Cyclooxygenase Biology in Renal Function – Literature Review Biología De La Ciclooxigenasa En La Función Renal – Revisión De La Literatura

Total Page:16

File Type:pdf, Size:1020Kb

Cyclooxygenase Biology in Renal Function – Literature Review Biología De La Ciclooxigenasa En La Función Renal – Revisión De La Literatura Rev. Colomb. Nefrol. 2017;4(1): 27 - 37. http://www.revistanefrologia.org Review article http://doi.org/10.22265/acnef.4.1.263 Cyclooxygenase biology in renal function – literature review Biología de la ciclooxigenasa en la función renal – Revisión de la literatura Marcella Goetz Moro¹, Paula Katherine Vargas Sánchez¹, Ana Caroline Lupepsa², Emeline Maria Baller², Gilson César Nobre Franco³,*. 1Department of Dentistry, Ponta Grossa State University, Brasil 2Department of Pharmaceutical Sciences, Ponta Grossa State University, Brasil 3Department of General Biology, Ponta Grossa State University, Brasil Abstract The cyclooxygenase (COX) exists in two main isoforms, COX-1 and COX-2, which are present in the renal system to ensure its homeosta- sis. However, in different clinical situations, these enzymes can play a physiologic role in maintaining the integrity of this organ, and also be associated with the worsening of tissue injuries/damage. In this sense, an explanation of the true biological function of the isoforms of COX enables a better understanding of the physiology and pathology of the kidney, as well as a better understanding of the consequences of its inhibition by the use of drugs. This review aimed to study the biological role of the COX enzyme in the renal system in different clinical situations. Key words: Kidney, cyclooxygenase 1, cyclooxygenase 2, pathology, anti-Inflammatory agents, biology. http://doi.org/10.22265/acnef.4.1.263 Resumen La ciclooxigenasa existe en dos isoformas principales: COX-1 y COX-2, estas se encuentran presentes en el sistema renal como parte de su homeostasis. Sin embargo, en algunas situaciones clínicas, las dos enzimas pueden desempeñar un papel en el mantenimiento de la integri- dad de este órgano, y en otras pueden estar asociadas a la evolución de daños y lesiones en los tejidos. En este sentido, el conocimiento de la verdadera función biológica de las isoformas de la COX permite una mejor comprensión de la fisiología y patología del riñón, así como una mejor comprensión de las consecuencias de su inhibición por el uso de medicamentos. El objetivo de esta revisión es estudiar la función biológica de la enzima COX en el sistema renal en diferentes situaciones clínicas. Palabras clave: riñón, ciclooxigenasa 1, ciclooxigenasa 2, patología, antiinflamatorios, biología. http://doi.org/10.22265/acnef.4.1.263 Referenciar este artículo: Goetz Moro M, Vargas Sánchez PK, Lupepsa AC, Baller EM, Nobre Franco GC. Cyclooxygenase biology in renal function – literature review. Rev. Colomb. Nefrol. 2017;4(1): 27 - 37. *Corresponding author: Gilson Cesar Nobre Franco. Universidade Estadual de Ponta Grossa – Departamento de Odontologia – Pós Graduação Stricto Sensu em Odontologia. Av. General Carlos Cavalcanti, nº 4748, Campus de Uvaranas, Ponta Grossa, PR, Brazil. ZIP code: 84030-900, e-mail: [email protected] Received: 12-05-16 • Accepted: 12-02-16 • On line: 07-02-17 Goetz Moro M, Vargas Sánchez PK, Lupepsa AC, Baller EM, Nobre Franco GC 27 Rev. Colomb. Nefrol. 