<<

Faculty of Technology and Science Biomedical Sciences

Sofia Karlsson

Studies of E2 formation in human monocytes

Karlstad University Studies 2009:43 Sofia Karlsson

Studies of formation in human monocytes

Karlstad University Studies 2009:43 Sofia Karlsson Studies of prostaglandin E2 formation in human monocytes

Licentiate thesis

Karlstad University Studies 2009:43 ISSN 1403-8099 ISBN 978-91-7063-266-2

© The Author

Distribution: Faculty of Technology and Science Biomedical Sciences SE-651 88 Karlstad +46 54 700 10 00 www.kau.se

Printed at: Universitetstryckeriet, Karlstad 2009 ABSTRACT

Prostaglandin(PG)E 2isanderivedfromthe polyunsaturatedtwentycarbonfattyacidarachidonicacid(AA).PGE 2has physiologicalaswellaspathophysiologicalfunctionsandisknowntobeakey mediatorofinflammatoryresponses.FormationofPGE 2isdependentupon theactivitiesofthreespecificinvolvedintheAAcascade; phospholipaseA 2(PLA 2),(COX)andPGEsynthase(PGEs). Althoughtheresearchwithinthisfieldhasbeenintensefordecades,the regulatorymechanismsconcerningthePGE 2synthesisingenzymesarenot completelyestablished.

PGE 2wasinvestigatedinhumanmonocyteswithorwithout lipopolysaccharide(LPS)pretreatmentfollowedbystimulationwithcalcium ionophore,opsonisedzymosanorphorbolmyristateacetate(PMA).Cytosolic

PLA 2α(cPLA 2α)wasshowntobepivotalforthemobilizationofAAand subsequentformationofPGE 2.AlthoughCOX1wasconstitutivelyexpressed, monocytesrequiredexpressionofCOX2inordertoconvertthe mobilizedAAintoPGH 2.TheconversionofPGH 2tothefinalproductPGE 2 wastoalargeextentduetotheactionofmicrosomalPGEs1(mPGEs1).In addition,experimentswithinhibitorsofextracellularsignalregulatedkinaseand p38activation,indicatedthatphosphorylationofcPLA 2αwasmarkedly advantageousfortheformationofPGE 2. Ellagicacid,anaturalpolyphenoliccompoundfoundinfruitsandnuts, wasshowntoinhibitstimuliinducedreleaseofPGE2inhumanmonocytes. Theeffectofellagicacidwasnotduetoadirecteffectontheactivitiesofthe enzymesbutrathertoinhibitionoftheLPSinducedproteinexpressionof

COX2,mPGEs1andcPLA 2α.

i LIST OF PUBLICATIONS Thisthesisisbasedonthefollowingpapers,whichwillbereferredtointhe textbytheirRomannumerals I. Karlsson, S .andWijkander,J.Requirementofcyclooxygenase2expression

forcytosolicphospholipaseA 2mediatedprostaglandinE 2formationin humanmonocytes.Manuscript II Karlsson, S .,Nånberg,E.,Fjaeraa,C.andWijkander,J.(2009)Ellagicacid inhibitslipopolysaccharideinducedexpressionofenzymesinvolvedinthe

synthesisofprostaglandinE 2inhumanmonocytes. British Journal of Nutrition. Accepted.

Grant Support :ThisstudywassupportedbygrantsfromVärmlandCounty CouncilandtheRoyalSwedishAcademyofSciences.

ii ABBREVIATIONS AA Arachidonicacid [3H]AA Tritiatedarachidonicacid AP Activatingprotein BEL Bromoenollactone CBR Calciumbindingregions COX Cyclooxygenase cPGEs CytosolicprostaglandinEsynthase cPLA 2 CytosolicphospholipaseA 2 Egr1 Earlygrowthresponsefactor1 ERK Extracellularsignalregulatedkinase GRE responseelement HETE Hydroxyeicosatetraenoicacid HPETE Hydroperoxyeicosatetraenoicacid IL Interleukin iPLA 2 CalciumindependentphospholipaseA 2 IκB InhibitorkappaB LO LPS Lipopolysaccharide LT MAPK Mitogeneactivatedproteinkinase mPGEs MicrosomalprostaglandinEsynthase NF κB NuclearfactorkappaB NSAIDs Nonsteroidalantiinflammatorydrugs PG Prostaglandin PGEs ProstaglandinEsynthase PIP2 Phosphatidylinositol4,5bisphosphate PKC ProteinkinaseC PC Phosphatidylcholine

PLA 2 PhospholipaseA 2 PMA Phorbolmyristateacetate sn Stereospecificnomenclature sPLA 2 SecretoryphospholipaseA 2 TNF α Tumornecrosisfactoralfa TX

iii TABLE OF CONTENTS ABSTRACT...... i LIST OF PUBLICATIONS ...... ii ABBREVIATIONS ...... iii TABLE OF CONTENTS ...... iv INTRODUCTION...... 1 Monocytes and their role in ...... 1 and ...... 2 From phospholipids to the final product 2 ...... 2 Phospholipase A 2 ...... 3 IntracellularphospholipaseA 2 ...... 4 CytosolicphospholipaseA 2 ...... 4 CalciumindependentphospholipaseA 2 ...... 6 SecretoryphospholipaseA 2 ...... 7 ...... 8 Cyclooxygenase1...... 9 Cyclooxygenase2...... 10 Cyclooxygenase3...... 10 Differencesbetweencyclooxygenase1andcyclooxygenase2...... 11 Cyclooxygenaseinhibitors ...... 12 Prostaglandin E synthases...... 12 MicrosomalprostaglandinEsynthase1...... 13 MicrosomalprostaglandinEsynthase2...... 14 CytosolicprostaglandinEsynthase ...... 14 Prostaglandin E 2 ...... 15 PRESENT INVESTIGATION ...... 17 Background and aim...... 17 Methodology ...... 19 Results and discussion...... 22 Conclusions...... 31 ACKNOWLEDGEMENTS ...... 32 REFERENCES ...... 33

iv INTRODUCTION

Monocytes and their role in inflammation Inflammationisanimportantpartofourdefenceagainstpathological agentsthatwemoreorlessareconstantlyexposedto.Theinflammatory responseisdependentontheproductionofdifferentcytokines,chemokines andeicosanoids[13].Theseinflammatorymediatorsareproducedinatightly regulatedwayprimarilyinwhitebloodcells,leukocytes.Monocytesarelarge leukocytesofthemyeloidlineage,circulatingintheperipheralbloodstream. Uponactivation,duetoinfectionormechanicallydamagedtissue,the monocytesmigratetothesiteofinflammation,penetratethearterialwalland enterthesurroundingtissuewheretheymaydifferentiateintolonglived macrophagesordendriticcells[4]. Onceattheinfectedarea,monocytesactasprofessionalphagocytesand recogniseinfectingagentsviaspecificreceptors.Subsequently,theseagentsare destroyedbydegradingenzymesandfragmentsofthephagocytosedmaterial arepresentedonthesurfaceofthemonocytesallowingto recognisethemandinitiatetheadaptiveimmuneresponse[5].Furthermore, monocytesproduceavarietyofdifferentproinflammatorymediators,suchas interleukin(IL)1,tumornecrosisfactoralfa(TNFα)anddifferenteicosanoids, whichmayactstimulatinginanautocrineorparacrinewayoractasrecruiters ofothercellsimportantfortheinflammatoryresponse[6].Monocytes expressinglargeamountsofCD14butnotCD16ontheirsurfacearereferred toasclassicalmonocytes.Thenonclassicalmonocytes,whichareCD14aswell asCD16positive,areknownashighlyproinflammatoryandrepresent,under normalconditions,about10%oftheperipheralbloodmonocytes[7]. However,theamountofthesecellscanincreasedramaticallyduring inflammation. Monocyteshavealsobeenascribedaroleintheresolutionof inflammationbyproducingforexampleantiinflammatorymediatorssuchas IL10[8].Thisishighlyimportantalthoughinflammationisouressential defenseagainstpathogens,ifnottightlyregulated,thisdefensecanbecomeour enemy.Chronicinflammationisapartofthecauseforseveralmoreorless severediseases,whereelevatedlevelsoftheenzymesinvolvedinthe

1 arachidonicacid(AA)cascadeaswellastheproducedmetabolites,the eicosanoids,havebeendetected.

Arachidonic acid and eicosanoids AA(20:4n6;AA)isa20carbonpolyunsaturatedomega6fattyacid thatcanbefoundinanimalbasedfood,especiallyinfishandeggs,whilenoor onlylittlearefoundinplants.Thisfattyacidisnotstrictlyessential,sinceitcan beformedfromlinoleicacid(18:2n6)endogenously[9].AAisthemajor precursorforseveraldifferenteicosanoids,recognisedasimportant inflammatorymediators.Whenliberatedfrommembranephospholipidsviathe actionofphospholipaseA 2(PLA 2),AAcanbemetabolisedbythreemain pathwaysandtheenzymesinvolvedarecyclooxygenase(COX),lipoxygenase (LO)andp450[10].Thesetofeicosanoidsderivedfromthese pathwaysisdiverseandconsistsforexampleof(PGs), (LTs),(TXs)andlipoxines. Theseproductsexhibitawidevarietyoffunctions,bothproandanti inflammatoryaswellashomeostatic.ThemostabundantformofthePGsis

PGE 2andthefocusofthisthesisliesonthepathway(highlightedinfig.1)that leadstothisproduct.

From phospholipids to the final product prostaglandin E 2

TheformationofPGE 2isdependentonthreeenzymaticreactions. First,inordertobefurthermetabolised,AAmustbeavailableinafreeform.

ThisrequirestheenzymaticactionofaPLA 2,whichhydrolyseandreleaseAA fromthemembranephospholipids.Whenliberated,AAismetabolisedina twostepreactionbyCOXtoanunstableintermediate,PGH 2.Finally,this intermediateisconvertedintotheproductPGE 2bydifferentPGEsynthases (PGEs).

2

Figure 1. Formation of eicosanoids from arachidonic acid.

Phospholipase A 2

PLA 2constitutesalargefamilyofenzymesthatallsharethecommon functionofhydrolysingtheesterbondatthestereospecificnomenclature(sn)2 positionofmembranephospholipids,generatingfreefattyacidsand lysophospholipids(Fig.2).

PLA 2canbedividedintotwomajorgroupsthatdifferwhenitcomesto size,function,regulationandlocalisation;theintracellularPLA 2s,cytosolic calciumdependentPLA 2(cPLA 2)andcalciumindependentPLA 2(iPLA 2),and thesecretoryPLA 2s(sPLA 2)[11].

3

Figure 2. PLA 2 hydrolyses membrane phospholipids at the sn-2 position

Intracellular phospholipase A 2

Cytosolic phospholipase A 2

cPLA 2, alsoknownastypeIVPLA 2,isregardedasahighmolecular

PLA 2andhasasizeofabout85kDa.Asthenameimpliesthis performsitsworkwithinthecellandpreferentiallyhydrolyzephospholipidsin thenuclearmembrane[12].PreviouslycPLA 2wasreferredtoasasingle enzymebutitisnowknownthatthisisagroupofenzymesandtodayonehas todistinguishbetweensixparalogs;cPLA 2α,β,γ,δ,εand–ζ[1317].These enzymessharetheactivedomainbutdifferwhenitcomestoregulationvia phosphorylationandcalciumdependency,substrateselectivityandexpression pattern.cPLA 2αisbyfarthemoststudiedandbestcharacterizedofthese paralogsandinthissectionthisisoformistheonlyonetobefurtheraddressed.

In1986,cPLA 2αwasisolatedfromhumanneutrophilsand simultaneouslybytworesearchgroups[18,19].cPLA 2αistheonlyknown

PLA 2thatselectivelyhydrolysemembranephospholipidscontainingAAatthe sn2position.Thishasbeenobservedinvesiclemodels[20]andinnatural cellularmembranes[21].Becauseofthis,cPLA 2αplaysakeyroleininitiating theAAcascadeandtherebyenablingthesubsequentformationofdifferent eicosanoids.

