bioRxiv preprint doi: https://doi.org/10.1101/2020.12.31.424967; this version posted January 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Pyruvate oxidase as a key determinant of pneumococcal viability during transcytosis 2 across the blood-brain barrier endothelium. 3 4 AUTHORS 5 Anjali Anil1, Akhila Parthasarathy1, Shilpa Madhavan1, Kwang Sik Kim2, Anirban Banerjee1* 6 7 AFFILIATIONS 8 1Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 9 Powai, Mumbai-400076, Maharashtra, INDIA. 10 2Division of Pediatric Infectious Diseases, School of Medicine, Johns Hopkins University, 11 Baltimore, MD, United States of America. 12 13 *CORRESPONDING AUTHOR: 14 Anirban Banerjee; E-mail:
[email protected], Phone: +91-22-25767794 15 16 KEYWORDS: Streptococcus pneumoniae, blood-brain barrier, transcytosis, endocytic 17 pathway, acid tolerance response, two component system, pyruvate oxidase. 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.31.424967; this version posted January 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 ABSTRACT 20 Streptococcus pneumoniae (SPN / pneumococcus), invades myriad of host tissues following 21 efficient breaching of cellular barriers. However, strategies adopted by pneumococcus for 22 evasion of host intracellular defences governing successful transcytosis across host cellular 23 barriers remain elusive. In this study, using brain endothelium as a model host barrier, we 24 observed that pneumococcus containing endocytic vacuoles (PCVs) formed following SPN 25 internalization into brain microvascular endothelial cells (BMECs), undergo early maturation 26 and acidification, with a major subset acquiring lysosome-like characteristics.