commons to 1/20,000 cases; however, more recent studies have suggested that the frequency could Attribution (CC BY) license (https:// be 1/1000 [3,7]. In the majority of cases, mumps-related hearing loss is profound and creativecommons.org/licenses/by/ resistant to therapeutics [8]. Live attenuated mumps vaccines, for example, the measles– 4.0/). Viruses 2021, 13, 1746. https://doi.org/10.3390/v13091746 https://www.mdpi.com/journal/viruses Viruses 2021, 13, x FOR PEER REVIEW 2 of 14 mumps–rubella (MMR) vaccines, can prevent MuV infections in childhood and serious complications in young individuals [3]. Despite its unique tropism to glandular and neural tissues, the mechanisms underly- Viruses 2021, 13, 1746 ing tropism are still poorly understood. Tropism is affected at multiple stages of the viral 2 of 14 life cycle in response to interactions with host cells. Binding to cellular receptors during the initial stages of viral entry is known to be one of the determinants that plays a key role in regulatingmumps–rubella tropism and (MMR) virulence vaccines, of the can virus. prevent MuV infections in childhood and serious MuVcomplications is an enveloped, in young non-segmented, individuals [3]. negative-stranded RNA virus of the genus OrthorubulavirusDespite and its uniquefamily tropismParamyxoviridae to glandular. Its genome and neural contains tissues, 15,384 the mechanisms nucleotides underlying en- codingtropism nucleocapsid are still (N), poorly phosphor understood. (P), matrix Tropism (M), is affectedsmall hydrophobic at multiple stages(SH), large of the (L), viral life hemagglutinin-neuraminidasecycle in response to interactions (HN), and with fusion host (F) cells. proteins Binding [3]. to Based cellular on the receptors sequence during of the SH andinitial HN stagesgenes, ofMuV viral has entry been is classified known to in beto one 12 genotypes of the determinants [9]. The N thatprotein plays together a key role in with theregulating RNA-dependent tropism and RNA virulence polymerase of the co virus.mplex comprising L and P proteins form the ribonucleoproteinMuV is an enveloped,(RNP) complex, non-segmented, which plays negative-stranded an essential role in RNA viral virus replication of the genus and transcriptionOrthorubulavirus [1,10].and The family M proteinParamyxoviridae is involved in. Its organizing genome containsvirion assembly 15,384 nucleotidesand sup- en- portingcoding the budding nucleocapsid of viral (N), particles phosphor [1,10]. (P), In matrixsome paramyxoviruses, (M), small hydrophobic M proteins (SH), have large (L), been proposedhemagglutinin-neuraminidase to inhibit host factors (HN),to enha andnce fusion viral production (F) proteins [1 [30,11].]. Based SH onproteins the sequence are of presentSH in and Rubulavirinae HN genes, such MuV as has MuV, been parainfluenza classified into virus 12 genotypes 5 (PIV5), and [9]. TheJeilongvirus N protein [10]. together SH proteinswith the are RNA-dependent believed to facilitate RNA evasion polymerase of the host complex antiviral comprising response L by and blocking P proteins the form TNF-αthe-mediated ribonucleoprotein apoptosis pathway (RNP) complex, [1,3]. Cellul whichar playsentry anof essentialparamyxoviruses role in viral relies replication on two envelopeand transcription glycoproteins: [1,10 attachment]. The M protein proteins is (HN involved in the inmajority organizing of paramyxoviruses, virion assembly and includingsupporting MuV (Figure the budding 1A); hemagglutinin of viral particles (H) [ 1in,10 Morbillivirus]. In some paramyxoviruses, (e.g., measles virus M proteins(MeV)) have (Figurebeen 1B), proposed and glycoprotein to inhibit (G) host in factorsHenipavirus to enhance (e.g., Nipah