4 ExpressionofcPLA 2αisubiquitouslyandconstitutivelyfoundinmost cells,exceptformatureTandBlymphocytes[22].Thepromoterregionofthe cPLA 2αhavebindingsitesforactivatingprotein(AP)1,AP2, glucocorticoidresponseelement(GRE),CCAAT/enhancerbinding andnuclearfactorkappaB(NFκB)[23,24]andalthoughtheenzymeoftenis constitutivelyexpressed,itcanbeslightlyinducedundercertainconditions, suchasinresponsetoIL1α,epidermalgrowthfactor,phorbolmyristate acetate(PMA)andTNF α[2527].

cPLA 2αcontainstwofunctionallyimportantdomains,theC2domain andtheactiveα/βdomain[28].Theactivesite,consistingofSer228, Asp549andArg200,islocatedatthebottomofadeepnarrowcleftandinthe inactivestate,thiscleftispartiallycoveredbyalid[28,29].Whenbindingto phospholipidmembranes,achangeinconformationmostlikelyoccurs, removingthelidovertheactivesiteallowingAAtoenter.cPLA 2αdoesnot requirecalciumforitscatalyticactivity,howeverthebindingofCa 2+ totheC2 domainisessentialfortranslocationandbindingtointracellularmembranes, particularlyintheperinuclearregion[30,31].Whenintracellularlevelsof calciumiselevated,twoCa 2+ ionsbindtotheC2domainatthreedistinct loops,termedcalciumbindingregions(CBR).Thisbindingallowsthe hydrophobicresiduesoftheCBRstobeinsertedintothemembraneinterior

[32].TheC2domainofcPLA 2αpreferentiallyinteractswiththechargeneutral phosphatidylcholin(PC)[33],howeverstudieshaveshownthatcPLA 2αdoes nothavepreferenceforhydrolysingphospholipidswithaspecificheadgroup [34,35].Inadditiontoariseinintracellularcalcium,completeactivationof cPLA 2αalsorequiresphosphorylation.However,thisregulatorymechanismis lessimportantwhenintracellularcalciumlevelsarehigh[36]. Therearethreeknownserineresiduesinthecatalyticdomainthatareof importanceformaximalfunctionofcPLA 2α[37].Ser505isphosphorylatedby mitogenactivatedproteinkinases(MAPKs)[38].Phosphorylationofthis residueonlymodestlyincreasetheactivityoftheenzyme,however,Dasetal. [39]haveshownthatitresultedina60foldenhancedmembraneaffinity.Ser 727canbephosphorylatedbyMAPKinteractingkinase[40].Ithasbeen suggestedthatthisphosphorylationenhancetheactivityofcPLA 2αby inhibitingannexinA2andthecalpactinlightchain,p11,toformaninactivating complexwithcPLA 2α[41].WhenphosphorylationoccursatSer515by calmodulinkinaseIItheactivityincreasesthreefold[42],whichmightbedue toaconformationalchangeoftheenzyme.Furthermore,thecatalyticefficiency ofcPLA 2αcanbeincreasedviabindingtophosphatidylinositol4,5

5 bisphosphate(PIP2)[43].IthasbeenproposedthatPIP2canactasananchor moleculeandfacilitatetranslocationtotheperinuclearregionevenatlow intracellularcalciumlevels[44].Ithasalsobeenshownthatceramide1 phosphate,inaCa 2+ dependentway,canactivatecPLA 2αwhileannexinIand Vhaveinhibitoryeffects[45,46] TherolesofcPLA 2αinphysiologicalandpathologicalconditionshave beeninvestigatedmostlybyusingcPLA 2αdeficientknockoutmice.These studieshaverevealedthatdeletionoftheenzymecauseddifficultiesduring labourandinembryogenesis[47].Italsoledtoadisruptabilitytoconcentrate urineandthemicedevelopedalargenumberofulcersintheintestine[48,49]. Ontheotherhand,theseknockoutmiceshowedtobehealthierinother aspectsandoutofthisonecouldconcludethatcPLA 2αisinvolvedin postischaemicbraininjury,allergicresponses,acuterespiratorydistress syndrome,arthritisandadenomatouspolyposis[50].Moreover,evidenceexists thatcPLA 2αalsoisinvolvedinthedevelopmentofmultiplesclerosisandin differentformsofcancer[51,52].

Calcium independent phospholipase A 2

iPLA 2sarecalciumindependentintracellularPLA 2sthatareubiquitously expressedandlocatedinthecytosolaswellasinmembranefractionsofcells

[5355].ThisgroupofPLA 2canbedividedintoseveralsubgroups,iPLA 2VIA –F,outofwhichtypeVIAisbyfarthemoststudied.Thisenzymecanbe presentasfivesplicevariants,twoofwhichshowcharacteristicPLA 2activity [54,56]whilethreelackthecatalyticregionandmighthavenegativeinhibitory effectontheothertwo[57].TheiPLA 2enzymeshavenopreferencefor hydrolysisofAAcontainingphospholipids[53].ThemolecularsizesofiPLA 2 differwidelydependingonspecificsubgroup,however,theyaregenerally regardedashighmolecularweightPLA 2swithmolecular massesaround8590 kDa.

AlthoughiPLA 2sdonotrequireCa 2+ foritscatalyticactivity,ithasin somereportsbeenproposedthattheactivityofthisenzymeindirectlyis regulatedbytheintracellularcalciumconcentrationsinCa 2+ stores[58,59]. DepletionofsuchstoreshasbeenshowntoelevatetheactivityofiPLA 2.

Furthermore,typeVIAiPLA 2isthoughttobeactivatedbyProteinkinaseC

6 (PKC)alfa[60]andseveralotherreportsalsodemonstratethatreactiveoxygen species(ROS)canpotentiatetheactivityoftheenzyme[61,62].

iPLA 2sareconsideredtoplaykeyrolesinhomeostaticmembrane phospholipid,rearrangementandreincorporationoffattyacids[63, 64].Thisreincorporationispivotalduetothegreatimportanceofkeepingfree AAatalowconcentration.Forexample,highlevelsofAAhavebeenshownto induceapoptosis[65].Moreover,evidenceexistthatiPLA 2isinvolvedinsignal transductionincertaincelltypes,forexampleininsulinsecretingbetacells.It hasbeenshownthatthepresenceofanactivetypeVIAiPLA 2iscrucialfor increasedinsulinsecretioninresponsetoglucosestimulation[66,67]. Furthermore,Balboaetal.[68]hasrecentlyshownthatproliferationofhuman promonocyticU937cellsismediatedviatheactionoftypeVIAiPLA 2.The relevanceofiPLA 2indifferentbiologicaleventsarecomplexandthereare probablyanumerousoffunctionsyettobeelucidated.

Secretory

Todaythereare10knownmammalianencodingdifferenttypesof sPLA 2.Inorderofdiscoveryandstructuralfeatures,theseenzymeswere numberedasfollows;IB,IIA,IIC,IID,IIE,IIF,III,V,XandXII.Inaddition, therearetwoknownproteinsthatarecloselyrelatedtosPLA 2inastructural aspectbutthatlackthePLAactivity.AllsPLA 2shavealowmolecularweight around1418kDa(exceptforIII)andasetof6to8disulfidebondsmaking themverystablebutalsosusceptibletoreducingenvironments.Forcatalytic activitysPLA 2requirescalciumintherangeof1–100MandallofthesPLA 2 typesshareahighlyconservedCa 2+ bindingloopandahistidine/arginin catalyticdyad.[69]

ThetissuedistributionofsPLA 2varieswidelydependingonspecificsub groupandseveraltypesofsPLA 2dooftencoexistincells[70].Withinthecells, sPLA 2sarestoredingranulesanduponstimulationtheymaybesecretedand canthereafteractinaparacrineorautocrinewaytoreleaseAAandotherfatty acids.Inadditiontohydrolysingtheouterleafletofphospholipidmembranes, sPLA 2smayactintracellularduringsecretion[71,72]orthroughtheheparan shuttling–pathway[73].Thispathwaymakesitpossibleforheparinbinding sPLA 2,viainternalisation,toalsohydrolysephospholipidsinintracellular membranes.DifferentsPLA 2showdifferentpreferenceforcertain

7 phospholipidsbutmostcommonlysPLA 2actonanionicphospholipids,except fortypeVandXthatareknowntoalsohydrolysethechargeneutralPC[74, 75].

AlthoughsPLA 2sarenotbelievedtohaveselectivityforAAcontaining phospholipids,ithasbeendemonstratedthatbothtypeVandXsPLA 2 effectivelymobilizeAAindifferentcelltypes[76,77].However,anotherstudy hasshownthattheeicosanoidlevelswereonlyslightlyelevatedwhenthe activityoftypeVsPLA 2washeavilyincreasedinmiceoverexpressingthe enzyme[78].Furthermore,incertaincelltypes,severalsPLA 2shavebeen suggestedtoactinconcertwith,orevenbecriticalfortheactivityofcPLA 2α [71,72,79,80].NonenzymaticactivitieshavebeenascribedtosPLA 2s[81],for examplethebindingtospecificMtypereceptors.Thisbindingmayaffectcells indifferentways;ithasbeenproposedthatitcangiverisetocellproliferation, cellmigration,eicosanoidandcytokineproduction[82,83]butalsothatit mightinactivatesPLA 2s[84].

ThefunctionsofthedifferentsPLA 2sareextremelydiverseandarefar frombeingfullyunderstoodandtherearediscussionsconcerningregulation andimportanceoftheactionoftheseenzymes.However,factisthathigh levelsofsPLA 2shavebeenfoundinanumerousofpathologicalstatesfor exampleinrheumatoidarthritis[85],Chron´sdisease[86],respiratorydistress syndrome[87]andpneumonia[88].Furthermore,typeXsPLA 2hasrecently beensuggestedtoplayaroleincoloncancer[89].MostofthesPLA 2salsoplay importantrolesinourdefenseagainstvariouspathologicalmicroorganisms; typeIII,VandXsPLA 2haveallbeenshowntoexecuteantiviralactions[90,

91]whilegroupIIAsPLA 2areknowntoshowgreatbactericidalactivity[92, 93].

Cyclooxygenases NextstepintheAAmetabolismcascadeinvolvesthebifunctional actionofCOXs,whicharehemecontainingmembraneboundenzymes.COXs arehomodimersandeachdimerconsistsofthreedomains;anepidermal growthfactordomain,amembranebindingdomainandacatalyticdomain[94]. Thelattercontainstwodistinctactivesitesthatenabletheenzymetocatalyse twosequentialreactions(fig.3);firstCOXperformsitsactivity whichleadstocyclisationofAAandtheadditionofa15hydroperoxygroup,

8 generatingPGG 2.Inthenextstep,COXperformsitsperoxidaseactivitywhere the15hydroperoxygroupisreducedandPGH 2isformed[94].Themembrane bindingdomainsurroundstheactivesiteanditisbelievedthatgross conformationalchangesofthisdomainisnecessaryforAAtoenterandgetin contactwiththeactiveresidues[95]. Atpresent,theCOXenzymescanbedividedintwogeneticallydistinct isoforms,COX1andCOX2.AsplicevariantofCOX1hasalsobeen discoveredandisreferredtoasCOX3.

Figure 3. Conversion of arachidonic acid into prostaglandin H 2

COXs exhibit both oxygenase and peroxidase activity when converting AA into PGH 2

Cyclooxygenase-1 Thefistcyclooxygenasewaspurifiedin1976fromsheepandinbovine seminalvesicles[96,97].Today,thisisoformisknownasCOX1andisa70 kDalargeproteinthatisconstitutivelyandabundantlyexpressedinmammals. COX1isconsideredtohavehousekeepingfunctionsandseveralfeatures,such asmultipletranscriptionstartsitesandthelackofTATAandCAATboxinthe promotorregionofthegene,supportthistheory[98].TwoexistingSP1motifs

9 inthepromoterregionareproposedtoregulatetheconstitutiveexpressionof theenzyme[99].However,somereportsdemonstratethatincertaincelltypes COX1canbeinducedforexamplebyIL1beta[100],transforminggrowth factorbeta[101]andvascularendothelialgrowthfactor[102].

Cyclooxygenase-2 Forseveralyears,COX1wasbelievedtobetheexclusiveCOX generatingPGs.Intheearly1990’stwoseparategroupssimultaneously discoveredanovelinducibleformoftheenzyme,termedCOX2,whichshared about60%aminoacidsequencehomologywithCOX1[103,104].Incontrast toCOX1,thisisoformisseldompresentincontrolcellsandthepromoter regionforCOX2containsseveralregulatoryelements,forexamplebinding sitesforNFκBandnuclearfactorIL6andacisactingreplicationelementmotif andanEbox[105].ExpressionofCOX2proteincanbeinducedbydifferent cytokinessuchasIL1,TNFα,bybacterialagentssuchaslipopolysaccharide (LPS)andbydifferentgrowthfactors[106].Inadditionofbeinginduced, COX2canalsobemarkedlysuppressedbyantiinflammatorycytokineslike IL4andIL10[107].Moreover,theinductionoftheenzymecanbeinhibited byhighlevelsofnonsteroidalantiinflammatorydrugs(NSAIDs)through inactivationofI κBkinase[108].Despitethefactthatthepromoterregionof COX2lacksGRE,COX2ismarkedlysuppressedbyantiinflammatory [109].Thisinhibitionoftheproteinexpressionissuggestedto beduetosuppressedlevelsofactivatedNFκBandbydestabilisedanddegraded COX2mRNA.ModificationofthestabilityofthemRNAforCOX2isan importantregulatorymechanism.Forexample,PGE 2isknowntostabilisethe COX2mRNAinap38dependentway[110,111].Hereby,theenzymeis regulatedviaapositivefeedbackloop.

