Optimizing Topramezone and Other Herbicide Programs for Weed Control in Bermudagrass and Creeping Bentgrass Turf
Total Page:16
File Type:pdf, Size:1020Kb
Optimizing Topramezone and Other Herbicide Programs for Weed Control in Bermudagrass and Creeping Bentgrass Turf John Richard Brewer Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant Pathology, Physiology and Weed Science Shawn D. Askew Jim Westwood David Haak J. Michael Goatley March 4, 2021 Blacksburg, VA Keywords: bermudagrass, Cynodon dactylon (L.) Pers.; creeping bentgrass, Agrostis stolonifera L.; digital image analysis; goosegrass, Eleusine indica (L.) Gaertn.; metribuzin; siduron; smooth crabgrass, Digitaria ischaemum (Schreb.) Schreb. ex Muhl.; topramezone; 14C-topramezone Optimizing Topramezone and Other Herbicide Programs for Weed Control in Bermudagrass and Creeping Bentgrass Turf John Richard Brewer Academic Abstract Goosegrass [Eleusine indica (L.) Gaertn.] and smooth crabgrass [Digitaria ischaemum (Schreb.) Schreb. ex Muhl.] are problematic weeds in bermudagrass and creeping bentgrass turf. Increased incidences of herbicide resistant weed populations and severe use restrictions on formerly available herbicides have increased need for selective, postemergence control options for these weeds in creeping bentgrass and bermudagrass turf. This weed management exigency has led turf managers to utilize less effective, more expensive, and more injurious options to manage goosegrass and smooth crabgrass. Although potentially injurious, topramezone can control these weeds, especially goosegrass, at low doses. Low-dose topramezone may also improve bermudagrass and creeping bentgrass response. An initial investigation of three 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibiting herbicides in different turf types showed that Kentucky bluegrass, perennial ryegrass, and tall fescue were highly tolerant to topramezone, while creeping bentgrass and bermudagrass could tolerate topramezone doses that may control grassy weeds. Further investigation suggested that frequent, low-dose topramezone applications or metribuzin admixtures could enhance weed control and may conserve turfgrass quality. A novel mixture of topramezone at 3.7 g ae ha-1 and metribuzin at 210 g ai ha-1 controlled goosegrass effectively and reduced bermudagrass foliar bleaching associated with topramezone 10-fold compared to higher doses of topramezone alone in 19 field and 2 greenhouse trials. In an attempt to further enhance bermudagrass tolerance to topramezone, post-treatment irrigation was applied at various timings. When bermudagrass turf was irrigated with 0.25-cm water at 15 or 30 minutes after herbicide treatment, bermudagrass injury was reduced to acceptable levels when following low-dose topramezone plus metribuzin but not when following high-dose topramezone alone. Goosegrass control was reduced significantly by post-treatment irrigation in all cases, while irrigation reduced goosegrass control by low-dose topramezone plus metribuzin to below-commercially-acceptable levels. Novel, low-dose, frequent application programs containing topramezone or siduron were developed for season-long crabgrass or goosegrass control on creeping bentgrass greens. Greens-height creeping bentgrass quality was preserved following five biweekly treatments of siduron at rates between 3,400 to 13,500 g ai ha-1 and topramezone at 3.1 g ha-1. Siduron programs controlled smooth crabgrass and suppressed goosegrass while topramezone programs controlled goosegrass and suppressed smooth crabgrass. In laboratory and controlled-environment experiments, goosegrass absorbed three times more 14C than bermudagrass within 48 hours of 14C-topramezone treatment. Bermudagrass also metabolized topramezone twice as fast as goosegrass. Metribuzin admixture reduced absorption by 25% in both species. When herbicides were placed exclusively on soil, foliage, or soil plus foliage, topramezone controlled goosegrass only when applied to foliage and phytotoxicity of both bermudagrass and goosegrass was greater from topramezone than from metribuzin. Metribuzin was shown to reduce 21-d cumulative clipping weight and tiller production of both species while topramezone caused foliar discoloration to newly emerging leaves and shoots with only marginal clipping weight reduction. These data suggest that selectivity between bermudagrass and goosegrass is largely due to differential absorption and metabolism that reduces bermudagrass exposure to topramezone. Post-treatment irrigation likely reduces topramezone rate load with a concomitant effect on plant phytotoxicity of both species. Metribuzin admixture decreases white discoloration of bermudagrass by decreased topramezone absorption rate and eliminating new foliar growth that is more susceptible