viral production virus)), and [10 F ,protein.11]. SH proteinsWhile are the attachmentpresent in proteinsRubulavirinae (HN/H/suchG proteins) as MuV, are parainfluenza responsible virusfor receptor 5 (PIV5), recognition, and Jeilongvirus the F [10]. proteinSH plays proteins a role are in membrane believed to fusion facilitate [10]. evasion of the host antiviral response by blocking Here,the TNF- we αreview-mediated the recent apoptosis advances pathway in [the1,3]. general Cellular understanding entry of paramyxoviruses of MuV entry relies on based twoon the envelope structures glycoproteins: of MuV-HN attachment and glycan proteins receptor (HN complexes, in the majority in combination of paramyxoviruses, with the functionalincluding findings MuV (Figure of these1A); interactions. hemagglutinin We present (H) in theMorbillivirus glycan receptors(e.g., measles of MuV, virus their (MeV)) structural(Figure variations,1B), and and glycoprotein their interactions (G) in Henipavirus with the HN(e.g., protein. Nipah In virus)), addition, and we F protein. discuss While MuV tropismthe attachment based on proteins the dist (HN/H/Gribution of proteins) glycan arereceptors responsible in the for human receptor body recognition, and the the F functionalprotein roles plays of recently a role in identified membrane host fusion factors [10 ].for the tropism of MuV. Figure 1. Structures of MuV and MeV attachment proteins bound to their receptors. (A) MuV-HN Figure 1. Structures of MuV and MeV attachment proteins bound to their receptors. (A) MuV-HN (rainbow color) bound to a glycan receptor analog (cyan) α2,3-linked sialyllactose (30-SL) at the top (rainbow color) bound to a glycan receptor analog (cyan) α2,3-linked sialyllactose (3′-SL) at the top receptor-bindingreceptor-binding pocket pocketof the head of the domain; head domain; (B) MeV-H (B) MeV-H (rainbow (rainbow color) bound color)
Recommended publications
  • Entry, Replication and Immune Evasion
    University of Veterinary Medicine Hannover Institute of Virology & Research Center for Emerging Infections and Zoonoses Virus-cell interactions of mumps viruses and mammalian cells: Entry, replication and immune evasion THESIS Submitted in partial fulfilment of the requirements for the degree of Doctor of Natural Sciences Doctor rerum naturalium (Dr. rer. nat.) awarded by the University of Veterinary Medicine Hannover by Sarah Isabella Theresa Hüttl (Hannover) Hannover, Germany 2020 Main supervisor: PD Nadine Krüger, PhD Supervision group: PD Nadine Krüger, PhD Prof. Dr. Bernd Lepenies Prof. Dr. Jan Felix Drexler 1st Evaluation: PD Nadine Krüger, PhD Infection Biology Unit German Primate Center - Leibniz Institute for Primate Research, Göttingen Prof. Dr. Bernd Lepenies Institute of Infection Immunology Research Center for Emerging Infections and Zoonoses University of Veterinary Medicine Hannover Prof. Dr. Jan Felix Drexler Institute of Virology Charité - Universitätsmedizin Berlin 2nd Evaluation: PD Dr. Anne Balkema-Buschmann Institute of Novel and Emerging Infectious Diseases (INNT) Friedrich-Loeffler-Institut, Insel Riems Date of submission: 08.09.2020 Date of final exam: 29.10.2020 This project was funded by grants of the German Research Foundation (DFG) to Nadine Krüger (KR 4762/2-1). Parts of this thesis have been communicated or published previously in: Publications: N. Krüger, C. Sauder, S. Hüttl, J. Papies, K. Voigt, G. Herrler, K. Hardes, T. Steinmetzer, C. Örvell, J. F. Drexler, C. Drosten, S. Rubin, M. A. Müller, M. Hoffmann. 2018. Entry, Replication, Immune Evasion, and Neurotoxicity of Synthetically Engineered Bat-Borne Mumps Virus. Cell Rep. 25(2):312-320. S. Hüttl, M. Hoffmann, T. Steinmetzer, C. Sauder, N.
