Paspalum Vaginatum) Turf

Total Page:16

File Type:pdf, Size:1020Kb

Paspalum Vaginatum) Turf BERMUDAGRASS (CYNODON DACTYLON) AND GOOSEGRASS (ELEUSINE INDICA) MANAGEMENT IN SEASHORE PASPALUM (PASPALUM VAGINATUM) TURF A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN TROPICAL PLANT AND SOIL SCIENCES MAY 2018 By Alex J. Lindsey Thesis Committee: Joseph DeFrank, Chairperson Orville Baldos Zhiqiang Cheng ACKNOWLEDGEMENTS I would like to thank Dr. Zhiqiang Cheng and Dr. Joseph DeFrank for providing funding for my thesis through CTAHR’s competitive Supplemental Funding Program. I would like to thank my advisor, Dr. Joseph DeFrank, for his continual support and guidance throughout the completion of my thesis. I appreciate the skills and knowledge he has taught me that will help me with my future endeavors. I would like to express my gratitude and appreciation to my committee members, Dr. Zhiqiang Cheng (co-advisor) and Dr. Orville Baldos, who were always there to help and provide valuable inputs throughout this process. I would also like to thank Craig Okazaki, Magoon Research Station supervisor, for providing research material and assisting as a graduate student and Rey Ito, The Green Doctor, for providing knowledge and valuable inputs for my thesis research. Thanks to Sean Fong, Hawaiian Turfgrass, for providing research materials; the Pali Golf Course, the Hoakalei Country Club, and the West Loch Golf Course for your cooperation and providing space for field trials; and to BASF, Bayer, and Syngenta for providing the herbicides used in this study. Lastly, I would like to thank my friends and family for all their love and support throughout this process. ii Table of Contents ACKNOWLEDGEMENTS ................................................................................................................ ii LIST OF TABLES .............................................................................................................................. vi LIST OF FIGURES ..........................................................................................................................viii Chapter 1. Introduction and literature review ..................................................................................... 10 Introduction .................................................................................................................................... 10 Literature Review .......................................................................................................................... 11 Tables .............................................................................................................................................. 17 Literature Cited ............................................................................................................................. 19 Chapter 2. Bermudagrass (Cynodon spp.) and goosegrass (Eleusine indica) management in seashore paspalum (Paspalum vaginatum) turf .................................................................................................. 22 Abstract ........................................................................................................................................... 22 Introduction .................................................................................................................................... 23 Materials and Methods .................................................................................................................. 25 Experiment 1. Seashore paspalum and goosegrass response to mesotrione, metribuzin, and topramezone single product and tank mixes at Pali Golf Course. ............................................... 25 Experiment 2. Seashore paspalum and bermudagrass response to ethofumesate in combination with metribuzin, mesotrione, and topramezone at Hoakalei Country Club. ................................ 25 Experiment 3. Seashore paspalum, bermudagrass, and goosegrass response to tank mixes and split applications of ethofumesate, metribuzin, mesotrione, and topramezone at West Loch Golf Course. ......................................................................................................................................... 26 Experiment 4. Seashore paspalum response to mesotrione, and topramezone alone and in tank mix with ethofumesate and metribuzin at Hoakalei Country Club. ............................................. 27 Experiment 5. Container grown seashore paspalum and bermudagrass response to ethofumesate, metribuzin, mesotrione, and topramezone alone and in tank mixes at Magoon Research Station. ...................................................................................................................................................... 28 Experiment 6. Seashore paspalum, bermudagrass, and goosegrass response to sequential tank mixes of ethofumesate, metribuzin, mesotrione, and topramezone followed by multiple applications of oxadiazon alone and in prepackaged mixture with bensulide at West Loch Golf Course. ......................................................................................................................................... 29 Results ............................................................................................................................................. 30 Experiment 1. Seashore paspalum and goosegrass response to mesotrione, metribuzin, and topramezone single product and tank mixes at Pali Golf Course. ............................................... 30 iii Seashore paspalum green color ratings .................................................................................... 