Cyclooxygenase-3 AthirdisoformofCOXwasisolatedbyChandrasekharanin2002[112]. Thisenzyme,termedCOX3,isasplicevariantofCOX1andretainsanintron inmRNAandproteinexpressioncomparedtoCOX1.Highlevelsofthis

10 enzymehavebeenfoundincerebralcortexandinhearttissue[112,113].The regulationofthisisoformdoesnotdifferfromthatofCOX1anditshares featureswithbothCOX1andCOX2whenitcomestostructureand enzymaticfunction.However,ithasbeensuggestedthatthecatalyticactivityis slowerincomparisontotheothertwoisoforms[112].

Differences between cyclooxygenase-1 and cyclooxygenase-2 AlthoughCOX1ismostlyassociatedwithkeepingdifferent prostaglandins,includingPGE 2,athomeostaticlevels,ithasalsobeen demonstratedthatthisisoformisresponsibleforelevatedlevelsof intheimmediateinflammatoryphaseinresponsetoCa 2+ mobilizingagents [114].IncontrasttoCOX1,COX2isconsideredtobeutterlyimportantfor thedelayedPGgeneration.,inducedforexamplebyLPS,hasbeen showntobesuppressedbydisruptionoftheCOX2genebutnotoftheCOX 1gene[115].AnexplanationforthiscanbethatCOX2,incontrasttoCOX1, isnotdependentonhighlevelsofmobilizedAA[116,117].Interestingly,thein vitroKmvalueforCOX1isalmostthesameasforCOX2suggestingthatthe AAlevelisnotadecisivefactor[118].Anotherproposedexplanationforthe differenceinfunctionbetweenthetwoisoformsisthedifferenceinsubcellular localisation.Hereby,thereisapossibilitythatoneisoformofCOXismore stronglyassociatedtoacertainPLA 2overtheother.EventhoughbothCOX1 andCOX2arelocalisedattheendoplasmicreticulumandperinuclear envelope,COX2hasbeenproposedtopreferentiallylocalisetothelatter[119]. ContradictoryresultshavehoweverbeenpresentedbySpenceretal.[120], whichdidnotrevealanydifferencesinsubcellularlocalisationforthetwo isoforms. Inadditiontoinflammation,COXenzymesanditssubsequent formationofPGE 2areknowntoplaycrucialrolesinnumerousofbiological functionssuchasfemalereproduction,kidneyfunctionandbonemetabolism [121123].Thereisoftenadiscrepancyinthecontributionfromthetwo isoformsofCOXandoftentheyhavequiteoppositeeffects[124].Although

COX1hasshowntobecriticalforPGE 2formationinforexampleovarian cancercelllines[125],severecomplicationsaremoreoftenassociatedwith dysregulationoftheCOX2protein.COX2hasbeenimplicatedindiseases

11 suchasAlzheimer’s[126],multiplesclerosis[127]andinseveraldifferent cancerforms[128130].

Cyclooxygenase inhibitors hasbeenusedasanantiinflammatorydrugforoverahundred years,however,itwasfirstinthe1970’sthatthetherapeuticmechanismofthe substancebecameknown[131].Aspirin,alongwithNSAIDs,inhibitthe actionsoftheCOXenzymesandarethemostcommonlyprescribeddrugsin theworld.WhenCOX2wasdiscovered,severalresearchgroupsexpresseda hypothesisthatCOX1wasthegoodandCOX2thebadCOXandthat specificinhibitionofthelatterwouldgiverisetowantedtherapeuticeffects withoutanysideeffectssuchasgastricirritation[132,133].However,COX2 wasproventobeinvolvedinseveralhomeostaticfunctionsaswellandtheuse ofspecificCOX2inhibitorsresultedinforexampleunwantedcardiovascular sideeffects[134].AlthoughCOX2specificdrugsareofinterestfortreatment ofdiseasessuchascoloncancer[135]andneuroblastoma[136]sideeffects existsandhavetobetakenintoconsideration. isanothercommondrugusedfortreatmentoffeverand ,howeverthissubstancehasnodirectinhibitoryeffectoneitherCOX1or COX2.WhenthethirdCOXenzymewasdiscovered,itwasfoundtobe inhibitedbyparacetamol[112],andthe“mystery”oftheactionofparacetamol wasthoughttobesolved.However,inactivationofCOX3cannotexplainthe therapeuticeffectofparacetamolandthisinhibitoryeffectisnotlikelytobe clinicallyrelevant[137].Today,thepreciseactionofparacetamolisstillunclear butitmightbeinvolvedinreducingandtherebydepleteanecessary forcertainPGEs[138].

Prostaglandin E synthases

ThelastenzymaticstepthatleadstothegenerationofPGE 2isdueto theactionofthePGEs(Fig4).Today,threedistinctenzymesthatconvert

PGH 2toPGE 2areknown;themicrosomalPGEs1and2(mPGEs1, mPGEs2)andthecytosolicPGEs(cPGEs)[139].

12

Figure 4. Conversion of PGH 2 to PGE 2 by terminal PGEs

Microsomal -1 mPGEs1isa16kDaenzymethatisassociatedwiththenuclear membraneandthathaveasignificantsequencehomologywithproteins belongingtothemembraneassociatedproteinsineicosanoidandglutathione metabolism(MAPEG)family.mPGEs1wasthefirstPGEstobediscovered andwasrelativerecentlypurifiedbyJakobssonetal[140].Theactivityofthe enzymeisdependentonthepresenceofglutathioneasacofactor.Furthermore, aconservedArginin110hasbeenshowntobecriticalforitscatalyticactivity [141].ThetranscriptionofmPGEs1isknowntoberegulatedviatheMAPKs extracellularsignalregulatedkinase(ERK)andp38andviaazincfinger protein,theearlygrowthresponse1(Egr1)[142144].mPGEs1isnormally notpresentinrestingcellsbutcanbeinducedinresponsetoproinflammatory stimulisuchasTNFα,IL1andLPS[141,145147]whileadownregulating effectoftheenzymehasbeenseenbytheantiinflammatoryprostaglandin15 deoxyPGJ 2[148]. TheactionofthisPGEsisbelievedtoplayamajorroleinthe inflammatoryresponseandastudyrevealedthatmacrophagesfrommPGEs1 knockoutmicecompletelyfailedtoproducePGE 2inresponsetoLPS[142]. Furthermore,mPGEs1isalongwithCOX2involvedinaseriesofother differentbiologicalfunctionssuchasreproductionandnormalkidneyfunction [149,150].Thisenzymehasalsobeendetectedathighlevelsinseveraltypesof cancer[151,152].

13 mPGEs1hasbeensuggestedtobecoregulatedwithCOX2andto haveapreferenceforcouplingwiththisisoformoverCOX1[140,141,153]. However,mPGEs1canbecoupledtoCOX1whentheamountoffreeAAis high,aswhenaddedexogenously[154].

Microsomal prostaglandin E synthase-2 AnothermPGEswasidentifiedbyWatanabeetal.in1999[155]and namedmPGEs2.ThissecondmPGEshasamolecularweightof33kDaand isconstitutivelyexpressedinmostcells,however,itismostabundantinthe heartandbrain[155].mPGEs2isnot,incontrasttomPGEs1,dependenton glutathioneasacofactor[156,157]. mPGEs2isconsideredtobecoupledtobothoftheCOXenzymes, however,withaslightpreferenceforCOX2[154].TheroleofmPGEs2is notyetfullyestablished,howeverimportantly,arecentstudysuggestedthatthis formofPGEsisnotcriticalforthesynthesisofPGE 2invivo[158].

Cytosolic prostaglandin E synthase ThethirdknownPGEsisacytosolicformthatwasfirstreportedin 2000byTaniokaetal.[114].cPGEsisidenticaltotheproteinp23,hasa molecularweightof23kDaandisconsideredtobeaconstitutivelyexpressed enzymeinmosttissuesandcells.cPGEsis,likemPGEs1,dependenton glutathioneasacofactorforitsenzymaticactivity[114].ThebindingofcPGEs toheatshockprotein90hasalsobeenshowntobenecessaryforitsactivation [159].Moreover,Kobayashietal.[160]discoveredthatcPGEsisregulatedby phosphorylationbycaseinkinaseIIthatinturnrequiresanactivep38MAPK. ThecouplingofcPGEstothedifferentCOXisoformshasbeenstudied intransfectedHEK293cellsandrevealedamarkedpreferenceforcouplingto

COX1andisconsideredtomaintainhomeostaticlevelsofPGE 2.Ithasalso beensuggestedtobeinvolvedintheimmediatePGE 2formationinducedby calciumionophore[114].

14 Prostaglandin E 2

PGE 2participatesinawiderangeofbodyfunctionsandhas physiologicalaswellaspathophysiologicaleffects.First,PGE 2wasbelievedto bereleasedfromcellsonlythroughpassivediffusionbutitisnowknownthat thereleaseofPGE 2ismainlymediatedbyaspecifictransporter,multidrug resistanceprotein4[161].Whenreleased,PGE 2canactinanautocrineor paracrinemannerandtheactionismediatedbybindingtoeitheroffour differentPGE 2receptors[162].ThesebelongtothefamilyofGprotein coupledreceptorsandaretermedEP1,EP2,EP3andEP4.Dependingonthe ,PGE 2mediatesdifferentsignalsanddifferentprocessesarelaunched.

Duetothis,PGE 2cangiverisetocompletelyoppositeeffectsincells.For exampleEP2andEP4couplestoGs,whichleadstoincreasedformationofthe secondmessengercyclicadenosinemonophosphate(cAMP)andsubsequent activationofproteinkinaseA(PKA)whileEP3couplestoGithatresultsin decreasedlevelsofcAMP[163,164].WhenPGE 2givesrisetoelevatedlevels ofcAMP,itisgeneratingapositivefeedbackloop;cAMPactivatestheMAPK p38,whichleadstostabilisedmRNAofCOX2.[110,111,163].Moreover, whenactingasatoEP1,PGE 2generatessignalsleadingto andsmoothmusclecontractionwhileoppositeeffects, bronchodilatationandsmoothmusclerelaxationisseenwhenPGE 2actsasa ligandtoEP2[165167].PGE 2isalsoknowntohaveaprotectiveeffecton mucousmembranesbydecreasingthegastricacidsecretionandstimulating gastricmucoussecretion[168].Furthermore,itspresencehasbeenshowntobe pivotalforfemalereproduction,normalkidneyfunction,vascularhypertension andneuronalfunction[169].ThesignaltransductiongeneratedfromPGE 2and itsbindingtoEPreceptorsisconsideredtobeextremelycomplex.Thewide rangeoffunctionsassociatedwithPGE 2isprobablyduetotheabilityofthe affectedcellstointerpretandrespondtopatternsofsignalsratherthanrespond toasinglesignal. OneofthekeyresponsibilitiesPGE 2isknowntohaveistobean intermediateforseveraleventsoccurringduringtheinflammatoryresponse. Fever,pain,rednessandswellingarealltypicalsymptomsduringinflammation andareallascribedtoelevatedlevelsofPGE 2.ViaEP1andEP3,PGE 2initiate thefebrileresponsebysignallingtohypothalamustoelevatethebody temperature[170].ThiselevatedtemperaturewillremainforaslongasPGE 2is present.PGE 2isalsoinvolvedinlocalpainhypersensitivitybymaking peripheralnocireceptorsmoresensitive[171].PGE 2canalsoactasa

15 vasodilatorandcancauseanincreaseinvascularpermeability.Hereby,redness andcanoccurasthisallowsplasmaandmoreleukocytes,suchas monocytes,toleakthrougharterialwallintothesurroundingtissueatsitesof inflammation[172].AlthoughPGE 2isaproinflammatorymediator,PGE 2is alsoimportantforresolutionofinflammation.Forexampleastudyhasshown thatPGE 2canupregulatetheantiinflammatoryIL10whilesitdown regulatestheproinflammatorymediatorTNFα.[173].