    [Show full text]
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Differential Features of Fusion Activation Within the Paramyxoviridae
    viruses Review Differential Features of Fusion Activation within the Paramyxoviridae Kristopher D. Azarm and Benhur Lee * Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-212-241-2552 Received: 17 December 2019; Accepted: 29 January 2020; Published: 30 January 2020 Abstract: Paramyxovirus (PMV) entry requires the coordinated action of two envelope glycoproteins, the receptor binding protein (RBP) and fusion protein (F). The sequence of events that occurs during the PMV entry process is tightly regulated. This regulation ensures entry will only initiate when the virion is in the vicinity of a target cell membrane. Here, we review recent structural and mechanistic studies to delineate the entry features that are shared and distinct amongst the Paramyxoviridae. In general, we observe overarching distinctions between the protein-using RBPs and the sialic acid- (SA-) using RBPs, including how their stalk domains differentially trigger F. Moreover, through sequence comparisons, we identify greater structural and functional conservation amongst the PMV fusion proteins, as compared to the RBPs. When examining the relative contributions to sequence conservation of the globular head versus stalk domains of the RBP, we observe that, for the protein-using PMVs, the stalk domains exhibit higher conservation and find the opposite trend is true for SA-using PMVs. A better understanding of conserved and distinct features that govern the entry of protein-using versus SA-using PMVs will inform the rational design of broader spectrum therapeutics that impede this process. Keywords: paramyxovirus; viral envelope proteins; type I fusion protein; henipavirus; virus entry; viral transmission; structure; rubulavirus; parainfluenza virus 1.
    [Show full text]
  • A New Bat-Derived Paramyxovirus of the Genus Pararubulavirus
    viruses Article Achimota Pararubulavirus 3: A New Bat-Derived Paramyxovirus of the Genus Pararubulavirus Kate S. Baker 1,2,3,* , Mary Tachedjian 4, Jennifer Barr 4 , Glenn A. Marsh 4 , Shawn Todd 4, Gary Crameri 4, Sandra Crameri 4, Ina Smith 5, Clare E.G. Holmes 4, Richard Suu-Ire 6,7, Andres Fernandez-Loras 2 , Andrew A. Cunningham 2 , James L.N. Wood 1 and Lin-Fa Wang 4,8,* 1 Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK; [email protected] 2 Institute of Zoology, Zoological Society of London, London NW1 4RY, UK; [email protected] (A.F.-L.); [email protected] (A.A.C.) 3 Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK 4 CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Portarlington Road, East Geelong, VIC 3220, Australia; [email protected] (M.T.); [email protected] (J.B.); [email protected] (G.A.M.); [email protected] (S.T.); [email protected] (G.C.); [email protected] (S.C.); [email protected] (C.E.G.H.) 5 CSIRO Health & Biosecurity, Clunies Ross Street, Black Mountain, ACT 2601, Australia; [email protected] 6 Wildlife Division of the Forestry Commission, Accra PO Box M239, Ghana; [email protected] 7 Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra PO Box LG 581, Ghana 8 Programme in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore * Correspondence: [email protected] (K.S.B.); [email protected] (L.-F.W.) Received: 7 September 2020; Accepted: 27 October 2020; Published: 30 October 2020 Abstract: Bats are an important source of viral zoonoses, including paramyxoviruses.
    [Show full text]
  • Genome-Wide Transposon Mutagenesis Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.30.016493; this version posted March 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made Ikegame, Beaty et al. Genomic scaleavailable interrogation under aCC-BY-NC of paramyxoviruses 4.0 International license . 1 Title: 2 Genome-wide transposon mutagenesis of paramyxoviruses reveals constraints on 3 genomic plasticity: implications for vaccine and gene therapy 4 5 Short title: 6 Genomic scale interrogation of paramyxoviruses 7 8 Authors 9 S. Ikegame1†, S. M. Beaty1†, C. Stevens1, S. T. Won1, A. Park1, D. Sachs2, P. Hong1, P. A. Thibault1*, 10 B. Lee1* 11 12 Affiliations 13 1 Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY 14 10029, USA. 15 2 Department of Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai, 16 New York, NY 10029, USA. 17 * Correspondence to: [email protected], [email protected] 18 † These authors contributed equally to this work. 19 Page 1 of 38 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.30.016493; this version posted March 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made Ikegame, Beaty et al. Genomic scaleavailable interrogation under aCC-BY-NC of paramyxoviruses 4.0 International license .