30 Goosegrass green color ratings ................................................................................................ 30 Experiment 2. Seashore paspalum and bermudagrass response to ethofumesate in combination with metribuzin, mesotrione, and topramezone at Hoakalei Country Club. ................................ 31 Seashore paspalum green color ratings .................................................................................... 31 Bermudagrass green color ratings ............................................................................................ 31 Experiment 3. Seashore paspalum, bermudagrass, and goosegrass response to tank mixes and split applications of ethofumesate, metribuzin, mesotrione, and topramezone at West Loch Golf Course. ......................................................................................................................................... 32 Seashore paspalum green color ratings .................................................................................... 32 Bermudagrass green color ratings ............................................................................................ 33 Goosegrass green color ratings ................................................................................................ 33 Goosegrass counts .................................................................................................................... 34 Experiment 4. Seashore paspalum response to mesotrione, and topramezone alone and in tank mix with ethofumesate and metribuzin at Hoakalei Country Club. ............................................. 34 Experiment 5. Container grown seashore paspalum and bermudagrass response to ethofumesate, metribuzin, mesotrione, and topramezone alone and in tank mixes at Magoon Research Station. ...................................................................................................................................................... 34 Green color ratings ................................................................................................................... 34 Dry weights of clippings .......................................................................................................... 36 Shoot and root dry weights ...................................................................................................... 36 Experiment 6. Seashore paspalum, bermudagrass, and goosegrass response to sequential tank mixes of ethofumesate, metribuzin, mesotrione, and topramezone followed by multiple applications of oxadiazon alone and in prepackaged mixture with bensulide at West Loch Golf Course. ......................................................................................................................................... 37 Seashore paspalum green color ratings .................................................................................... 37 Bermudagrass green color ratings ............................................................................................ 37 Goosegrass green color ratings ................................................................................................ 38 Seashore paspalum percent cover ............................................................................................ 38 Goosegrass percent change in counts....................................................................................... 39 Discussion ........................................................................................................................................ 39 Experiment 1. Seashore paspalum and goosegrass response to mesotrione, metribuzin, and topramezone single product and tank mixes at Pali Golf Course. ............................................... 39 iv Experiment 2. Seashore paspalum and bermudagrass response to ethofumesate in combination with metribuzin,
Recommended publications
  • Density, Distribution and Habitat Requirements for the Ozark Pocket Gopher (Geomys Bursarius Ozarkensis)
    DENSITY, DISTRIBUTION AND HABITAT REQUIREMENTS FOR THE OZARK POCKET GOPHER (Geomys bursarius ozarkensis) Audrey Allbach Kershen, B. S. Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS May 2004 APPROVED: Kenneth L. Dickson, Co-Major Professor Douglas A. Elrod, Co-Major Professor Thomas L. Beitinger, Committee Member Sandra L. Terrell, Interim Dean of the Robert B. Toulouse School of Graduate Studies Kershen, Audrey Allbach, Density, distribution and habitat requirements for the Ozark pocket gopher (Geomys bursarius ozarkensis). Master of Science (Environmental Science), May 2004, 67 pp., 6 tables, 6 figures, 69 references. A new subspecies of the plains pocket gopher (Geomys bursarius ozarkensis), located in the Ozark Mountains of north central Arkansas, was recently described by Elrod et al. (2000). Current range for G. b. ozarkensis was established, habitat preference was assessed by analyzing soil samples, vegetation and distance to stream and potential pocket gopher habitat within the current range was identified. A census technique was used to estimate a total density of 3, 564 pocket gophers. Through automobile and aerial survey 51 known fields of inhabitance were located extending the range slightly. Soil analyses indicated loamy sand as the most common texture with a slightly acidic pH and a broad range of values for other measured soil parameters and 21 families of vegetation were identified. All inhabited fields were located within an average of 107.2m from waterways and over 1,600 hectares of possible suitable habitat was identified. ACKNOWLEDGMENTS Appreciation is extended to the members of my committee, Dr. Kenneth Dickson, Dr. Douglas Elrod and Dr.