2017;4(1): 27 - 37. http://www.revistanefrologia.org Introduction This process is initiated with the archidonic acid, yclooxygenase (COX), the main catalyst present in the lipid bilayer of the cell membrane, enzyme in the prostanoid synthesis, triggering the prostanoid biosynthesis pathway due has two main known isoforms, COX- to the presence of different stimuli11-16. The pathway C 1,2 involves a sequence of three main steps. Initially, 1 and COX-2 . COX-1, which is responsible for physiological functions, is expressed mainly as the arachidonic acid is liberated, by hydrolysis, 3 a constitutive isoform and, in normal conditions through the action of the phospholipase A2 enzyme (PLA ). Once liberated, the second step begins, with and in distinct regions of the kidney, generates 2 prostaglandins that are responsible for vasodilation oxygenation by the prostaglandin G/H synthase, and diminished vascular resistance, ensuring or cyclooxygenase, resulting in the prostaglandin endoperoxide G (PGG ). In sequence, the same adequate blood flow4. On the other hand, COX-2, 2 2 COX enzymes reduce the PGG into prostaglandin initially considered pathological, is highly expressed 2 H (PGH )15-17. The prostaglandin G/H synthase in the presence of damaging stimuli1. However, this 2 2 has the cyclooxygenase and peroxidase catalytic isoform is now also known to appear constitutively sites. The former converts arachidonic acid into in some tissues, like in the kidney, where it is PGG , which is acted upon by the peroxidase responsible for ensuring the tubuloglomerular 2 enzyme and reduced to the unstable intermediate, feedback, contributing to the establish homeostasis5. PGH2, responsible for the formation of different kinds of prostanoids such as prostacyclin (PGI ), In this sense, although the COX functions have 2 prostaglandin D2 (PGD2), prostaglandin E2 (PGE2), been well-studied in normal situations, studies prostaglandin F (PGF ) and thromboxane A have demonstrated that, facing different clinical 2α 2α 2 (TXA2), through its conversion by the tissue- situations, its isoforms may assume different specific isomerases13,18-20. These prostanoids roles. In cases of hypovolemia and hypertension, provoke different actions in the organism through this enzyme can develop the physiological role of specific receptors, which depend on the type of cell maintaining the integrity of the kidney, as well as and tissue involved in the process (Figure 1) 20-22. becoming associated with the aggravation of tissue lesion/damage, as observed in the polycystic kidney There are different isoforms of COX, but the 4, 6-10 disease . most studied are COX-1 and COX-21. COX-1 was initially named physiological or constitutive for Thus, clarifying the true biological functioning being present in the majority of tissues and being of the COX isoforms enables a better comprehen- expressed in an almost steadily fashion13,19, 23. Its sion of the kidney physiology and pathology, as main role consists of maintaining a basal rate of the well as a better understanding of the consequen- biosynthesis of prostanoids in the body, in order to ces of the isoforms’ inhibition by medication. This promote their rapid, short-duration increase. On the review intended to study the biological role of the other hand, COX-2 is hardly found in most tissues, COX enzyme in the renal system in different clini- but its production increases by approximately 20 ti- cal situations. mes in the presence of inflammatory stimuli. For Cyclooxygenase this reason, it has been called the pathological or in- duced enzyme13,19,23,24. However, recent studies have The cyclooxygenase (COX) is the main enzyme demonstrated that it is also found constitutively in that catalyses the prostaglandin synthesis from ara- some tissues, being responsible for the formation of prostanoids that maintain homeostasis in different chidonic acid. This way, it originates different pros- 1, 24-26 tanoids with different functions in the organism1. organs and systems of the body . 28 Cyclooxygenase biology in renal function – literature review Rev. Colomb. Nefrol. 2017;4(1): 27 - 37. http://www.revistanefrologia.org Captions Membrane phospholipids Physical, chemical, inflammatory Phospholipase A or mitogenic stimulus 2 COOH CH3 Arachidonic acid Prostaglandin G/H synthase (COX) PGG2 Peroxidase PGH2 Tissue-specific isomerases TXA PGE2 PGD2 PGF2a PGI2 2 Figure 1. Prostanoid biosynthesis pathway. Source: author Goetz Moro M, Vargas Sánchez PK, Lupepsa AC, Baller EM, Nobre Franco GC 29 Rev. Colomb. Nefrol. 