    [Show full text]
  • Novel Mammalian Orthorubulavirus 5 Discovered As Accidental Cell Culture Contaminant
    viruses Communication Novel Mammalian orthorubulavirus 5 Discovered as Accidental Cell Culture Contaminant Brandi J. Feehan 1, Aleksey A. Penin 2, Alexey N. Mukhin 3, Deepak Kumar 1 , Anna S. Moskvina 4, Kizkhalum M. Khametova 3, Anton G. Yuzhakov 3, Maria I. Musienko 4, Alexey D. Zaberezhny 5, Taras I. Aliper 3, Douglas Marthaler 1,* and Konstantin P. Alekseev 3,* 1 Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66053, USA 2 Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow 127051, Russia 3 N. F. Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow 123098, Russia 4 Diagnostic and Prevention Research Institute for Human and Animal Diseases, Moscow 123098, Russia 5 Federal State Budget Scientific Institution “Fedral Scientific Centre VIEV”, Moscow 109428, Russia * Correspondence: [email protected] (D.M.); [email protected] (K.P.A.); Tel.: +1-(785)-532-5709 (D.M.); +7-(910)-483-5704 (K.P.A.); Fax: +1-(785)-532-3502 (D.M.); +7-(499)-193-3001 (K.P.A.) Received: 16 July 2019; Accepted: 22 August 2019; Published: 23 August 2019 Abstract: A distinct Russian Mammalian orthorubulavirus 5 (PIV5) was detected in cell culture exhibiting cytopathic effect and hypothesized to be contaminated by a scientist with respiratory symptoms. The identification of the divergent strain indicated a lack of knowledge on the diversity of PIV5 strains and calls for surveillance of global PIV5 strains. Keywords: Mammalian orthorubulavirus 5; Mammalian rubulavirus 5; Parainfluenza virus 5 1. Introduction Mammalian orthorubulavirus 5 (PIV5), formerly named parainfluenza virus 5, resides within the Paramyxoviridae family [1–3].
    [Show full text]
  • Taxonomy of the Order Mononegavirales: Update 2019
    Archives of Virology (2019) 164:1967–1980 https://doi.org/10.1007/s00705-019-04247-4 VIROLOGY DIVISION NEWS Taxonomy of the order Mononegavirales: update 2019 Gaya K. Amarasinghe1 · María A. Ayllón2,3 · Yīmíng Bào4 · Christopher F. Basler5 · Sina Bavari6 · Kim R. Blasdell7 · Thomas Briese8 · Paul A. Brown9 · Alexander Bukreyev10 · Anne Balkema‑Buschmann11 · Ursula J. Buchholz12 · Camila Chabi‑Jesus13 · Kartik Chandran14 · Chiara Chiapponi15 · Ian Crozier16 · Rik L. de Swart17 · Ralf G. Dietzgen18 · Olga Dolnik19 · Jan F. Drexler20 · Ralf Dürrwald21 · William G. Dundon22 · W. Paul Duprex23 · John M. Dye6 · Andrew J. Easton24 · Anthony R. Fooks25 · Pierre B. H. Formenty26 · Ron A. M. Fouchier17 · Juliana Freitas‑Astúa27 · Anthony Grifths28 · Roger Hewson29 · Masayuki Horie31 · Timothy H. Hyndman32 · Dàohóng Jiāng33 · Elliott W. Kitajima34 · Gary P. Kobinger35 · Hideki Kondō36 · Gael Kurath37 · Ivan V. Kuzmin38 · Robert A. Lamb39,40 · Antonio Lavazza15 · Benhur Lee41 · Davide Lelli15 · Eric M. Leroy42 · Jiànróng Lǐ43 · Piet Maes44 · Shin‑Yi L. Marzano45 · Ana