    [Show full text]
  • Four New Species of Paspalum (Poaceae, Paniceae) from Central Brazil, and Resurrection of an Old One
    Systematic Botany (2008), 33(2): pp. 267–276 © Copyright 2008 by the American Society of Plant Taxonomists Four New Species of Paspalum (Poaceae, Paniceae) from Central Brazil, and Resurrection of an Old One Gabriel H. Rua,1,4 José F. M. Valls,1 Dalva Graciano-Ribeiro,2 and Regina C. Oliveira3 1EMBRAPA Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Final W-5 Norte, Caixa Postal 02372, CEP 70770-900 Brasília, DF, Brazil 2Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Botânica, Campus Universitário, Asa Norte, Caixa-Postal 04457, 70910-900 Brasília, DF, Brazil 3Herbário Dárdano de Andrade Lima, Universidade Federal Rural do Semi-Árido, Caixa Postal 137, CEP 59600-970, Mossoró, RN, Brazil 4Author for correspondence, present address: Cátedra de Botánica Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE Buenos Aires, Argentina ([email protected]) Communicating Editor: Gregory M. Plunkett Abstract—Four new Brazilian species from the genus Paspalum are described and illustrated: P. phaeotrichum, P. vexillarium, P. veredense, and P. clipeum. Paspalum phaeotrichum is an annual with no obvious affinity to any known species of Paspalum, although it shares several characters with species of both P. subg. Ceresia and the ’Bertoniana’ group. Paspalum vexillarium is presumably related to P. ceresia, with which it has been confused. Paspalum veredense shows affinities with both P. ellipticum and P. erianthoides. Paspalum clipeum is probably related to annual species of the ’Plicatula’ group, although it lacks the dark brown upper florets typical of that group. Moreover, P. spissum, a species currently considered as a synonym under P.
    [Show full text]
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2016
    Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate.
    [Show full text]
  • Response of Paspalum Vaginatum Turfgrass Grown Under Shade Conditions to Paclobutrazol and Trinexapac-Ethyl As Plant Growth Retardants (Pgrs)
    Journal of Horticultural Science & Ornamental Plants 4 (2): 134-147, 2012 ISSN 2079-2158 © IDOSI Publications, 2012 Response of Paspalum vaginatum Turfgrass Grown under Shade Conditions to Paclobutrazol and Trinexapac-Ethyl as Plant Growth Retardants (PGRs) M.M.M. Hussein, H.A. Mansour and H.A. Ashour Department of Ornamental Horticulture, Faculty of Agriculture, Cairo University, Giza, Egypt Abstract: This study was conducted at the Experimental Nursery of the Ornamental Horticulture Department, Faculty of Agriculture, Cairo University during the two successive seasons of 2009/2010 and 2010/2011. This work aimed to investigate the response of paspalum (Paspalum vaginatum, Swartz cv. Salam) grown under different shade levels to foliar application of different concentrations of paclobutrazol and trinexapac-ethyl (TE). The turfgrass was covered with shade cloth of different light permeability levels providing shading levels of 42%, 63% and 70% of natural light. In addition, full sunlight (unshade) was used as a control. Plants grown under different shade levels treatments were sprayed monthly with either paclobutrazol (at 750 or 1500 ppm) or TE (at 200 or 400 ppm). Control plants were sprayed with tap water.It can be concluded that Paspalum vaginatum plants can be grown under shade level up to 42% with no significant reduction in growth. However, if shade level exceeds 42% (up to 70%) paclobutrazol at 1500 ppm or TE at 400 ppm can be used monthly as a foliar application to overcome the adverse effects of shade. Key words: Paspalum vaginatum Shade level Trinexapac-ethyl (TE) Paclobutrazol INTRODUCTION biosynthesis pathway [7]. Pessarakli [8] stated that TE application increases leaf tissue levels of the cytokinin Seashore paspalum (Paspalum vaginatum, Swartz) is zeatin riboside.