2017;4(1): 27 - 37. http://www.revistanefrologia.org Cyclooxygenase in renal function Like in COX-1, prostaglandins (PGs) also de- Normal Function rive from COX-2, being important physiological modulators of vascular tone and hydric balance in COX-1 is found in the glomeruli, in the medu- the kidneys13, 35. The prominent PGs in renal tissue llary and cortical region of the collecting ducts and are PGE2 and PGI2, where PGE2 is synthesized by in the afferent and efferent arterioles27, ensuring the the tubular epithelium and interstitial cells, expres- maintenance of the kidney’s physiological func- sed in the renal tubules regulating the transport of tions, such as hemodynamic regulation and glo- chloride and sodium in the Henle loop, besides au- 13, 28-30 merular filtration rate (GFR) . This isoform xiliating water transport and blood flow. PGI2 is lo- produces PGE2 and PGD2, which antagonize the va- cated in the renal cortex, controlling the glomerular soconstrictive action of angiotensin II (Ang II), and filtration rate and renin secretion7, 29. inhibit the release of norepinephrine, respectively31. Hypovolemia In this way, these prostanoids promote vasodilation, increasing the perfusion of the organ Hypovolemia is characterized by a decrease in and causing redistribution in the blood flow from the blood volume, being mainly the result of excessive renal cortex to the nephrons in the intramedullary loss of water in the kidney or hemorrhage. As a con- 31 region . Additionally, the PGE2, alongside the sequence, arterial pressure drops, with the possibili- 13, 31 PGF2α, possess the diuretic and natriuretic effects ty of hypovolemic shock and death . and the PGE2, like the PGI2, antagonize the action of vasopressin31. In a state of hypovolemia with consequent depletion of sodium levels, there is an increase Although COX-2 has been initially considered of COX-2 in the cortical region, and a decrease pathological, is also found constitutively in the of
Recommended publications
  • Diclofenac Enhances Docosahexaenoic Acid-Induced Apoptosis in Vitro in Lung Cancer Cells
    cancers Article Diclofenac Enhances Docosahexaenoic Acid-Induced Apoptosis in Vitro in Lung Cancer Cells Rosemary A. Poku 1, Kylee J. Jones 2, Megan Van Baren 2 , Jamie K. Alan 3 and Felix Amissah 2,* 1 Department of Foundational Sciences, College of Medicine, Central Michigan University, Warriner Hall, 319, Mt Pleasant, MI 48859, USA; [email protected] 2 Department of Pharmaceutical Sciences, Ferris State University, College of Pharmacy, 220 Ferris Dr, Big Rapids, MI 49307, USA; [email protected] (K.J.J.); [email protected] (M.V.B.) 3 Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-231-591-3790 Received: 9 September 2020; Accepted: 17 September 2020; Published: 20 September 2020 Simple Summary: Polyunsaturated fatty acids (PUFAs) and non-steroidal anti-inflammatory drugs (NSAIDs) have limited anticancer capacities when used alone. We examined whether combining NSAIDs with docosahexaenoic (DHA) would increase their anticancer activity on lung cancer cell lines. Our results indicate that combining DHA and NSAIDs increased their anticancer activities by altering the expression of critical proteins in the RAS/MEK/ERK and PI3K/Akt pathways. The data suggest that DHA combined with low dose diclofenac provides more significant anticancer potential, which can be further developed for chemoprevention and adjunct therapy in lung cancer. Abstract: Polyunsaturated fatty acids (PUFAs) and non-steroidal anti-inflammatory drugs (NSAIDs) show anticancer activities through diverse molecular mechanisms. However, the anticancer capacities of either PUFAs or NSAIDs alone is limited. We examined whether combining NSAIDs with docosahexaenoic (DHA), commonly derived from fish oils, would possibly synergize their anticancer activity.