16 PRESENT INVESTIGATION

Background and aim Paper I EversincethePGswerefirstdiscoveredandidentifiedaskeymediators ininflammation,thedesireforfindingouttheexactsignallingpathwayand regulatorymechanismsconcerningtheseeicosanoidshasbeenimmense.AAis amajorprecursorofalleicosanoidsproducedduringinflammationaswellas undernormalconditions.EnzymesinvolvedintheAAcascadeleadingtothe generationofPGsarePLA 2,COXandPGEsandthese,especiallytheformer two,havebeenstudiedintenselyinthelastdecades.

ThecommonviewpointwhencellsareinarestingstateisthatcPLA 2α isakeydistributoroffreeAAthatsubsequentlyismetabolisedviaCOX1and cPGEsormPGEs2,generatingbasallevelsofPGE 2.Theseenzymesarealso consideredtoberesponsibleforthePGE 2formationintheinitialstageof inflammation[114].Duringthedelayedinflammatoryresponse,whichcanbe mimickedbyexposureofthecellstobacterialcomponentssuchasLPS, expressionofCOX1isunaffectedwhileexpressionofcPLA 2αisslightly elevatedandespeciallyCOX2andmPGEs1aremarkedlyinduced.This,in combinationwithelevatedlevelsofcalciumandinitiatedphosphorylation cascades,resultsinalargeamountofgeneratedPGE 2.AlthoughCOX1has beensuggestedtocontributetothePGE 2formationalsounderthese conditions[174],cPLA 2αalongwithCOX2andmPGEs1areconsideredto bethemajoractors[175]. Thecomplexsystemsregulatingtheformationofeicosanoidsareknown tobecellandtissuespecificandaproblemisthattheviewpointoftoday mostlyisbasedonresultsfromstudiesusinganimalcellsand/ordifferentcell lines.Althougheasier,oftenmorecosteffectiveandbettercontrolledsystemas such,thereisnoguaranteethattheseregulatorymechanismsarecomparable withthesysteminhealthyhumancells.Althoughallresultsinthisthesisare basedoninvitroexperiments,theuseofprimarycellsfromhealthyindividuals mayprovideamorecorrectestimationofactualeventsoccurringinthehuman body.Therefore,theaimofourstudywastoelucidatethespecificrolesof differentenzymes,involvedinthegenerationofPGE 2inhumanmonocytes,in responsetospecificstimuliandLPStreatment.

17 Paper II Thelastdecadehaspresentedalotofstudiesconcerningsocalled functionalfood.Theinterestofthisfieldhasgrownbothamongresearchers andthegeneralpopulation.Thereasonforthisisthehopesandbeliefsthat differentsubstancesinfruits,vegetablesandothernaturalingredientsusedin dailycookingcouldpotentiallyexertatherapeuticeffectinsomediseases.For example,thewesterndietcontainsveryhighlevelsofproinflammatoryomega 6fattyacids,suchasAA.Adietwithanintakeoflessomega6butandmore omega3fattyacids,suchaseicosapentaenoicacidanddocosahexaenoicacid, hasshowntoeaserheumatoidarthritissymptoms[176] Recently,attentionhasbeenpaidtoellagicacid,apolyphenolic compoundofwhichthehighestlevelsarefoundinfruitsandnutssuchas pomegranate,blackberries,strawberriesandwalnuts.Thiscompoundhasbeen showntohaveantitumorigeniceffectsintermsofinhibitingproliferationand initiatingapoptosisincertainformsofcancercelllinesaswellashavinganti inflammatoryproperties.Theexactmechanismbywhichellagicacidexertsits effectsisyetunknown,howeverithasbeensuggestedthatellagicacidmodulate theactivityoftranscriptionfactors,suchasNFκB[177]. Mostofthestudiesconcerningtheantiinflammatoryeffectofellagic acidhaveusedpomegranatejuiceorotherfruitconcentratescontainingother substancespotentiallyinteractingwithellagicacid.Inourstudywewantedto studywhetherornotpureellagicacidhadanyeffectonthereleaseofPGE 2in humanmonocytes.

18 Methodology Isolation of human monocytes

Leukocyteswereobtainedfrombuffycoatsofhealthyblooddonors. Themononuclearfractionwasobtainedfromgradientcentrifugationusing FicollPaquePLUS.Monocyteswereisolatedbyadherencetopolystyrene dishesandnonadherentcellswerewashedaway.Themonocyteswerecultured foratotaltimeof2daysat37°Cinahumidifiedatmosphereof5%CO 2 . Immunoblotting

CellswerelysedinLaemmlissamplebuffercontainingβ mercaptoethanolandproteaseinhibitors.Celllysatesweresubjectedto NuPAGEelectrophoresisfollowedbysubsequentelectrotransferonto polyvinylidenemembranes.Membraneswereblockedingelatineandincubated withprimaryovernight.Appropriatehorseradishperoxidase coupledsecondaryantibodieswereaddedfor1hour.Finally,theproteinswere detectedwithSupersignalWestPicoChemiluminescentsystemandcapturedon Xrayfilm.BandintensitieswereanalysedusingImageQuantTL. Analysis of [ 3H]AA release

MonocyteswerelabelledwithtritiatedAA([ 3H]AA)for24hours.Ifpre treatmentofanykindwasusedthiswasaddedtothelabellingmedium.The cellswerethenwashedthreetimes,givenfreshmediumandpresentedto inhibitorsorstimuliforaspecificperiodoftime.Theculturemediumwasthen collectedandcellswerelysedusingTritonX100.Theamountofreleased [3H]AAinthemediumwasdeterminedbyliquidscintillationcountingand presentedaspercentageoftotalrecoveredradioactivity.

19 Isolation of subcellular fractions

Monocyteswerescrapedoffinabuffersolution,sonicatedand centrifugedat1700g.Apartofthe1700gsupernatantwasusedasasourceof COXsandPGEsforenzymeactivityassay.Theremainingsupernatantwas ultracentrifugedat60000g.Thesupernatantwascollectedandusedasa sourceofcPLA 2.Thepelletedmicrosomalfractionwasresuspendedinbuffer solutionandusedfordeterminationoftheactivityofmPGEs.Totalamountof proteinineachsubcellularfractionwasdeterminedbythemethodofBradford, usingbovineserumalbuminasstandard.

Enzyme activity assay

Theactivitiesoftheenzymesofinterestweredeterminedinthe differentsubcellularfractionsdescribedabove.Foranalysisofdirecteffectofa substance,thiswasaddedtothesubcellularfractionandpreincubatedfora specificperiodoftime.Theassayswereperformedbymeasuringthe conversionofanexogenouslyaddedsubstratetothefinalproduct.Forthe analysisofcombinedactivityofCOXandPGEsandfortheactivityof mPGEs,AArespectivelyPGH 2wereusedassubstrates.Inbothofthesecases, theproducedamountsofPGE 2weremeasured.FortheanalysisofcPLA 2α activity,vesiclesof1stearoyl2[ 14 C]arachidonoylphosphatidylcholinewere usedassubstrateandreleased[ 14 C]AAwasmeasured.Silicicacidcolumn chromatographywasusedforseparatingfreefattyacidsfromphospholipids anddeterminationofradioactivitywasperformedwithscintillationcounting. Analysis of PGE 2

MeasurementsofthereleaseofPGE 2wereperformedusingenzyme immunoassay(EIA)techniqueaccordingtothemanufacturer’sdescription.

20 Cell viability test Cellviabilitywasdeterminedbypropidiumiodidestaining.Stainedcells werecountedusingafluorescencemicroscopewith545nmexcitationand605 nmemissionfilters. Stimuli and inhibitors

LPS –AnendotoxinandamajorcomponentoftheoutermembraneofGram negativebacteria.LPSpromotesitsactionviabindingtothe CD14/TLR4/MD2receptorcomplex. A23187 –Amobileionophorethatselectivelytransportsdivalentcations. Increaselevelsofintracellularcalcium. Zymosan –Acellwallpolysaccharideofyeastthatinducesprotein phosphorylationandinositolphosphateformation. PMA –AnanalogueofdiacylglycerolthatactivatesPKCwhichleadsto phosphorylationofavarietyoftargetproteins. Pyrrophenone –AselectiveirreversibleinhibitorofcPLA 2α Indomethacin –AnonselectiveCOXinhibitor Aspirin –AnonselectiveirreversibleCOXinhibitor NS398 –AselectiveinhibitorofCOX2 –AselectiveinhibitorofCOX2 Indoxam –AninhibitorofmanydifferentsPLA 2 Bromoenol lactone (BEL) –AselectiveirreversibleinhibitorofiPLA 2 Ellagic acid –anaturalpolyphenolfoundincertainfruitsandnuts.

21 Results and discussion Paper I

AcommonbeliefisthatcPLA 2αisaveryimportantPLA 2forliberating AAfrommembranephospholipids.Ourstudyinhumanmonocyteswasshown tosupportthisbelief.Infact,thetypecPLA 2αwasshowntobepivotalforthe releaseofAAandthesubsequentformationofPGE 2.

Inthisstudyweinvestigatedthe[ 3H]AAandPGE 2releaseinresponse tostimulationwithA23187,opsonisedzymosanorPMAincellspretreated withLPSfor2or20h.ProteinexpressionsofcPLA2α,COXandPGEswere alsoinvestigatedwithorwithoutLPStreatment.

ThecPLA 2αproteinwaspresentincontrolmonocytesandamodest increaseoftheexpressionwasdetectableincellspretreatedwithLPSfor20h. Thereleaseof[ 3H]AAfromhumanmonocyteswasduringhighlevelsof intracellularcalcium,asduringA23187stimulation,markedlyelevated comparingtothereleasefromcontrolcells.Nosignificantdifferencein A23187induced[ 3H]AAreleasewasseenbetweencellsthathadbeenpre treatedwithLPSornotpretreated.Thisindicatesthatwhenstimulatedwith A23187,leadingtoasustainedincreaseoftheintracellularlevelsofcalcium,the amountofcPLA 2αproteinisnotaratelimitingfactorforthereleaseof [3H]AA.WhileA23187inducedasubstantialreleaseof[ 3H]AAtherewasonlya modestreleaseinresponsetozymosanandPMA.Thisreleasewasfurther slightlyinducedbypretreatmentwithLPSfor2and20h.Thisindicatesthat forzymosanandPMAinduced[ 3H]AArelease,theamountofcPLA 2αprotein mightplayasomewhatlargerrole.

TheroleofcPLA 2αwasevidentwhenusingthecPLA 2αspecific inhibitorpyrrophenone[178].Byaddingthisinhibitor,thereleaseof[ 3H]AA, seeninLPSandstimulitreatedmonocytes,wasalmostcompletelyinhibited. ThisinhibitorycapacitywasnotseenwhenusingindoxamorBEL,inhibitors ofsPLA 2andiPLA 2 respectively.Eventhoughourresultstronglysupportsthe needofanactivecPLA 2αformobilizationofAA,onehastokeepinmindthat ithasbeensuggestedthatasPLA 2initiallymayberequiredforfullactivationof cPLA 2α[80].ThispossibleactivationcouldbecausedbythebindingofsPLA 2 tothespecificMreceptor,startingasignalcascadeleadingtoactivationof cPLA 2α(Ref)IndoxamisaverypotentsPLA 2inhibitor,however,slowacting andnotcellpermeabelinallcelltypes[179].IfsPLA 2isperformingitswork

22 intracellularthereisapossibilitythatwefailtodetectanexistingcontributing effectofsPLA 2tothemobilizationofAA.Thelackofhighqualityinhibitors ofsPLA 2isacommonprobleminthisfieldofresearch.Becauseofthisit wouldbedesirabletoincludethetechniquewithsmallinterferingRNAs

(siRNA),inhibitingsPLA 2saswellastheMtypesPLA 2receptor,infuture experiments.