    [Show full text]
  • Sour Paspalum
    Sour Paspalum - Tropical Weed or Forage? ALAN A. BEETLE Bissinda (Gabon), bitter grass (Philippines), camalote de antena (Mexico), canamazo (Cuba), cafiamazo hembro (Cuba), Highlight: Where carpetgraSs (Axonopus compressus) will cafiamazo amargo (Cuba), capim amargoso (Brazil), capim grow, sour paspalum (Paspalum conjugatum) has no place and marreca (Brazil), capim papuao (Brazil), carabao grass (Phil- is probably a sign of poor management. However, in areas of ippines), cintillo (Peru), co dang (Indochina), calapi (Philip- poor or sour soils, in shade and in times of drought, sour pas- pines), djuba-gov6 (Gabon), &inga (Gabon), gamalote (Costa palum comes into its own throughout the tropics as a valuable Rica), ge’singa (Gabon), gisinga (Gabon), grama de antena component of the total forage resource. Paspalum is a rather large genus “numbering nearly 400” species (Chase, 1929). Sour paspalum (Paspalum conjugatum) stands by itself in this genus as suggested by Chase (1929) who created for it, alone, the Section Conjugata (Fig. 1). Its most unusual character is the vigorously stoloniferous habit allowing, at times, for a rapidly formed perennial ground cover. Sour paspalum has been assumed to be native where it occurs in the Americas, from Florida to Texas and southward to Peru, Bolivia, and northern Argentina, from sea level to 4,000 ft elevation. The grass was first described from a specimen collected in Surinam (Dutch Guiana). Sour paspalum has been assumed, however, to be intro- duced wherever it occurs in the Old World tropics (Fig. 2) and Pacific Islands. The early trade routes were between Australia, Singapore, and Africa. Probably both carpetgrass (Axonopus compressus) and sour paspalum, being of similar distribution and ecology, were spread at the same time to the same places.
    [Show full text]
  • The Diep River Catchment Management
    BACKGROUND 1 BACKGROUND This information will contribute towards the initial development of a 1.1 INTRODUCTION management plan for the water resources in the Diep River Catchment. The Diep River drains into Table Bay, north of Cape Town (Figure 1). The This study will later on be followed by the “Reserve” determination that will Diep River has been subject to deterioration in water quality over decades be considered as part of the second phase of the project. due to bad farming practices and other landuses. Landuse in the upper catchment is predominantly agriculture, while in the lower catchment it is 1.2 APPROACH TO WATER RESOURCE MANAGEMENT largely residential (formal and informal settlements) and industrial. The National Water Act (Act No 36 of 1998), hereafter referred to as “the Act”, states that “National Government, acting through the Minister, is This study originated as a result of a request from the Western Cape responsible for the achievement of fundamental principles in accordance Region of the Department of Water Affairs and Forestry (DWAF) in 1997 to with the Constitutional mandate for water reform.” The fundamental the Institute for Water Quality Studies (IWQS), to conduct a situation principles are sustainability and equity in the protection, use development, assessment of the Diep River catchment. The main objective of this study conservation, management, and control of water resources. was to provide a situational assessment of the water quality, quantity, and the aquatic ecosystem health for the surface, ground, and coastal waters Uniform Effluent Standards were used up to the late 1980’s in an attempt of the Diep River catchment.
    [Show full text]
  • (CYNODON DACTYLON) Jodie S. Holt* Bermudagrass
    PHENOLOGY, BIOLOGY, AND COMPETITION OF BERMUDAGRASS (CYNODON DACTYLON) Jodie S. Holt* Introduction Bermudagrass, Cynodon dactylon, is one of the most serious weeds of the Poaceae, or grass family ( 4) . Among the many species of Cynodon that are called bermudagrass, ~ dactylon is recognized as the most ubiquitous, cosmopolitan, and weedy (3). Although the earliest introduction of bermudagrass into the United States was for pasture and forage use in the southeast, since that time farmers have also considered it a troublesome and invasive weed. The dual nature of bermudagrass as a weed and a crop is well recognized in California, where it is planted in lawns, pastures, and playing fields yet is also widely found as a weed in agrono~ic and vegetable crops, orchards, vineyards, roadsides, and landscapes (2). Around the world, bermudagrass is recognized as a weed in at least 80 countries in 40 different crops ( 4) . Interestingly, research and breeding programs to improve bermudagrass as a pasture and turfgrass may have also contributed to the weediness of this species where it escapes cultivation (4). Bermudagrass Growth, Development, and Reproduction The invasive and weedy nature of bermudagrass may be attributed largely to its perennial life cycle with prolific vegetative reproduction, the primary means of spread (13). Seed production also occurs in some varieties and cultivars and is an additional means of spread (3, 4). As a seedling, bermudagrass and other perennial weeds are functionally annuals in that no underground perennating or storage structures are initially present (13). Thus, the seedling stage of perennial weeds is the easiest to control. As the bermudagrass plant matures, however, production of stolons, or creeping horizontal surface stems, and rhizomes, or underground stems, becomes prolific (6, 7, 13).