    [Show full text]
  • Downloaded from Bioscientifica.Com at 09/25/2021 12:14:58PM Via Free Access
    ID: 19-0149 8 6 Q Pang et al. PHO patients with soft tissue 8:6 736–744 giant tumor caused by HPGD mutation RESEARCH The first case of primary hypertrophic osteoarthropathy with soft tissue giant tumors caused by HPGD loss-of-function mutation Qianqian Pang1,2, Yuping Xu1,3, Xuan Qi1, Yan Jiang1, Ou Wang1, Mei Li1, Xiaoping Xing1, Ling Qin2 and Weibo Xia1 1Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China 2Musculoskeletal Research Laboratory and Bone Quality and Health Assessment Centre, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong 3Department of Endocrinology, The First Affiliated Hospital of Shanxi Medicalniversity, U Taiyuan, Shanxi, China Correspondence should be addressed to L Qin or W Xia: [email protected] or [email protected] Abstract Background: Primary hypertrophic osteoarthropathy (PHO) is a rare genetic multi-organic Key Words disease characterized by digital clubbing, periostosis and pachydermia. Two genes, f primary hypertrophic HPGD and SLCO2A1, which encodes 15-hydroxyprostaglandin dehydrogenase (15-PGDH) osteoarthropathy and prostaglandin transporter (PGT), respectively, have been reported to be related to f PHO PHO. Deficiency of aforementioned two genes leads to failure of prostaglandin E2 (PGE2) f HPGD mutation degradation and thereby elevated levels of PGE2. PGE2 plays an important role in f soft tumor tumorigenesis. Studies revealed a tumor suppressor activity of 15-PGDH in tumors, such f COX2 selective inhibitor treatment as lung, bladder and breast cancers. However, to date, no HPGD-mutated PHO patients presenting concomitant tumor has been documented.
    [Show full text]
  • Cyclooxygenase-Independent Inhibition by Aspirin
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 11091-11096, October 1996 Medical Sciences Leukocyte lipid body formation and eicosanoid generation: Cyclooxygenase-independent inhibition by aspirin (nonsteroidal antiinflammatory agents/cyclooxygenase knockout/leukotrienes/prostaglandin endoperoxide H synthase/lipoxygenase) PATRICIA T. BOZZA*, JENNIFER L. PAYNE*, ScoTr G. MORHAMt, ROBERT LANGENBACHt, OLIVER SMITHIESt, AND PETER F. WELLER*§ *Harvard Thorndike Laboratory and Charles A. Dana Research Institute, Department of Medicine, Beth Israel Hospital, Harvard Medical School, Boston, MA 02215-5491; tDepartment of Pathology, University of North Carolina, Chapel Hill, NC 27599-7525; and *Laboratory of Experimental Carcinogenesis and Mutagenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 Communicated by Seymour J. Klenbanoff, University of Washington School of Medicine, Seattle, WA, July 31, 1996 (received for review April 8, 1996) ABSTRACT Lipid bodies, cytoplasmic inclusions that de- inducible structures. Lipid bodies are prominent in leukocytes velop in cells associated with inflammation, are inducible at sites of natural and experimental inflammation, including structures that might participate in generating inflammatory leukocytes from joints of patients with inflammatory arthritis eicosanoids. Cis-unsaturated fatty acids (arachidonic and (5-7), the airways of patients with acute respiratory distress oleic acids) rapidly induced lipid body formation in leuko- syndrome (8), and casein- or lipopolysaccharide-elicited cytes, and this lipid body induction was inhibited by aspirin guinea pig peritoneal exudates (9). The formation of lipid and nonsteroidal antiinflammatory drugs (NSAIDs). Several bodies is a regulated process that involves activation of intra- findings indicated that the inhibitory effect of aspirin and cellular signaling pathways, including protein kinase C and NSAIDs on lipid body formation was independent of cycloox- phospholipase C (10, 11).