Moreno15 · Elke Mühlberger28 · Sergey V. Netesov46 · Norbert Nowotny47,48 · Are Nylund49 · Arnfnn L. Økland49 · Gustavo Palacios6 · Bernadett Pályi50 · Janusz T. Pawęska51 · Susan L. Payne52 · Alice Prosperi15 · Pedro Luis Ramos‑González13 · Bertus K. Rima53 · Paul Rota54 · Dennis Rubbenstroth55 · Mǎng Shī30 · Peter Simmonds56 · Sophie J. Smither57 · Enrica Sozzi15 · Kirsten Spann58 · Mark D. Stenglein59 · David M. Stone60 · Ayato Takada61 · Robert B. Tesh10 · Keizō Tomonaga62 · Noël Tordo63,64 · Jonathan S. Towner65 · Bernadette van den Hoogen17 · Nikos Vasilakis10 · Victoria Wahl66 · Peter J. Walker67 · Lin‑Fa Wang68 · Anna E. Whitfeld69 · John V. Williams23 · F. Murilo Zerbini70 · Tāo Zhāng4 · Yong‑Zhen Zhang71,72 · Jens H. Kuhn73 Published online: 14 May 2019 © This is a U.S.
    [Show full text]
  • Guía Docente
    FACULTAD DE VETERINARIA Curso 2020/21 GUÍA DOCENTE DENOMINACIÓN DE LA ASIGNATURA Denominación: MICROBIOLOGÍA E INMUNOLOGÍA Código: 101463 Plan de estudios: GRADO DE VETERINARIA Curso: 2 Denominación del módulo al que pertenece: FORMACIÓN BÁSICA COMÚN Materia: MICROBIOLOGÍA E INMUNOLOGÍA Carácter: BASICA Duración: ANUAL Créditos ECTS: 12.0 Horas de trabajo presencial: 120 Porcentaje de presencialidad: 40.0% Horas de trabajo no presencial: 180 Plataforma virtual: Uco-Moodle DATOS DEL PROFESORADO Nombre: GARRIDO JIMENEZ, MARIA ROSARIO (Coordinador) Departamento: SANIDAD ANIMAL Área: SANIDAD ANIMAL Ubicación del despacho: Tercera planta del edificio de Sanidad Animal. Campus Rabanales E-Mail: [email protected] Teléfono: 957218718 Nombre: CANO TERRIZA, DAVID Departamento: SANIDAD ANIMAL Área: SANIDAD ANIMAL Ubicación del despacho: Tercera planta del edificio de Sanidad Animal. Campus Rabanales E-Mail: [email protected] Teléfono: 957218718 Nombre: GÓMEZ GASCÓN, LIDIA Departamento: SANIDAD ANIMAL Área: SANIDAD ANIMAL Ubicación del despacho: Tercera planta del edificio de Sanidad Animal. Campus Rabanales E-Mail: [email protected] Teléfono: 957218718 Nombre: CABALLERO GÓMEZ, JAVIER MANUEL Departamento: SANIDAD ANIMAL Área: SANIDAD ANIMAL Ubicación del despacho: Tercera planta del edificio de Sanidad Animal. Campus Rabanales E-Mail: [email protected] Teléfono: 957218718 REQUISITOS Y RECOMENDACIONES Requisitos previos establecidos en el plan de estudios Ninguno Recomendaciones Ninguna especificada COMPETENCIAS CE23 Estudio de los microorganismos que afectan a los animales y de aquellos que tengan una aplicación industrial, biotecnológica o ecológica. CE24 Bases y aplicaciones técnicas de la respuesta inmune. INFORMACIÓN SOBRE TITULACIONES www.uco.es DE LA UNIVERSIDAD DE CORDOBA facebook.com/universidadcordoba @univcordoba uco.es/grados MICROBIOLOGÍA E INMUNOLOGÍA PÁG. 1 / 14 Curso 2020/21 FACULTAD DE VETERINARIA Curso 2020/21 GUÍA DOCENTE OBJETIVOS Los siguientes objetivos recogen las recomendaciones de la OIE para la formación del veterinario: 1.