    [Show full text]
  • Poaceae: Panicoideae: Paniceae) Silvia S
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 41 2007 Phylogenetic Relationships of the Decumbentes Group of Paspalum, Thrasya, and Thrasyopsis (Poaceae: Panicoideae: Paniceae) Silvia S. Denham Instituto de Botánica Darwinion, San Isidro, Argentina Fernando O. Zuloaga Instituto de Botánica Darwinion, San Isidro, Argentina Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Denham, Silvia S. and Zuloaga, Fernando O. (2007) "Phylogenetic Relationships of the Decumbentes Group of Paspalum, Thrasya, and Thrasyopsis (Poaceae: Panicoideae: Paniceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 41. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/41 Aliso 23, pp. 545–562 ᭧ 2007, Rancho Santa Ana Botanic Garden PHYLOGENETIC RELATIONSHIPS OF THE DECUMBENTES GROUP OF PASPALUM, THRASYA, AND THRASYOPSIS (POACEAE: PANICOIDEAE: PANICEAE) SILVIA S. DENHAM1 AND FERNANDO O. ZULOAGA Instituto de Bota´nica Darwinion, Labarde´n 200, Casilla de Correo 22, San Isidro, Buenos Aires B1642HYD, Argentina 1Corresponding author ([email protected]) ABSTRACT Paspalum (Poaceae: Panicoideae: Paniceae) includes 330 species distributed mainly in tropical and subtropical regions of America. Due to the large number of species and convergence in many char- acters, an adequate infrageneric classification is still needed. Studies on Paniceae based on molecular and morphological data have suggested that Paspalum is paraphyletic, including the genus Thrasya, but none of these analyses have included a representative sample of these two genera. In this study, phylogenetic relationships among the informal group Decumbentes of Paspalum, plus subgenera and other informal groups, and the genera Thrasya and Thrasyopsis were estimated.
    [Show full text]
  • Nutraceuticals from Grass, Sehima Nervosum  Water Deficit Management in Potato 2 Sehima Nervosum
    Volume 18 No. 2 April-June 2012 Promising Technologies Nutraceuticals from grass, 1 Nutraceuticals from grass, Sehima nervosum Water deficit management in potato 2 Sehima nervosum New Initiatives Plant biomass, particularly the lignocellulosic material, is DNA barcoding for identification 3 the major renewable carbon reservoir that offers of insects sustainable generation of products for multiple industrial On-line Leave Management System 4 utilities and also for non-food consumer products such as fuel, chemicals and polymeric materials. Natural Resource Management Crop Health Index for monitoring 5 Sehima nervosum is one of the natural grasses; is known as crop growth and precision farming Saen grass in India, white grass in Australia; and has also been First genome sequencing from India of 7 reported from the Central East Africa and Sudan. Mesorhizobium ciceri Ca181 ICAR scientists decoded Tomato 8 As this natural grass is found inherently rich in precursors for Genome in partnership with several industrially important biomolecules, fractionation of International Consortium these precursors seems to be a promising endeavour. Profile Production of nutraceuticals (prebiotic xylo-oligosaccharides) Central Soil and Water Conservation 9 Research and Training Institute, from the lignocellulosic biomass of the grass is promising, as Dehradun this grass does not compete with food crops, and is comparatively less expensive than conventional agricultural Spectrum food-stocks. New wheat HD 3043 released 14 Seed production of summer squash in 14 An attempt was made to maximize yield of xylan from north Indian plains lignocellulosic biomass of this natural grass, followed by Magneto-priming for reclaiming aged 15 enzymatic production of xylo-oligosaccharides (XOS).