    [Show full text]
  • Prostacyclin Synthesis by COX-2 Endothelial Cells
    Roles of Cyclooxygenase (COX)-1 and COX-2 in Prostanoid Production by Human Endothelial Cells: Selective Up-Regulation of Prostacyclin Synthesis by COX-2 This information is current as of October 2, 2021. Gillian E. Caughey, Leslie G. Cleland, Peter S. Penglis, Jennifer R. Gamble and Michael J. James J Immunol 2001; 167:2831-2838; ; doi: 10.4049/jimmunol.167.5.2831 http://www.jimmunol.org/content/167/5/2831 Downloaded from References This article cites 36 articles, 23 of which you can access for free at: http://www.jimmunol.org/content/167/5/2831.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 2, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Roles of Cyclooxygenase (COX)-1 and COX-2 in Prostanoid Production by Human Endothelial Cells: Selective Up-Regulation of Prostacyclin Synthesis by COX-21 Gillian E. Caughey,2* Leslie G.
    [Show full text]
  • Selective Inhibitors Differentially Affect Cyclooxygenase-Dependent Pial Arteriolar Responses in Newborn Pigs
    0031-3998/05/5706-0853 PEDIATRIC RESEARCH Vol. 57, No. 6, 2005 Copyright © 2005 International Pediatric Research Foundation, Inc. Printed in U.S.A. Selective Inhibitors Differentially Affect Cyclooxygenase-Dependent Pial Arteriolar Responses in Newborn Pigs FERENC DOMOKI, KRISZTINA NAGY, PÉTER TEMESVÁRI, AND FERENC BARI Department of Physiology, Faculty of Medicine [F.D., K.N., F.B.], University of Szeged, Szeged, Dóm tér 10. H-6720, Hungary; Department of Pediatrics [P.T.], University Teaching Hospital, Kecskemét, P.O. Box 149, H-6001, Hungary ABSTRACT Cyclooxygenase (COX)-derived prostanoids play an impor- 560, acetaminophen and ibuprofen. In contrast, 0.3 mg/kg indo- tant role in the cerebrovascular control of newborns. In humans methacin significantly reduced, 1 mg/kg virtually abolished the -vasodila (%20–15ف) and in the widely accepted model of piglets, both the COX-1 and vasodilation. Arterial hypotension elicited the COX-2 isoforms are expressed in cerebral arteries. However, tion that was similarly reduced by NS-398 and indomethacin but the involvement of these isoforms in cerebrovascular control is was unaltered by SC-560. Ach dose-dependently constricted pial unknown. Therefore we tested if specific inhibitors of COX-1 arterioles. This response was similarly attenuated by NS-398, and/or COX-2 would differentially affect pial arteriolar responses indomethacin, and ibuprofen, but left intact by SC-560. We to COX-dependent stimuli in piglets. Anesthetized, ventilated conclude that the assessed COX-dependent vascular reactions piglets (n ϭ 35) were equipped with a closed cranial window, appear to depend largely on COX-2 activity. However, hyper- ␮m) to capnia-induced vasodilation was found indomethacin-sensitive 100ف and changes in pial arteriolar diameters (baseline hypercapnia (ventilation with 5–10% CO2, 21% O2, balance N2), instead of a COX-dependent response in the piglet.
    [Show full text]
  • Role of COX-2, Thromboxane A2 Synthase, and Prostaglandin I2 Synthase in Papillary Thyroid Carcinoma Growth
    Modern Pathology (2005) 18, 221–227 & 2005 USCAP, Inc All rights reserved 0893-3952/05 $30.00 www.modernpathology.org Role of COX-2, thromboxane A2 synthase, and prostaglandin I2 synthase in papillary thyroid carcinoma growth Sabine Kajita, Katharina H Ruebel, Mary B Casey, Nobuki Nakamura and Ricardo V Lloyd Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA The development of papillary thyroid carcinoma is influenced by many factors including genetic alterations, growth factors, and physical agents such as radiation. Arachidonic acid and its derivatives including prostaglandins (PG) and thromboxane along with the enzymes involved in their synthesis have been shown to influence the growth of various tumors. We analyzed the immunoreactivity for cyclooxygenase-2 (COX-2) and mRNA expression levels of the enzymes COX-2, thromboxane A2 (TXA2) synthase, and PGI2 synthase by RT- PCR in papillary carcinomas and matching normal tissues to determine the role of these enzymes in the development of papillary thyroid carcinomas. A papillary thyroid carcinoma cell line TPC-1 was also studied in vitro to determine the role of the specific COX-2 inhibitor NS-398 on COX-2 and vascular endothelial growth factor-A, since COX-2 also has a role in regulating tumor angiogenesis. RT-PCR analysis showed significant increases in TXA2 synthase mRNA levels in papillary thyroid carcinomas compared to normal thyroid tissues. Although COX-2 mRNA levels were generally increased in papillary carcinomas, the differences were not statistically significant. There were no significant differences in PGI2 synthase mRNA levels. COX-2 protein expression was greater in papillary carcinoma compared to normal thyroid tissues; however, the levels were quite variable.