RegardingthereleaseofPGE 2,thecriticalroleofcPLA 2αwasfurther established.ThecPLA 2αspecificinhibitorpyrrophenonealmostcompletely abolishedthePGE 2releasewhilenoeffectwasseenusingindoxamorBEL. Anotherinterestingresultwasthateventhoughtherewasamuchhigherrelease of[ 3H]AAfromLPSpretreatedcellsinresponsetoA23187stimulation comparedtostimulationwithzymosanorPMA,thisdifferencewasnotseenin thecorrespondingPGE 2release.ThiscouldbeinterpretedascPLA 2αnotbeing ratelimitinginPGE 2formation.However,theamountofreleasedPGE 2 when addingexogenousAAtoLPSisupto10foldhigherthanthePGE 2release fromendogenouslysuppliedAA.Outofthis,onecouldconcludethatitis cPLA2αandnotCOX2oranyofthePGEsthatistheratelimitingenzyme forendogenouslyformedPGE 2.Anexplanationforthesedifferencesmightbe thatcomparedtozymosanandPMAstimulation,A23187stimulationalso activatesotherpathwaysforexample5LO.Duetothis,A23187stimulation givesrisetoalargeamountofothereicosanoidssuchasdifferentLTs.Our resultsshowedthatindomethacinandNS398,differentCOXinhibitors,only slightlyinhibitedthereleaseof[3H]AAinA23187stimulatedcellsindicating thatPGsarenotthemajorreleasedmetabolitesduringA23187stimulation.

ItisalsopossiblethatphosphorylationofcPLA 2αishighly advantageousfortheformationofPGE 2.AlthoughA23187stimulationcan initiatephosphorylationitisnotaspronouncedaswithzymosanorPMA stimulation.AstudyhasshownthatphosphorylationofcPLA 2αviaMAPKs resultedina60foldenhancedmembraneaffinity[39]andthismightbeof importanceforthecouplingbetweencPLA 2αandCOX2.Inaccordance,our resultsshowedthatPD98059andSB203580,specificinhibitorstowards activationoftheMAPkinasesERKandp38,substantiallyreducedtherelease ofPGE 2.IthasnotbeenreportedthattheactivityofCOX2ormPGEs1is regulatedviaphosphorylationandfurthermore,inhibitionwasnotseenin responsetoadditionofexogenousAA.Takentogether,theexplanationthat comestomindisthatthisinhibitionofthePGE 2releasebyPD98059and

SB203580isduetoalessphosphorylatedcPLA 2α.

23 Next,wewantedtoinvestigatetheindividualCOXproteinsalongwith theterminalPGEsandtheirroleinthereleaseofPGE 2.TheCOX1protein wasshowntobepresentincontrolcellsandwasnotaffectedbytreatmentwith LPS.Ontheotherhand,theCOX2proteinwasundetectedincontrolcellsbut inducedinatimedependentmannerbytreatmentofthecellswithLPS.This patternwasalsoseenregardingthemPGES1thatwasinducedinatime dependentmannerwithLPStreatment.However,mPGES1wasalso,inmost oftheexperiments,tosomeextentdetectableincontrolcells.Theotherto typesofPGEs,mPGEs2andcPGEs,werebothfoundtobepresentin controlcellsandtheirexpressionswerenotaffectedbyLPStreatment. Interestingly,althoughA23187stimulationofmonocytesresultedin substantialreleaseof[ 3H]AA,thesecellswereincapableofreleasingPGE 2that wassignificantlyhigherthanthelevelsreleasedfromcontrolcells.Basedon thesefindings,wesuggestthatCOX1alongwithexistingPGEs,cPGEsand mPGEs2,areunabletoconverttheendogenouslyreleasedAAintoPGE 2. OurresultsareherebycontradictingtheresultsreportedbyMarshalletal.[180]. Comparedtoourresults,thisstudyreportedmuchhigherPGE2formationin controlcellsinresponsetoA23187stimulation.AlthoughMarshalletal performedexperimentsusingsuspensionculturesofmonocytesandahigher concentrationofA23187thanwedid,thereisnoobviousexplanationforthis discrepancy.

ThereleaseofPGE 2wasclearlytimedependentandcompletelyreliant onpretreatmentwithLPS.TheamountofreleasedPGE 2wasinfactstrikingly aliketheamountofexpressedCOX2andmPGEs1protein.Moreover, indomethacinandaspirin,thataredualCOX1/COX2inhibitors,werenot betteratinhibitingthereleaseofPGE 2thanthespecificCOX2inhibitor

NS398.OurresultsherebystronglysuggestthatthereleasedPGE 2from endogenouslygeneratedAAissolelymetabolizedbyCOX2.Thisdiffersfrom arecentstudybyBezuglaetal.[174],whichshowedthatCOX1toalarge extentcontributedtoPGE 2formationinratlivermacrophagesinresponseto LPStreatment.Thisdifferencefurtherestablishestheimportanceof conductingstudiesonhumanprimarycells. WhenaddingexogenousAAtocontrolcells,COX1alongwithcPGEs ormPGEs2wasshowntobequitecapableofmetabolizingAAintoPGE 2. However,addingexogenousAAtoLPStreatedcellsresultedinamajor increaseinPGE 2releasecomparingtocellsthatwereexposedtoAAalone.

IndomethacinandaspirinwereslightlybetteratinhibitingthePGE 2release thanCOX2specificinhibitorNS398whenLPStreatedcellswereexposedto

24 exogenousAA.ThisindicatesthatalthoughCOX2issuperiorCOX1,the latterdocontributetothereleaseofPGE 2undertheseconditions.Importantly, theCOX2specificinhibitorNS398hadnoeffectonthereleasedPGE 2 from controlcellssuppliedwithexogenousAAindicatingthatthisinhibitornot affectsCOX1. TodistinguishthecontributionofdifferentPGEstothePGE 2releaseis somewhatmoredifficult.Thisisduetothefactthattherearenocommercially availablespecificinhibitorsofthedifferentPGEs.MK886isa5lipoxygenase activatingproteininhibitorthathasbeenshowntoalsoinhibitmPGEs1(ref).

TheusageofMK886,revealedaninhibitoryeffectofthePGE 2releaseinduced bystimuliandpretreatmentwithLPSfor20hofabout70%.Thisis consistentwiththetheorythatthisspecificformofPGEsisamajor contributortothePGE 2releaseinLPStreatedcells.TheinhibitionbyMK886 washowevernotcompleteandthereisapossibilitythatmPGEs2also contributestotheformationofPGE 2undertheseconditions.Another explanationcanbethatMK886ataconcentrationof50Mwasnoteffective enough.Inacellfreeenzymeactivityassaythisinhibitorwasshownnotto completelyinhibitthePGE 2formation.Lesslikelyisacontributoryeffectof cPGEs,sincethisformofPGEshasbeenshowntohavehighpreferencefor couplingtoCOX1.

AninterestingresultwasthatthereleaseofPGE 2fromcellspretreated withLPSfor2hoursseemedtobelessdependentonanactivemPGEs1.The inhibitoryeffectofMK886wasduringtheseconditionsatmost30%.This suggeststhatCOX2atthistimepointiscoupledtomPGEs2,probablydueto alessproteinexpressionofmPGEs1. Takentogether,wesuggestthathumanmonocytesrequireCOX2 expressionforcPLA 2mediatedPGE 2formation.Moreover,wheninduced, mPGEs1isthedominatingPGEsduringaninflammatoryresponse.An overviewoftheinvolvedenzymesinPGE 2formationinhumanmonocytesis presentedinFig5.

25

Figure 5. Enzymes involved in PGE 2 formation in human monocytes

Paper II

WehaveinvestigatedtheeffectsofellagicacidonPGE 2releasein humanmonocytes.Cells,pretreatedwithLPSfor20hfollowedbystimulation ofA23127,opsonisedzymosanorPMA,producedasubstantialamountof

PGE 2andthiswasaboutahundredtimeshigherthantheproductionseenin LPSuntreatedcells.Asaconsequenceofthis,effectsofellagicacidwas analysedinLPSpretreatedcells.Ellagicacid,whenaddedtothemonocytes onehourpriortopretreatmentwithLPS,wasshowntoberemarkablypotent ininhibitingPGE 2releaseinhumanmonocytes.Ataconcentrationof30M, ellagicacidinhibitedthePGE 2releaseinducedbythestimuliA23187, opsonisedzymosanandPMAwith8590%.Increasingtheconcentrationof ellagicacidto50Mrevealeda95–100%inhibitionofthePGE 2release, however,thisconcentrationofellagicacidresultedinsomelossincellviability.

InhibitionofPGE 2releasewasnotseenwhenellagicacidwasexposedtothe

26 cellsforashorttime,addeddirectlypriortothestimuli,insteadamodest increaseinPGE 2levelswasdetected. Toexplaintheseresultswithellagicacidwewentfurtherand investigatedtheproteinexpressionoftheinvolvedPGsynthesisingenzymes.

First,themodestlyinducedincreaseinexpressionofcPLA 2αbyLPSwas reducedbyellagicaciddowntothelevelseenincontrolcells.Thissuppression oftheproteinlevelwasseenalreadyataconcentrationof10Mellagicacid. TheconstitutivelyexpressedCOX1proteinwasneitheraffectedbytreatment withLPSnorbythepresenceofellagicacid.Incontrast,theLPSinduced expressionoftheCOX2proteinwasshowntobereducedinadosedependent mannerinresponsetotreatmentwithellagicacid.Ataconcentrationof30M ellagicacid,thelevelofCOX2proteinwasreducedto50%.Althoughthe mPGEs1proteinisconsideredtobeaninducibleenzymetheproteinwas detectedinasmallamountincontrolcells.However,theexpressionwasalways upregulatedbyLPStreatmentandthisinducedexpressionwasinhibitedby80 %inadosedependentmannerbyellagicacid.Wehavenotinvestigated whetherornotellagicacidhadanyeffectontheexpressionoftheothertwo

PGEspossibleinvolvedinthegenerationofPGE 2,cPGEsandmPGEs2. However,duetothefactthattheseenzymespredominantlyareconsideredto beconstitutivelyexpressedandnotaffectedbytreatmentwithLPS(sePaperI), theyarelesslikelytoberesponsibleforthemajorincreaseinPGE 2releaseseen afterpretreatmentwithLPSandstimuli.Furthermore,cPGEshasbeenshown tobepreferentiallycoupledtoCOX1[114]whichwebelievedonottoany majorextentcontributetothePGE 2generationinmonocytes.However,we cannotexcludeacontributingeffectoftheseenzymesandadditional experimentsarenecessarytoconfirmtheactualsituation. Takentogether,allproteinsanalysed,exceptforCOX1,wereshownto bedownregulatedtovariousextentbyellagicacid.Ifcomparingthedecreased formationofPGE 2withthedecreasedlevelsofproteinexpressions,thebest explanationisthattheratelimitingstepintheformationofPGE 2in monocytesisthestepsinvolvingCOX2andmPGEs1.Thisisbasedonthe observationsthattheproteinexpressionoftheseenzymeswasinhibitedby ellagicacidintherangeof1030M,whichcorrelatedwiththedosedependent inhibitionofPGE 2release.AlthoughtheexpressionofcPLA 2αwasdown regulatedtobasallevelsbyellagicacid,themaximumeffectwasseenalreadyat

10MindicatingcPLA 2αisnotratelimitingundertheseconditions. Toconfirmtheresultsthatellagicacidexertsaneffectontheprotein expressionofCOX2,mPGEs1andcPLA 2αwewentfurtherbyanalysingthe

27 activityoftheseenzymesinsubcellularfractionsfromcontrol,LPSandellagic acidplusLPStreatedcells.Supernatantfrom1700gcentrifugationofcelllysate wasanalysedforthecombinedactivityofCOXandPGEs,whilemicrosomal fractionandcytosolicfractionwasanalysedfortheactivityofmPGEsand cPLA 2αrespectively.Theassayswereperformedbymeasuringtheconversion ofexogenouslyaddedsubstrateandproductformation.Theresultsshoweda correlationwiththeproteinexpressioninintactcells;theactivitiesofthe enzymesinthesubcellularfractionsfromLPStreatedcellswereincreased comparingtosubcellularfractionsfromcontrolcells.Theseincreasesin activitieswerereducedby80to100%insubcellularfractionsfromcellstreated withellagicacidplusLPS. Althoughadditionofellagicacidtointactcells,directlypriortostimuli, revealednoinhibitoryeffectofthePGE 2release,wewantedtofurtherconfirm thatellagicaciddidnothaveadirecteffectontheenzymaticactivityofCOX, mPGEsandcPLA 2α.Experimentswerethereforeperformedusingsubcellular fractionsasenzymesourcesandpreincubatedwithellagicacidbeforeanalysis oftheactivityoftheseenzymes.Theseexperimentsconfirmedthatellagicacid didnothaveadirectinhibitoryeffectontheactivitiesoftheinvolvedenzymes. WhiletheactivitiesofmPGEsandcPLA 2αwereunaffected,theadditionof ellagicacidtosubcellularfractioncontainingthecombinedsourceofCOXand PGEssomewhatsurprisinglygaverisetoatwofoldincreaseinactivity.