    [Show full text]
  • ORIGIN, BIOGEOGRAPHICAL MIGRATIONS and DIVERSIFICATIONS of TURFGRASSES James B Beard1
    Research Report | SR132 ORIGIN, BIOGEOGRAPHICAL MIGRATIONS AND DIVERSIFICATIONS OF TURFGRASSES James B Beard1 Executive Summary Whether a turfgrass species is characterized as Primitive ancestral grasses are now proposed native or naturalized to North America has been to have appeared during the Late Cretaceous based on world-wide simplistic observations between 65 and 96 mya (million years ago) in focused on where the greatest genetic diversity Gondwanan Africa. The ancestral Pooideae are occurred, termed center-of-origin. Research infor- estimated to have migrated to the steppes of mation as to dating and locations of subsequent Laurasian Eurasia during the Eocene ~ 38 to migration and diversification has been minimal 47 mya. Taxonomic divergence of the base C3 due to a lack of needed research technologies. Pooideae group appears to have been initiated in Intercontinental migration of grasses has been Europe ~ 26 to 33.5 mya. The base C4 Pooideae assumed to have been unlikely due to oceanic apparently arose in Africa ~ 30 to 33 mya, followed separation. Recent development of paleobotanical by migration to West Gondwana South America studies using ultrastructural electron microscopic and to East Gondwana India and Australia. techniques and stable carbon isotope dating instrumentation and research procedures, plus Diversification led to the emergence of an ancient molecular phylogenetic research and cladistic Poeae group known as the fine-leaf fescues biogeographic analysis of large data sets are (Festuca) in central-Europe during the mid- clarifying our understanding of migration patterns Miocene ~ 13 mya. Subsequent migration occurred and dating of multiple secondary centers-of-origin via the mountains of central and eastern Asia, for grasses.
    [Show full text]
  • Assessment of Bermudagrass (Cynodon Dactylon) Biotypes and Bermudagrass Interference with Sugarcane (Saccharum Spp
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2014 Assessment of bermudagrass (Cynodon dactylon) biotypes and bermudagrass interference with sugarcane (Saccharum spp. hybrids Dexter Paul Fontenot Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Fontenot, Dexter Paul, "Assessment of bermudagrass (Cynodon dactylon) biotypes and bermudagrass interference with sugarcane (Saccharum spp. hybrids" (2014). LSU Doctoral Dissertations. 2500. https://digitalcommons.lsu.edu/gradschool_dissertations/2500 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ASSESSMENT OF BERMUDAGRASS (CYNODON DACTYLON) BIOTYPES AND BERMUDAGRASS INTERFERENCE WITH SUGARCANE (SACCHARUM SPP. HYBRIDS) A Dissertation Submitted to the Graduate Faculty of The Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctorate of Philosophy in The School of Plant, Environmental and Soil Sciences by Dexter P. Fontenot B.S. Louisiana State University, 2003 M.S. Louisiana State University, 2007 May 2014 ACKNOWLEDGMENTS First, I would like to thank my family and friends for the support and encouragement throughout my studies. Most importantly, I want to thank my wife for her time and inspiration. She along with my son, Jacob, has been the motivation that helped me reach these goals. To my parents, J.D. and Dianna Fontenot, thank you for the encouragement and interest that you have shown throughout my studies.
    [Show full text]
  • Cynodon Dactylon (L.) Pers
    A WEED REPORT from the book Weed Control in Natural Areas in the Western United States This WEED REPORT does not constitute a formal recommendation. When using herbicides always read the label, and when in doubt consult your farm advisor or county agent. This WEED REPORT is an excerpt from the book Weed Control in Natural Areas in the Western United States and is available wholesale through the UC Weed Research & Information Center (wric.ucdavis.edu) or retail through the Western Society of Weed Science (wsweedscience.org) or the California Invasive Species Council (cal-ipc.org). Cynodon dactylon (L.) Pers. Bermudagrass Family: Poaceae Range: Most western states, except Wyoming, North and South Dakota. Habitat: Disturbed sites, gardens, agronomic crops, orchards, turf, landscaped and forestry areas, on most soil types. Typically in areas that are irrigated or receive some warm-season moisture. Tolerates acidic, alkaline, or saline conditions or limited flooding. Aboveground growth does not tolerate freezing temperatures (below -1°C). Optimum growth occurs when daytime temperatures are 35 to 38°C. Grows poorly in shaded conditions. Origin: Native to Africa. Impact: Because of its vigorous creeping habit bermudagrass is a noxious weed in many areas where some moisture is available in the warm season. In wildland areas, it is particularly a problem in riparian sites. Western states listed as Noxious Weed: California, Utah California Invasive Plant Council (Cal-IPC) Inventory: Moderate Invasiveness Bermudagrass is a warm-climate perennial with an extensive system of creeping rhizomes and stolons. Although it typically grows prostrate to the soil, it can grow to 1.5 ft tall, particularly under somewhat shady conditions.
    [Show full text]