to discoloration by topramezone. Optimizing Topramezone and Other Herbicide Programs for Weed Control in Bermudagrass and Creeping Bentgrass Turf John Richard Brewer General Audience Abstract Goosegrass and smooth crabgrass are problematic weeds in bermudagrass and creeping bentgrass turf. Increased incidences of herbicide resistant weed populations and severe use restrictions on formerly available herbicides have increased need for selective, postemergence control options for these weeds in creeping bentgrass and bermudagrass turf. Although potentially injurious, topramezone (Pylex™) can control these weeds, especially goosegrass, at low doses. Low-dose Pylex™ may also improve bermudagrass and creeping bentgrass response. An initial investigation evaluating tembotrione (Laudis®), Pylex™, and mesotrione (Tenacity®) in different turfgrass species showed that Kentucky bluegrass, perennial ryegrass, and tall fescue were highly tolerant to Pylex™ at rates ranging from 0.75 to 2.25 fl. oz./A, while creeping bentgrass and bermudagrass were low to moderately tolerant to Pylex™. Further investigation suggested that frequent, low-dose (less than 0.25 fl. oz./A) Pylex™ applications or metribuzin (Sencor®) admixtures could enhance weed control and may conserve turfgrass quality. A novel mixture of Pylex™ at 0.15 fl. oz./A and Sencor® at 4 oz. wt./A controlled goosegrass effectively and reduced bermudagrass injury to near acceptable levels and significantly less than Pylex™ applied alone at 0.25 fl. oz/A. In an attempt to further enhance bermudagrass tolerance to Pylex™, post-treatment irrigation was applied at different timings. When bermudagrass turf was irrigated at 15 or 30 minutes after herbicide treatment, bermudagrass injury was reduced to acceptable levels when following Pylex™ at 0.25 fl. oz./A plus Sencor® at 4 oz but not when following Pylex™ applied alone at 0.5 fl. oz./A. Goosegrass control was reduced significantly by post-treatment irrigation in all cases, while irrigation reduced goosegrass control by low-dose Pylex™ plus Sencor® to below-commercially- acceptable levels. Novel, low-dose, frequent application programs containing Pylex™ or siduron (Tupersan®) were developed for season-long crabgrass or goosegrass control in creeping bentgrass greens. Greens-height creeping bentgrass quality was preserved following five biweekly treatments of Tupersan® at rates between 6 and 24 lb./A and Pylex™ at 0.125 fl. oz./A. Tupersan® programs controlled smooth crabgrass and suppressed goosegrass while Pylex™ programs controlled goosegrass and suppressed smooth crabgrass. The data from these studies indicate that utilizing low-dose Pylex™ in combination with Sencor® can impart acceptable bermudagrass safety while also controlling goosegrass effectively. For creeping bentgrass greens, the low-dose, frequent application of Tupersan® is the safest legal option for golf course superintendents to control smooth crabgrass effectively, while having some ability to suppress goosegrass. I dedicate this dissertation to all of my family and friends who have supported me during my years at graduate school, especially my parents, Richie and Nina, and my sister Kaylea and brother-in-law Tyler, for their constant unwavering love and support. v ACKNOWLEDGEMENTS I am truly thankful for all the people who have supported and encouraged me during my undergraduate and graduate career. They gave me the motivation to never stop driving forward and to always strive for excellence in all aspects of my life. I would first like to thank my major advisor, Dr. Shawn Askew, for giving me this opportunity to pursue and successfully complete my Ph.D. at Virginia Tech. His continuous guidance, support, and instruction, has made me a better scientist, leader, and person. He has been a great mentor and friend, who has given me the tools I need to be successful in my future career. I would also like to thank Drs. Mike Goatley, David Haak, and Jim Westwood for being an outstanding committee that constantly tested me, stretched my thinking capabilities, and helped me build a solid foundation of knowledge and skills to become an effective researcher. I will forever be grateful for the time, patience, and understanding you all gave me during my graduate career. I also owe a big thank you to the Glade Road Crew and the Virginia Tech Turf Team for becoming a second family and giving me plenty of support whenever it was needed. Next, I would like to thank Drs. David McCall, Jacob Barney, and Michael Flessner for becoming great friends and colleagues as well as helping to diversify my thinking across so many topics. Thanks to all the graduate students I came in contact with during my time at Glade Road. I truly appreciate the constant friendship and comradery we built through