Interestingly,thisisinaccordancewiththeincreasedreleaseofPGE 2seenin intactcellswhenellagicacidwasaddedpriortostimuli.Althoughwehaveno explanationforthisenhancedactivity,wesuggestthatthiseffectofellagicacid isduetoanenhancedactivityoftheCOXenzymesratherthananeffecton PGEs.Thisstatementisbasedontheresultsthattherewasnoeffectonthe mPGEsactivityandthatcPGEsislesslikelytobeamajorcontributorofPGE 2 undertheseconditions[114].Ellagicacidisapolyphenoliccompoundand therearereportssuggestingthatmillimolarconcentrationsofphenolsenhance COXactivity[181].Weperformedexperimentsinvestigatingtheeffectsof phenolsontheCOXactivity,however,thisdidnotleadtotheincreasein activitythatwasseeninresponsetotreatmentwithellagicacid Theexactmechanismbywhichellagicacidexertsitseffectsisunknown. StudieshaveshownthatellagicacidinhibitsMAPKsaswellastranscription factors.Thesepossibilitiesareofinterestwhenitcomestoexplaininghow ellagicaciddownregulatestheproteinexpressionofcPLA 2α,COX2and mPGEs1inresponsetoLPStreatment.First,theMAPKsERK,p38andc JunNterminalkinasehaveallbeensuggestedtobeaffectedbyellagicacid

28 [182,183]andthesekinasesareallimplicatedintheregulationofCOX2and mPGEs1[140,142].Forexample,inhibitionofp38isknowntodestabilisethe COX2mRNAleadingtoreducedexpressionofCOX2protein[110,111]. Furthermore,thetranscriptionfactorNFκBhasalsobeenshowntobe inactivatedbyellagicacid[184].Interestingly,NFκBisacommonelementfor alltheseenzymesandthepromoterregionforcPLA 2αandCOX2bothhave bindingsitesforthistranscriptionfactor[24,185].AlthoughmPGEs1does notsharethisfeature,ithasbeensuggestedthatmPGEs1isregulatedviathe transcriptionfactorEGR1[143]whichinturnmayberegulatedviaNFκBand viatheERKsignallingpathway[186]. Apossiblemechanismofhowellagicacidexertsitseffectsispresentedinfig6.

Figure 6. Possible mechanism of how ellagic acid exerts its inhibitory effect on PGE 2 release in human monocytes.

29 So,canadailyintakeoffruitsandnuts,duetothecontentofellagic acid,haveanantiinflammatoryeffectinhumans?Unfortunatelytherearestill onlyafewreportsconcerningtheabsorptionandmetabolismofellagicacidin thehumanbody.Seerametal.[187]haveinvestigatedtheplasmalevelsof ellagicacidinhumansafterconsumptionofpomegranatejuicecontaining12 mgofellagicacid.Intheirstudytheycouldonlydetectsubmicromolarlevelsof ellagicacidinplasmawhichislowerthanthe530Musedinourstudy.So basedonthis,theanswertothequestion,whetherornotadailyintakeoffruits andnutscouldhaveantiinflammatoryproperties,wouldhavetobeno. However,animportantconsiderationisthatthisresultisbasedononlyone experimentalsetupandtherearenostudiesofplasmalevelsafteranintakeofa higherdoseofpureellagicacid,withoutanyothersubstancespossibly interfering.Thiscouldpossiblegiverisetosignificantlyhigherlevelsofellagic acidintheplasma. OnehastokeepinmindthatPGE 2isjustoneofseveraleicosanoids importantfortheinflammatoryresponseanditwoulddefinitelybeinteresting toalsoinvestigatetheeffectofellagicacidontheseeicosanoids.Withouta doubt,furtherinvestigationsareneededbeforeadefiniteanswercanbegiven.

30 Conclusions Inhumanmonocytes;

●cPLA 2αiscriticalforthereleaseofAAandsubsequentformationofPGE 2.

PhosphorylationofcPLA 2αisnotnecessaryfortheAAreleasebutisclearly advantageousforthePGE 2formation.

●cPLA 2αcouplestoCOX2andnotCOX1whenitcomestogenerating

PGE 2.EventhoughhighlevelsofendogenousAAareavailable,COX1,along withcPGEsandmPGEs2,isnotabletofurthermetaboliseAAtoPGE 2ina significantway. ●ComparedtothesolepresenceofCOX1andconstitutivelyexpressed PGEs,thepresenceofCOX2,alongwithmPGEs1,leadstoa100foldhigher releaseofPGE 2.ThepatternofreleasedPGE 2issimilarwiththepatternof COX2andmPGEs1proteinexpression.

●themajorityofreleasedPGE 2isduetotheactionofmPGEs1andnot mPGEs2orcPGEs. ●ellagicacidinhibitsthereleaseofPGE 2.Thisinhibitoryeffectisduetoa downregulatingeffectofellagicacidontheproteinexpressionofcPLA 2α, COX2andmPGEs1andnottoadirecteffectoftheenzymeactivities.The expressionofCOX2andmPGEs1seemstoberatelimitingforthereleaseof PGE 2undertheseconditions.

31 ACKNOWLEDGEMENTS Iwishtoexpressmygratitudetoeachandeveryonewhomadethiswork possible. Iwouldliketospeciallythank; Mysupervisor,JonnyWijkanderforgivingmethechancetoexperiencethe excitingworldofscience.Althoughnoteverythingworkedasplannedinthis projectithasbeenfunandstimulatingworkingwithyou. MycosupervisorBirgittaSundströmforvaluablescientificinputs. EewaNånbergandChristinaFjaeraaforcontributiontoPaperII. AllpastandpresentPhDstudentsforcreatinganenjoyableworking atmosphereandespecially,Cecilia,ChristinaandRozbeh.Iwillprobablynever havesomanygoodlaughsinanofficeeveragain.Youaregreat! Annforalwaysbeingsohelpfulandforallencouragingwords. ElisabethandMicke,whatwouldwedowithoutyou... AllothercolleaguesatChemistryandBiomedicalScience. MyfamilyforallsupportandforalwaysbeingtherewhenIneedyou.Thanks fortakingcareofStelladuringhecticperiodsoftime! Dad,Iwishyouwerestillaround.Iknowyouwouldhavebeenproud. Friendsoutsidethelaboratory,andespeciallyMalin,thankyouforstillbeing there. Finally,Christian–thankyouforyourpatience,supportandlove.Andthank youforteachingmethemantrathatmakeslifealittlebiteasier“goodenough isperfect”.

32 REFERENCES 1. Dinarello,C.A., Role of pro- and anti-inflammatory cytokines during inflammation: experimental and clinical findings. JBiolRegulHomeostAgents,1997. 11 (3):p.91103. 2. Harizi,H.,J.B.Corcuff,andN.Gualde, Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. TrendsMolMed,2008. 14 (10):p.4619. 3. Olson,T.S.andK.Ley, Chemokines and chemokine receptors in leukocyte trafficking. AmJ PhysiolRegulIntegrCompPhysiol,2002. 283 (1):p.R728. 4. Kumar,S.andR.Jack, Origin of monocytes and their differentiation to macrophages and dendritic cells. JEndotoxinRes,2006. 12 (5):p.27884. 5. Hume,D.A., The mononuclear phagocyte system. CurrOpinImmunol,2006. 18 (1):p.49 53. 6. Dale,D.C.,L.Boxer,andW.C.Liles, The phagocytes: neutrophils and monocytes. Blood, 2008. 112 (4):p.93545. 7. ZieglerHeitbrock,L., The CD14+ CD16+ blood monocytes: their role in infection and inflammation. JLeukocBiol,2007. 81 (3):p.58492. 8. deWaalMalefyt,R.,etal., Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. JExpMed,1991. 174 (5):p. 120920. 9. Willis,A.L., Nutritional and pharmacological factors in eicosanoid biology. NutrRev,1981. 39 (8):p.289301. 10. Seeds,M.C.andD.A.Bass, Regulation and metabolism of arachidonic acid. ClinRevAllergy Immunol,1999. 17 (12):p.526. 11. Murakami,M.andI.Kudo, Phospholipase A2. JBiochem,2002. 131 (3):p.28592. 12. PetersGolden,M.,etal., Translocation of cytosolic phospholipase A2 to the nuclear envelope elicits topographically localized phospholipid hydrolysis. BiochemJ,1996. 318 ( Pt 3) :p.797 803. 13. Chiba,H.,etal., Cloning of a gene for a novel epithelium-specific cytosolic phospholipase A2, cPLA2delta, induced in psoriatic skin. JBiolChem,2004. 279 (13):p.128907. 14. Ohto,T.,etal., Identification of novel cytosolic phospholipase A(2)s, murine cPLA(2){delta}, {epsilon}, and {zeta}, which form a gene cluster with cPLA(2){beta}. JBiolChem,2005. 280 (26):p.2457683. 15. Pickard,R.T.,etal., Molecular cloning of two new human paralogs of 85-kDa cytosolic phospholipase A2. JBiolChem,1999. 274 (13):p.882331. 16. Song,C.,etal., Molecular characterization of cytosolic phospholipase A2-beta. JBiolChem, 1999. 274 (24):p.170637. 17. Underwood,K.W.,etal., A novel calcium-independent phospholipase A2, cPLA2-gamma, that is prenylated and contains homology to cPLA2. JBiolChem,1998. 273 (34):p.2192632. 18. Alonso,F.,P.M.Henson,andC.C.Leslie, A cytosolic phospholipase in human neutrophils that hydrolyzes arachidonoyl-containing phosphatidylcholine. BiochimBiophysActa,1986. 878 (2):p.27380. 19. Kramer,R.M.,etal., Solubilization and properties of Ca2+-dependent human phospholipase A2. BiochimBiophysActa,1986. 878 (3):p.394403. 20. Sundler,R.,D.Winstedt,andJ.Wijkander, Acyl-chain selectivity of the 85 kDa phospholipase A2 and of the release process in intact macrophages. BiochemJ,1994. 301 ( Pt 2) :p.4558. 21. Clark,J.D.,etal., A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent translocation domain with homology to PKC and GAP. Cell,1991. 65 (6):p.104351.

33 22. Gilbert,J.J.,etal., Antigen receptors on immature, but not mature, B and T cells are coupled to cytosolic phospholipase A2 activation: expression and activation of cytosolic phospholipase A2 correlate with maturation. JImmunol,1996. 156 (6):p.205461. 23. Tay,A.,etal., Isolation of promoter for cytosolic phospholipase A2 (cPLA2). BiochimBiophys Acta,1994. 1217 (3):p.3457. 24. Wu,T.,etal., Characterization of the promoter for the human 85 kDa cytosolic phospholipase A2 gene. NucleicAcidsRes,1994. 22 (23):p.50938. 25. Lin,L.L.,A.Y.Lin,andD.L.DeWitt, Interleukin-1 alpha induces the accumulation of cytosolic phospholipase A2 and the release of prostaglandin E2 in human fibroblasts. JBiolChem,1992. 267 (33):p.234514. 26. Maxwell,A.P.,etal., Epidermal growth factor and phorbol myristate acetate increase expression of the mRNA for cytosolic phospholipase A2 in glomerular mesangial cells. BiochemJ,1993. 295 ( Pt 3) :p.7636. 27. Wu,T.,etal., -alpha induces the 85-kDa cytosolic phospholipase A2 gene expression in human bronchial epithelial cells. BiochimBiophysActa,1996. 1310 (2):p.175 84. 28. Dessen,A.,etal., Crystal structure of human cytosolic phospholipase A2 reveals a novel topology and catalytic mechanism. Cell,1999. 97 (3):p.34960. 29. Pickard,R.T.,etal., Identification of essential residues for the catalytic function of 85-kDa cytosolic phospholipase A2. Probing the role of histidine, aspartic acid, cysteine, and arginine. JBiol Chem,1996. 271 (32):p.1922531. 30. Evans,J.H.,etal., Intracellular calcium signals regulating cytosolic phospholipase A2 translocation to internal membranes. JBiolChem,2001. 276 (32):p.3015060. 31. Glover,S.,etal., Translocation of the 85-kDa phospholipase A2 from cytosol to the nuclear envelope in rat basophilic leukemia cells stimulated with calcium ionophore or IgE/antigen. JBiol Chem,1995. 270 (25):p.1535967. 32. Bittova,L.,M.Sumandea,andW.Cho, A structure-function study of the C2 domain of cytosolic phospholipase A2. Identification of essential calcium ligands and hydrophobic membrane binding residues. JBiolChem,1999. 274 (14):p.966572. 33. Gerber,S.H.,J.Rizo,andT.C.Sudhof, The top loops of the C(2) domains from synaptotagmin and phospholipase A(2) control functional specificity. JBiolChem,2001. 276 (34):p.3228892. 34. Diez,E.,etal., Substrate specificities and properties of human phospholipases A2 in a mixed vesicle model. JBiolChem,1992. 267 (26):p.183428. 35. Wijkander,J.andR.Sundler, An 100-kDa arachidonate-mobilizing phospholipase A2 in mouse spleen and the macrophage cell line J774. Purification, substrate interaction and phosphorylation by protein kinase C. EurJBiochem,1991. 202 (3):p.87380. 36. Qiu,Z.H.,etal., The role of calcium and phosphorylation of cytosolic phospholipase A2 in regulating arachidonic acid release in macrophages.JBiolChem,1998. 273 (14):p.820311. 37. deCarvalho,M.G.,etal., Identification of phosphorylation sites of human 85-kDa cytosolic phospholipase A2 expressed in insect cells and present in human monocytes. JBiolChem,1996. 271 (12):p.698797. 38. Lin,L.L.,etal., cPLA2 is phosphorylated and activated by MAP kinase. Cell,1993. 72 (2):p. 26978. 39. Das,S.,etal., Mechanism of group IVA cytosolic phospholipase A(2) activation by phosphorylation. JBiolChem,2003. 278 (42):p.4143142. 40. Hefner,Y.,etal., Serine 727 phosphorylation and activation of cytosolic phospholipase A2 by MNK1-related protein kinases. JBiolChem,2000. 275 (48):p.3754251. 41. Tian,W.,etal., Mechanism of regulation of group IVA phospholipase A2 activity by Ser727 phosphorylation. JBiolChem,2008. 283 (7):p.396071. 42. Muthalif,M.M.,etal., Functional interaction of calcium-/calmodulin-dependent protein kinase II and cytosolic phospholipase A(2). JBiolChem,2001. 276 (43):p.3965360.