    [Show full text]
  • Studies of Prostaglandin E Formation in Human Monocytes
    Faculty of Technology and Science Biomedical Sciences Sofia Karlsson Studies of prostaglandin E2 formation in human monocytes Karlstad University Studies 2009:43 Sofia Karlsson Studies of prostaglandin E2 formation in human monocytes Karlstad University Studies 2009:43 Sofia Karlsson Studies of prostaglandin E2 formation in human monocytes Licentiate thesis Karlstad University Studies 2009:43 ISSN 1403-8099 ISBN 978-91-7063-266-2 © The Author Distribution: Faculty of Technology and Science Biomedical Sciences SE-651 88 Karlstad +46 54 700 10 00 www.kau.se Printed at: Universitetstryckeriet, Karlstad 2009 ABSTRACT Prostaglandin (PG) E 2 is an eicosanoid derived from the polyunsaturated twenty carbon fatty acid arachidonic acid (AA). PGE 2 has physiological as well as pathophysiological functions and is known to be a key mediator of inflammatory responses. Formation of PGE 2 is dependent upon the activities of three specific enzymes involved in the AA cascade; phospholipase A 2 (PLA 2), cyclooxygenase (COX) and PGE synthase (PGEs). Although the research within this field has been intense for decades, the regulatory mechanisms concerning the PGE 2 synthesising enzymes are not completely established. PGE 2 was investigated in human monocytes with or without lipopolysaccharide (LPS) pre-treatment followed by stimulation with calcium ionophore, opsonised zymosan or phorbol myristate acetate (PMA). Cytosolic PLA 2α (cPLA 2α) was shown to be pivotal for the mobilization of AA and subsequent formation of PGE 2. Although COX-1 was constitutively expressed, monocytes required expression of COX-2 protein in order to convert the mobilized AA into PGH 2. The conversion of PGH 2 to the final product PGE 2 was to a large extent due to the action of microsomal PGEs-1 (mPGEs-1).
    [Show full text]
  • Metabolism of Prostaglandins in the Kidney
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Kidney International, Vol. 19 (1981), pp. 760—770 Metabolism of prostaglandins in the kidney FRANK F. SUN, BRUCE M. TAYLOR, JAMES C. MCGUIRE, and PATRICK Y. K. WONG Department of Experimental Biology, The Upjohn Company, Kalamazoo, Michigan, and Department of Pharmacology, New York Medical College, Valhalla, New York Since the early report of Lee et a! [1] describing a recommend that the reader consult the reviews vasoactive acidic lipid in the rabbit renal medulla, published elsewhere [4—6]. the kidney has been recognized as a major site of prostaglandin metabolism in the body. In fact, the Prostaglandin biosynthesis kidney medulla is one of the richest sources of The renal prostaglandin biosynthesis has been cyclooxygenase activity and, therefore, has been extensively investigated for over a decade [7—9], but widely used for prostaglandin biosynthetic studies. there are still many gray areas of ambiguity. In Many direct and indirect findings have established vitro, the renal papilla and medulla from rat, rabbit, that PG!2 and PGE2 play important roles in the and human [7-46] contain more cyclooxygenase regulation of renal blood flow and maintenance of (prostaglandin endoperoxide synthetase) than the electrolyte balance. Other oxygenated metabolites cortex does. The medullary cyclooxygenase is of arachidonic acid (that is, PGF2a, PGD2, TXB2, membrane bound and can be solubilized and isolat- hydroxyeicosatetraenoic acids, and leucotrienes ed by column chromatography [14]. The solubilized [2]) are reportedly synthesized by the kidney, al- enzyme has a heme-dependent cyclooxygenase ac- though their function remains as yet undefined.