    [Show full text]
  • Patogenicidad Microbiana En Medicina Veterinaria Volumen: Virología
    Patogenicidad microbiana en Medicina Veterinaria Volumen: Virología Fabiana A. Moredo, Alejandra E. Larsen, Nestor O. Stanchi (Coordinadores) FACULTAD DE CIENCIAS VETERINARIAS PATOGENICIDAD MICROBIANA EN MEDICINA VETERINARIA VOLUMEN: VIROLOGÍA Fabiana A. Moredo Alejandra E. Larsen Nestor O. Stanchi (Coordinadores) Facultad de Ciencias Veterinarias 1 A nuestras familias 2 Agradecimientos Nuestro agradecimiento a todos los colegas docentes de la Facultad de Ciencias Veterinarias y en especial a la Universidad Nacional de La Plata por darnos esta oportunidad. 3 Índice VOLUMEN 2 Virología Capítulo 1 Características generales de los virus Cecilia M. Galosi, Nadia A. Fuentealba____________________________________________6 Capítulo 2 Arterivirus Germán E. Metz y María M. Abeyá______________________________________________28 Capítulo 3 Herpesvirus Cecilia M. Galosi, María E. Bravi, Mariela R. Scrochi ________________________________37 Capítulo 4 Orthomixovirus Guillermo H. Sguazza y María E. Bravi___________________________________________49 Capítulo 5 Paramixovirus Marco A. Tizzano____________________________________________________________61 Capítulo 6 Parvovirus Nadia A Fuentealba, María S. Serena____________________________________________71 Capítulo 7 Retrovirus Carlos J. Panei, Viviana Cid de la Paz____________________________________________81 Capítulo 8 Rhabdovirus Marcelo R. Pecoraro, Leandro Picotto____________________________________________92 Capítulo 9 Togavirus María G. Echeverría, María Laura Susevich______________________________________104
    [Show full text]
  • 2021 Taxonomic Update of Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-021-05143-6 VIROLOGY DIVISION NEWS 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Bernard R. Agwanda211,212 · Rim Al Kubrusli3 · Sergey V. Alkhovsky (Aльxoвcкий Cepгeй Bлaдимиpoвич)4 · Gaya K. Amarasinghe5 · Tatjana Avšič‑Županc6 · María A. Ayllón7,197 · Justin Bahl8 · Anne Balkema‑Buschmann9 · Matthew J. Ballinger10 · Christopher F. Basler11 · Sina Bavari12 · Martin Beer13 · Nicolas Bejerman14 · Andrew J. Bennett15 · Dennis A. Bente16 · Éric Bergeron17 · Brian H. Bird18 · Carol D. Blair19 · Kim R. Blasdell20 · Dag‑Ragnar Blystad21 · Jamie Bojko22,198 · Wayne B. Borth23 · Steven Bradfute24 · Rachel Breyta25,199 · Thomas Briese26 · Paul A. Brown27 · Judith K. Brown28 · Ursula J. Buchholz29 · Michael J. Buchmeier30 · Alexander Bukreyev31 · Felicity Burt32 · Carmen Büttner3 · Charles H. Calisher33 · Mengji Cao (曹孟籍)34 · Inmaculada Casas35 · Kartik Chandran36 · Rémi N. Charrel37 · Qi Cheng38 · Yuya Chiaki (千秋祐也)39 · Marco Chiapello40 · Il‑Ryong Choi41 · Marina Ciufo40 · J. Christopher S. Clegg42 · Ian Crozier43 · Elena Dal Bó44 · Juan Carlos de la Torre45 · Xavier de Lamballerie37 · Rik L. de Swart46 · Humberto Debat47,200 · Nolwenn M. Dheilly48 · Emiliano Di Cicco49 · Nicholas Di Paola50 · Francesco Di Serio51 · Ralf G. Dietzgen52 · Michele Digiaro53 · Olga Dolnik54 · Michael A. Drebot55 · J. Felix Drexler56 · William G. Dundon57 · W. Paul Duprex58 · Ralf Dürrwald59 · John M. Dye50 · Andrew J. Easton60 · Hideki Ebihara (海老原秀喜)61 · Toufc Elbeaino62 · Koray Ergünay63 · Hugh W. Ferguson213 · Anthony R. Fooks64 · Marco Forgia65 · Pierre B. H. Formenty66 · Jana Fránová67 · Juliana Freitas‑Astúa68 · Jingjing Fu (付晶晶)69 · Stephanie Fürl70 · Selma Gago‑Zachert71 · George Fú Gāo (高福)214 · María Laura García72 · Adolfo García‑Sastre73 · Aura R.