34 43. Mosior,M.,D.A.Six,andE.A.Dennis, Group IV cytosolic phospholipase A2 binds with high affinity and specificity to phosphatidylinositol 4,5-bisphosphate resulting in dramatic increases in activity. JBiolChem,1998. 273 (4):p.218491. 44. Casas,J.,etal., Phosphatidylinositol 4,5-bisphosphate anchors cytosolic group IVA phospholipase A2 to perinuclear membranes and decreases its calcium requirement for translocation in live cells. MolBiolCell,2006. 17 (1):p.15562. 45. Kim,S.,etal., Differential effects of annexins I, II, III, and V on cytosolic phospholipase A2 activity: specific interaction model. FEBSLett,2001. 489 (23):p.2438. 46. Pettus,B.J.,etal., Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J BiolChem,2004. 279 (12):p.113206. 47. Bonventre,J.V.,etal., Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature,1997. 390 (6660):p.6225. 48. Downey,P.,etal., Renal concentrating defect in mice lacking group IV cytosolic phospholipase A(2). AmJPhysiolRenalPhysiol,2001. 280 (4):p.F60718. 49. Takaku,K.,etal., Suppression of intestinal polyposis in Apc(delta 716) knockout mice by an additional mutation in the cytosolic phospholipase A(2) gene. JBiolChem,2000. 275 (44):p. 340136. 50. Sapirstein,A.andJ.V.Bonventre, Specific physiological roles of cytosolic phospholipase A(2) as defined by gene knockouts. BiochimBiophysActa,2000. 1488 (12):p.13948. 51. Kalyvas,A.andS.David, Cytosolic phospholipase A2 plays a key role in the pathogenesis of multiple sclerosis-like disease. Neuron,2004. 41 (3):p.32335. 52. Nakanishi,M.andD.W.Rosenberg, Roles of cPLA2alpha and arachidonic acid in cancer. BiochimBiophysActa,2006. 1761 (11):p.133543. 53. Ackermann,E.J.,E.S.Kempner,andE.A.Dennis, Ca(2+)-independent cytosolic phospholipase A2 from macrophage-like P388D1 cells. Isolation and characterization. JBiol Chem,1994. 269 (12):p.922733. 54. Larsson,P.K.,H.E.Claesson,andB.P.Kennedy, Multiple splice variants of the human calcium-independent phospholipase A2 and their effect on enzyme activity. JBiolChem,1998. 273 (1):p.20714. 55. Mancuso,D.J.,C.M.Jenkins,andR.W.Gross, The genomic organization, complete mRNA sequence, cloning, and expression of a novel human intracellular membrane-associated calcium- independent phospholipase A(2). JBiolChem,2000. 275 (14):p.993745. 56. Winstead,M.V.,J.Balsinde,andE.A.Dennis, Calcium-independent phospholipase A(2): structure and function. BiochimBiophysActa,2000. 1488 (12):p.2839. 57. Tang,J.,etal., A novel cytosolic calcium-independent phospholipase A2 contains eight ankyrin motifs. JBiolChem,1997. 272 (13):p.856775. 58. Nowatzke,W.,etal., Mass spectrometric evidence that agents that cause loss of Ca2+ from intracellular compartments induce hydrolysis of arachidonic acid from pancreatic islet membrane phospholipids by a mechanism that does not require a rise in cytosolic Ca2+ concentration. Endocrinology,1998. 139 (10):p.407385. 59. Wolf,M.J.,etal., Depletion of intracellular calcium stores activates cell calcium- independent phospholipase A2. A novel mechanism underlying arachidonic acid mobilization. JBiol Chem,1997. 272 (3):p.15226. 60. Akiba,S.,etal., Involvement of group VI Ca2+-independent phospholipase A2 in protein kinase C-dependent arachidonic acid liberation in zymosan-stimulated macrophage-like P388D1 cells. J BiolChem,1999. 274 (28):p.1990612. 61. Birbes,H.,etal., Hydrogen peroxide activation of Ca(2+)-independent phospholipase A(2) in uterine stromal cells. BiochemBiophysResCommun,2000. 276(2):p.6138. 62. Martinez,J.andJ.J.Moreno, Influence of superoxide radical and hydrogen peroxide on arachidonic acid mobilization. ArchBiochemBiophys,1996. 336 (2):p.1918. 63. Akiba,S.andT.Sato, Cellular function of calcium-independent phospholipase A2. BiolPharm Bull,2004. 27 (8):p.11748.

35 64. Balsinde,J.,etal., Inhibition of calcium-independent phospholipase A2 prevents arachidonic acid incorporation and phospholipid remodeling in P388D1 macrophages. ProcNatlAcadSciUSA, 1995. 92(18):p.852731. 65. Perez,R.,etal., Blockade of arachidonic acid incorporation into phospholipids induces apoptosis in U937 promonocytic cells. JLipidRes,2006. 47 (3):p.48491. 66. Ma,Z.,etal., Stimulation of insulin secretion and associated nuclear accumulation of iPLA(2)beta in INS-1 insulinoma cells. AmJPhysiolEndocrinolMetab,2002. 282 (4):p.E82033. 67. Ramanadham,S.,etal., Apoptosis of insulin-secreting cells induced by stress is amplified by overexpression of group VIA calcium-independent phospholipase A2 (iPLA2 beta) and suppressed by inhibition of iPLA2 beta. Biochemistry,2004. 43 (4):p.91830. 68. Balboa,M.A.,R.Perez,andJ.Balsinde, Calcium-independent phospholipase A2 mediates proliferation of human promonocytic U937 cells. FEBSJ,2008. 275 (8):p.191524. 69. Lambeau,G.andM.H.Gelb, Biochemistry and physiology of mammalian secreted phospholipases A2. AnnuRevBiochem,2008. 77 :p.495520. 70. Oestvang,J.,M.W.Anthonsen,andB.Johansen,Role of secretory and cytosolic phospholipase A(2) enzymes in lysophosphatidylcholine-stimulated monocyte arachidonic acid release. FEBSLett,2003. 555 (2):p.25762. 71. Mounier,C.M.,etal., Arachidonic acid release from mammalian cells transfected with human groups IIA and X secreted phospholipase A(2) occurs predominantly during the secretory process and with the involvement of cytosolic phospholipase A(2)-alpha. JBiolChem,2004. 279 (24):p. 2502438. 72. Ni,Z.,etal., Intracellular actions of group IIA secreted phospholipase A2 and group IVA cytosolic phospholipase A2 contribute to arachidonic acid release and prostaglandin production in rat gastric mucosal cells and transfected human embryonic kidney cells. JBiolChem,2006. 281 (24): p.1624555. 73. Murakami,M.,etal., Distinct arachidonate-releasing functions of mammalian secreted phospholipase A2s in human embryonic kidney 293 and rat mastocytoma RBL-2H3 cells through heparan sulfate shuttling and external plasma membrane mechanisms. JBiolChem,2001. 276 (13):p.1008396. 74. Pruzanski,W.,etal., Differential hydrolysis of molecular species of lipoprotein phosphatidylcholine by groups IIA, V and X secretory phospholipases A2.BiochimBiophysActa,2005. 1736 (1): p.3850. 75. Singer,A.G.,etal., Interfacial kinetic and binding properties of the complete set of human and mouse groups I, II, V, X, and XII secreted phospholipases A2. JBiolChem,2002. 277 (50):p. 4853549. 76. Balboa,M.A.,etal., Novel group V phospholipase A2 involved in arachidonic acid mobilization in murine P388D1 macrophages. JBiolChem,1996. 271 (50):p.323814. 77. Hanasaki,K.,etal., Purified group X secretory phospholipase A(2) induced prominent release of arachidonic acid from human myeloid leukemia cells.JBiolChem,1999. 274 (48):p.3420311. 78. Ohtsuki,M.,etal., Transgenic expression of group V, but not group X, secreted phospholipase A2 in mice leads to neonatal lethality because of lung dysfunction. JBiolChem,2006. 281 (47): p.3642033. 79. Munoz,N.M.,etal., Human group V phospholipase A2 induces group IVA phospholipase A2- independent cysteinyl leukotriene synthesis in human eosinophils. JBiolChem,2003. 278 (40):p. 3881320. 80. Murakami,M.,etal., The functions of five distinct mammalian phospholipase A2S in regulating arachidonic acid release. Type IIa and type V secretory phospholipase A2S are functionally redundant and act in concert with cytosolic phospholipase A2. JBiolChem,1998. 273 (23):p. 1441123. 81. Triggiani,M.,etal., Secretory phospholipases A2 in inflammatory and allergic diseases: not just enzymes. JAllergyClinImmunol,2005. 116 (5):p.10006.