    [Show full text]
  • Tocopherol, Inhibit Cyclooxygenase Activity in Macrophages and Epithelial Cells
    ␥-Tocopherol and its major metabolite, in contrast to ␣-tocopherol, inhibit cyclooxygenase activity in macrophages and epithelial cells Qing Jiang, Ilan Elson-Schwab, Chantal Courtemanche, and Bruce N. Ames* Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720; and Children’s Hospital Oakland Research Institute, 5700 M. L. King Jr. Way, Oakland, CA 94609 Contributed by Bruce N. Ames, July 28, 2000 Cyclooxygenase-2 (COX-2)-catalyzed synthesis of prostaglandin substituted 5-position, ␥T is a better nucleophile and detoxifies E2 (PGE2) plays a key role in inflammation and its associated NOx by forming a stable adduct, 5-nitro-␥T (17–19). In an in vitro diseases, such as cancer and vascular heart disease. Here we report system, ␥T, compared with ␣T, exhibits stronger inhibition of ␥ ␥ that -tocopherol ( T) reduced PGE2 synthesis in both lipopolysac- lipid peroxidation induced by peroxynitrite (17). Dietary ␥Tis charide (LPS)-stimulated RAW264.7 macrophages and IL-1␤- primarily metabolized to 2,7,8-trimethyl-2-(␤-carboxyethyl)-6- treated A549 human epithelial cells with an apparent IC50 of 7.5 hydroxychroman (␥-CEHC), a water-soluble compound found and 4 ␮M, respectively. The major metabolite of dietary ␥T, in human urine and possessing natriuretic activity (20, 21). 2,7,8-trimethyl-2-(␤-carboxyethyl)-6-hydroxychroman (␥-CEHC), We have recently observed that ␥T supplementation leads to Ϸ ␮ also exhibited an inhibitory effect, with an IC50 of 30 M in these the inhibition of protein nitration and ascorbate oxidation, and cells. In contrast, ␣-tocopherol at 50 ␮M slightly reduced (25%) spares vitamin C in rats with zymosan-induced peritonitis (Q.J., PGE2 formation in macrophages, but had no effect in epithelial J.
    [Show full text]
  • Identification of a Homozygous Recessive Variant in PTGS1 Resulting in a Congenital Ferrata Storti Foundation Aspirin-Like Defect in Platelet Function
    Platelet Biology & its Disorders ARTICLE Identification of a homozygous recessive variant in PTGS1 resulting in a congenital Ferrata Storti Foundation aspirin-like defect in platelet function Melissa V. Chan,1* Melissa A. Hayman,1* Suthesh Sivapalaratnam,2,3,4* Marilena Crescente,1 Harriet E. Allan,1 Matthew L. Edin,5 Darryl C. Zeldin,5 Ginger L. Milne,6 Jonathan Stephens,2,3 Daniel Greene,2,3,7 Moghees Hanif,4 Valerie B. O’Donnell,8 Liang Dong,9 Michael G. Malkowski,9 Claire Lentaigne,10,11 Katherine Wedderburn,2 Matthew Stubbs,10,11 Kate Downes,2,3,12 Willem H. Ouwehand,2,3,7,13 Ernest Turro,2,3,7,12 Daniel P. Hart,1,4 Kathleen Freson,14 Michael A. Laffan,10,11# Haematologica 2021 and Timothy D. Warner1# Volume 106(5):1423-1432 1The Blizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK; 2Department of Hematology, University of Cambridge, Cambridge, UK; 3National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK; 4Department of Hematology, Barts Health National Health Service Trust, London, UK; 5National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA; 6Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; 7Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Cambridge, UK; 8Systems Immunity Research Institute, and Division of Infection and Immunity, School
    [Show full text]
  • Early Pregnancy Loss in 15-Hydroxyprostaglandin Dehydrogenase Knockout (15-HPGD−/−) Mice Due to Requirement for Embryo 15-HPGD Activity Jefrey D