    [Show full text]
  • Article/27/7/20- Using Abyss Version 1.3.9 (27), Iva Version 1.0.8 (28), 3971-App1.Pdf)
    RESEARCH Novel Morbillivirus as Putative Cause of Fetal Death and Encephalitis among Swine Bailey Arruda, Huigang Shen, Ying Zheng, Ganwu Li Morbilliviruses are highly contagious pathogens. The and are thought to interfere with the innate immune Morbillivirus genus includes measles virus, canine dis- response in at least a subset of members of the family temper virus (CDV), phocine distemper virus (PDV), Paramyxoviridae (4). peste des petits ruminants virus, rinderpest virus, and Morbilliviruses cause respiratory and gastroin- feline morbillivirus. We detected a novel porcine mor- testinal disease and profound immune suppression billivirus (PoMV) as a putative cause of fetal death, (5). Morbillivirus host species experience a similar encephalitis, and placentitis among swine by using pathogenesis; infection occurs through inhalation, di- histopathology, metagenomic sequencing, and in situ rect contact with body fl uids, or fomites or vertical hybridization. Phylogenetic analyses showed PoMV is transmission (6–8). Carnivore morbilliviruses readily most closely related to CDV (62.9% nt identities) and invade the central nervous system (CNS), and all mor- PDV (62.8% nt identities). We observed intranuclear billiviruses produce intranuclear viral inclusion bod- inclusions in neurons and glial cells of swine fetuses 1 9 10 with encephalitis. Cellular tropism is similar to other ies containing nucleocapsid-like structures ( , , ). morbilliviruses, and PoMV viral RNA was detected in Paramyxoviruses known to naturally infect neurons, respiratory
    [Show full text]
  • Evolutionary History of Cotranscriptional Editing in the Paramyxoviral Phosphoprotein Gene
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.30.321489; this version posted September 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Manuscript has not been peer-reviewed Evolutionary history of cotranscriptional editing in the paramyxoviral phosphoprotein gene Jordan Douglas1;2;∗, Alexei J. Drummond1;2;3, and Richard L. Kingston3 1 Centre for Computational Evolution, University of Auckland, Auckland 1010, New Zealand 2 School of Computer Science, University of Auckland, Auckland 1010, New Zealand 3 School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand ∗ Correspondence: [email protected] Abstract The phosphoprotein gene of the paramyxoviruses encodes multiple protein products. The P, V, and W proteins are generated by transcriptional slippage. This process results in the insertion of non-templated guanosine nucleosides into the mRNA at a conserved edit site. The P protein is an essential component of the viral RNA polymerase, and is encoded by a direct copy of the gene in the majority of paramyxoviruses. However, in some cases the non-essential V protein is encoded by default and guanosines must be inserted into the mRNA in order to encode P. The number of guanosines inserted can be described by a probability distribution which varies between viruses. In this article we review the nature of these distributions, which can be inferred from mRNA sequencing data, and reconstruct the evolutionary history of cotranscriptional editing in the paramyxovirus family.
    [Show full text]