    www.nature.com/scientificreports OPEN Early pregnancy loss in 15-hydroxyprostaglandin dehydrogenase knockout (15-HPGD−/−) mice due to requirement for embryo 15-HPGD activity Jefrey D. Roizen 1*, Minoru Asada2, Min Tong3, Hsin-Hsiung Tai3 & Louis J. Muglia 4 Prostaglandins (PGs) have critical signaling functions in a variety of processes including the establishment and maintenance of pregnancy, and the initiation of labor. Most PGs are non- enzymatically degraded, however, the two PGs most prominently implicated in the termination of pregnancy, including the initiation of labor, prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α), are enzymatically degraded by 15-hydroxyprostaglandin dehydrogenase (15-HPGD). The role of PG metabolism by 15-HPGD in the maintenance of pregnancy remains largely unknown, as direct functional studies are lacking. To test the hypothesis that 15-PGDH-mediated PG metabolism is essential for pregnancy maintenance and normal labor timing, we generated and analyzed pregnancy in 15-HPGD knockout mice (Hpgd−/−). We report here that pregnancies resulting from matings between 15-HPGD KO mice (Hpgd−/− X Hpgd−/−KO mating) are terminated at mid gestation due to a requirement for embryo derived 15-HPGD. Aside from altered implantation site spacing, pregnancies from KO matings look grossly and histologically normal at days post coitum (dpc) 6.5 and 7.5 of pregnancy. However, virtually all of these pregnancies are resorbed by dpc 8.5. This resorption is preceded by elevation of PGF2∝ but is not preceded by a decrease in circulating progesterone, suggesting that pregnancy loss is a local infammatory phenomenon rather than a centrally mediated phenomena. This pregnancy loss can be temporarily deferred by indomethacin treatment, but treated pregnancies are not maintained to term and indomethacin treatment increases maternal mortality.
    [Show full text]
  • Cyclooxygenase-1-Derived PGE2 Promotes Cell Motility Via the G-Protein-Coupled EP4 Receptor During Vertebrate Gastrulation
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Cyclooxygenase-1-derived PGE2 promotes cell motility via the G-protein-coupled EP4 receptor during vertebrate gastrulation Yong I. Cha,1 Seok-Hyung Kim,2 Diane Sepich,2 F. Gregory Buchanan,1 Lilianna Solnica-Krezel,2,3 and Raymond N. DuBois1,3,4 1Department of Medicine and Cancer Biology, Cell and Developmental Biology, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, 37232-2279, USA; 2Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA Gastrulation is a fundamental process during embryogenesis that shapes proper body architecture and establishes three germ layers through coordinated cellular actions of proliferation, fate specification, and movement. Although many molecular pathways involved in the specification of cell fate and polarity during vertebrate gastrulation have been identified, little is known of the signaling that imparts cell motility. Here we show that prostaglandin E2 (PGE2) production by microsomal PGE2 synthase (Ptges) is essential for gastrulation movements in zebrafish. Furthermore, PGE2 signaling regulates morphogenetic movements of convergence and extension as well as epiboly through the G-protein-coupled PGE2 receptor (EP4) via phosphatidylinositol 3-kinase (PI3K)/Akt. EP4 signaling is not required for proper cell shape or persistence of migration, but rather it promotes optimal cell migration speed during gastrulation. This work demonstrates a critical requirement of PGE2 signaling in promoting cell motility through the COX-1–Ptges–EP4 pathway, a previously unrecognized role for this biologically active lipid in early animal development. [Keywords: Cancer; cell motility; cyclooxygenase; development; prostaglandin; zebrafish] Supplemental material is available at http://www.genesdev.org.
    [Show full text]