36 82. Kundu,G.C.andA.B.Mukherjee, Evidence that porcine pancreatic phospholipase A2 via its high affinity receptor stimulates extracellular matrix invasion by normal and cancer cells. JBiol Chem,1997. 272 (4):p.234653. 83. Rouault,M.,etal., Recombinant production and properties of binding of the full set of mouse secreted phospholipases A2 to the mouse M-type receptor. Biochemistry,2007. 46 (6):p.1647 62. 84. Yokota,Y.,etal., Clearance of group X secretory phospholipase A(2) via mouse phospholipase A(2) receptor. FEBSLett,2001. 509 (2):p.2504. 85. Masuda,S.,etal., Various secretory phospholipase A2 enzymes are expressed in and augment prostaglandin production in cultured synovial cells. FEBSJ,2005. 272 (3): p.65572. 86. Haapamaki,M.M.,etal., Gene expression of group II phospholipase A2 in intestine in Crohn's disease. AmJGastroenterol,1999. 94 (3):p.71320. 87. Touqui,L.andL.Arbibe, A role for phospholipase A2 in ARDS pathogenesis. MolMed Today,1999. 5(6):p.2449. 88. Masuda,S.,etal., Expression of secretory phospholipase A2 enzymes in lungs of humans with pneumonia and their potential prostaglandin-synthetic function in human lung-derived cells. BiochemJ,2005. 387 (Pt1):p.2738. 89. Surrel,F.,etal., Group X Phospholipase A2 Stimulates the Proliferation of Colon Cancer Cells by Producing Various Lipid Mediators. MolPharmacol,2009. 90. Kim,J.O.,etal., Lysis of human immunodeficiency virus type 1 by a specific secreted human phospholipase A2. JVirol,2007. 81 (3):p.144450. 91. Mitsuishi,M.,etal., Group V and X secretory phospholipase A2 prevents adenoviral infection in mammalian cells. BiochemJ,2006. 393 (Pt1):p.97106. 92. Gronroos,J.O.,V.J.Laine,andT.J.Nevalainen, Bactericidal group IIA phospholipase A2 in serum of patients with bacterial infections. JInfectDis,2002. 185 (12):p.176772. 93. Gronroos,J.O.,etal., Roles of group IIA phospholipase A2 and complement in killing of bacteria by acute phase serum. ScandJImmunol,2005. 62 (4):p.4139. 94. Smith,W.L.,D.L.DeWitt,andR.M.Garavito, Cyclooxygenases: structural, cellular, and molecular biology. AnnuRevBiochem,2000. 69 :p.14582. 95. Smith,T.,etal., Arachidonic acid and nonsteroidal anti-inflammatory drugs induce conformational changes in the human prostaglandin endoperoxide H2 synthase-2 (cyclooxygenase-2). JBiolChem, 2000. 275 (51):p.4040715. 96. Hemler,M.andW.E.Lands, Purification of the cyclooxygenase that forms prostaglandins. Demonstration of two forms of iron in the holoenzyme. JBiolChem,1976. 251 (18):p.55759. 97. Miyamoto,T.,etal., Purification of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes. JBiolChem,1976. 251 (9):p.262936. 98. Kraemer,S.A.,E.A.Meade,andD.L.DeWitt, Prostaglandin endoperoxide synthase gene structure: identification of the transcriptional start site and 5'-flanking regulatory sequences. Arch BiochemBiophys,1992. 293 (2):p.391400. 99. Xu,X.M.,etal., Involvement of two Sp1 elements in basal endothelial prostaglandin H synthase-1 promoter activity. JBiolChem,1997. 272 (11):p.694350. 100. Kirtikara,K.,etal., An accessory role for ceramide in interleukin-1beta induced prostaglandin synthesis. MolCellBiochem,1998. 181 (12):p.418. 101. Diaz,A.,etal., Differential regulation of cyclooxygenases 1 and 2 by interleukin-1 beta, tumor necrosis factor-alpha, and transforming growth factor-beta 1 in human lung fibroblasts. ExpCell Res,1998. 241 (1):p.2229. 102. Bryant,C.E.,I.Appleton,andJ.A.Mitchell,Vascular endothelial growth factor upregulates constitutive cyclooxygenase 1 in primary bovine and human endothelial cells. LifeSci,1998. 62 (24):p.2195201.

37 103. Kujubu,D.A.,etal., TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. JBiolChem,1991. 266 (20):p.1286672. 104. Xie,W.L.,etal., Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. ProcNatlAcadSciUSA,1991. 88 (7):p.26926. 105. Tsatsanis,C.,etal., Signalling networks regulating cyclooxygenase-2. IntJBiochemCellBiol, 2006. 38 (10):p.165461. 106. Geng,Y.,etal., Regulation of cyclooxygenase-2 expression in normal human articular chondrocytes. JImmunol,1995. 155 (2):p.796801. 107. Niiro,H.,etal., Regulation by interleukin-10 and interleukin-4 of cyclooxygenase-2 expression in human neutrophils. Blood,1997. 89 (5):p.16218. 108. Yan,F.andD.B.Polk, Aminosalicylic acid inhibits IkappaB kinase alpha phosphorylation of IkappaBalpha in mouse intestinal epithelial cells. JBiolChem,1999. 274 (51):p.366316. 109. Migita,K.,etal., FK506 augments glucocorticoid-mediated cyclooxygenase-2 down-regulation in human rheumatoid synovial fibroblasts. LabInvest,2000. 80 (2):p.13541. 110. Dean,J.L.,etal., p38 mitogen-activated protein kinase regulates cyclooxygenase-2 mRNA stability and transcription in lipopolysaccharide-treated human monocytes. JBiolChem,1999. 274 (1):p.2649. 111. Lasa,M.,etal., Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. MolCellBiol,2000. 20 (12):p.426574. 112. Chandrasekharan,N.V.,etal., COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other /antipyretic drugs: cloning, structure, and expression. ProcNatlAcadSciUS A,2002. 99 (21):p.1392631. 113. Kis,B.,etal., Regional distribution of cyclooxygenase-3 mRNA in the rat central nervous system. BrainResMolBrainRes,2004. 126 (1):p.7880. 114. Tanioka,T.,etal., Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. JBiol Chem,2000. 275 (42):p.3277582. 115. Li,S.,etal., The febrile response to lipopolysaccharide is blocked in cyclooxygenase-2(-/-), but not in cyclooxygenase-1(-/-) mice. BrainRes,1999. 825 (12):p.8694. 116. Murakami,M.,etal., Functional coupling between various phospholipase A2s and cyclooxygenases in immediate and delayed biosynthetic pathways. JBiolChem,1999. 274 (5):p. 310315. 117. Ueno,N.,etal., Coupling between cyclooxygenase, terminal prostanoid synthase, and phospholipase A2. JBiolChem,2001. 276 (37):p.3491827. 118. Smith,W.L.andD.L.Dewitt, Prostaglandin endoperoxide H synthases-1 and -2. Adv Immunol,1996. 62 :p.167215. 119. Morita,I.,etal., Different intracellular locations for prostaglandin endoperoxide H synthase-1 and -2. JBiolChem,1995. 270 (18):p.109028. 120. Spencer,A.G.,etal., Subcellular localization of prostaglandin endoperoxide H synthases-1 and - 2 by immunoelectron microscopy. JBiolChem,1998. 273 (16):p.988693. 121. Komhoff,M.,etal., Localization of cyclooxygenase-1 and -2 in adult and fetal human kidney: implication for renal function. AmJPhysiol,1997. 272 (4Pt2):p.F4608. 122. Raisz,L.G., Potential impact of selective cyclooxygenase-2 inhibitors on bone metabolism in health and disease. AmJMed,2001. 110 Suppl 3A :p.43S5S. 123. Reese,J.,etal., Comparative analysis of pharmacologic and/or genetic disruption of cyclooxygenase- 1 and cyclooxygenase-2 function in female reproduction in mice. Endocrinology,2001. 142 (7):p. 3198206. 124. Morita,I., Distinct functions of COX-1 and COX-2. ProstaglandinsOtherLipidMediat, 2002. 68-69 :p.16575.

38 125. Kino,Y.,etal., Prostaglandin E2 production in ovarian cancer cell lines is regulated by cyclooxygenase-1, not cyclooxygenase-2. ProstaglandinsLeukotEssentFattyAcids,2005. 73 (2):p.10311. 126. Pasinetti,G.M.andP.S.Aisen, Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer's disease brain. Neuroscience,1998. 87 (2):p.31924. 127. Rose,J.W.,etal., Inflammatory cell expression of cyclooxygenase-2 in the multiple sclerosis lesion. JNeuroimmunol,2004. 149 (12):p.409. 128. Dubinett,S.M.,etal., Cyclooxygenase-2 in lung cancer. ProgExpTumorRes,2003. 37 :p. 13862. 129. Kargman,S.L.,etal., Expression of prostaglandin G/H synthase-1 and -2 protein in human colon cancer. CancerRes,1995. 55 (12):p.25569. 130. Liu,C.H.,etal., Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. JBiolChem,2001. 276 (21):p.185639. 131. Vane,J.R., Inhibition of prostaglandin synthesis as a for aspirin-like drugs. NatNewBiol,1971. 231 (25):p.2325. 132. DeWitt,D.L.,E.A.Meade,andW.L.Smith, PGH synthase isoenzyme selectivity: the potential for safer nonsteroidal antiinflammatory drugs. AmJMed,1993. 95 (2A):p.40S44S. 133. Mitchell,J.A.,etal., Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. ProcNatlAcadSciUSA,1993. 90 (24):p.116937. 134. Whelton,A.,etal., Effects of and on blood pressure and edema in patients > or =65 years of age with systemic hypertension and osteoarthritis. AmJCardiol,2002. 90 (9):p. 95963. 135. DuBois,R.N.,F.M.Giardiello,andW.E.Smalley, Nonsteroidal anti-inflammatory drugs, eicosanoids, and colorectal cancer prevention. GastroenterolClinNorthAm,1996. 25 (4):p. 77391. 136. Johnsen,J.I.,etal., Cyclooxygenase-2 is expressed in neuroblastoma, and nonsteroidal anti- inflammatory drugs induce apoptosis and inhibit tumor growth in vivo. CancerRes,2004. 64 (20): p.72105. 137. Li,S.,etal., Acetaminophen: antipyretic or hypothermic in mice? In either case, PGHS-1b (COX- 3) is irrelevant. ProstaglandinsOtherLipidMediat,2008. 85 (34):p.8999. 138. Graham,G.G.andK.F.Scott, Mechanism of action of paracetamol. AmJTher,2005. 12 (1):p.4655. 139. Park,J.Y.,M.H.Pillinger,andS.B.Abramson, Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. ClinImmunol,2006. 119 (3):p.22940. 140. Jakobsson,P.J.,etal., Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. ProcNatlAcad SciUSA,1999. 96 (13):p.72205. 141. Murakami,M.,etal., Regulation of prostaglandin E2 biosynthesis by inducible membrane- associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. JBiolChem, 2000. 275 (42):p.3278392. 142. MasukoHongo,K.,etal., Up-regulation of microsomal prostaglandin E synthase 1 in osteoarthritic human cartilage: critical roles of the ERK-1/2 and p38 signaling pathways. Arthritis Rheum,2004. 50 (9):p.282938. 143. Naraba,H.,etal., Transcriptional regulation of the membrane-associated prostaglandin E2 synthase gene. Essential role of the transcription factor Egr-1. JBiolChem,2002. 277 (32):p. 286018. 144. Rolli,M.,etal., Stress-induced stimulation of early growth response gene-1 by p38/stress-activated protein kinase 2 is mediated by a cAMP-responsive promoter element in a MAPKAP kinase 2- independent manner. JBiolChem,1999. 274 (28):p.1955964. 145. Mancini,J.A.,etal., Cloning, expression, and up-regulation of inducible rat prostaglandin e synthase during lipopolysaccharide-induced pyresis and adjuvant-induced arthritis. JBiolChem, 2001. 276 (6):p.446975.

39 146. Stichtenoth,D.O.,etal., Microsomal prostaglandin E synthase is regulated by proinflammatory cytokines and glucocorticoids in primary rheumatoid synovial cells. JImmunol,2001. 167 (1):p. 46974. 147. Uematsu,S.,etal., Lipopolysaccharide-dependent prostaglandin E(2) production is regulated by the glutathione-dependent prostaglandin E(2) synthase gene induced by the Toll-like receptor 4/MyD88/NF-IL6 pathway. JImmunol,2002. 168 (11):p.58116. 148. Bianchi,A.,etal., Contrasting effects of peroxisome-proliferator-activated receptor (PPAR)gamma agonists on membrane-associated prostaglandin E2 synthase-1 in IL-1beta-stimulated rat chondrocytes: evidence for PPARgamma-independent inhibition by 15-deoxy- Delta12,14prostaglandin J2. ArthritisResTher,2005. 7(6):p.R132537. 149. Filion,F.,etal., Molecular cloning and induction of bovine prostaglandin E synthase by gonadotropins in ovarian follicles prior to ovulation in vivo. JBiolChem,2001. 276 (36):p. 3432330. 150. Guan,Y.,etal., Urogenital distribution of a mouse membrane-associated prostaglandin E(2) synthase. AmJPhysiolRenalPhysiol,2001. 281 (6):p.F11737. 151. Mehrotra,S.,etal., Microsomal prostaglandin E2 synthase-1 in breast cancer: a potential target for therapy. JPathol,2006. 208 (3):p.35663. 152. Yoshimatsu,K.,etal., Inducible microsomal prostaglandin E synthase is overexpressed in colorectal adenomas and cancer. ClinCancerRes,2001. 7(12):p.39716. 153. Thoren,S.andP.J.Jakobsson, Coordinate up- and down-regulation of glutathione-dependent prostaglandin E synthase and cyclooxygenase-2 in A549 cells. Inhibition by NS-398 and . EurJBiochem,2000. 267 (21):p.642834. 154. Murakami,M.,etal., Cellular prostaglandin E2 production by membrane-bound prostaglandin E synthase-2 via both cyclooxygenases-1 and -2. JBiolChem,2003. 278 (39):p.3793747. 155. Watanabe,K.,K.Kurihara,andT.Suzuki, Purification and characterization of membrane- bound prostaglandin E synthase from bovine heart. BiochimBiophysActa,1999. 1439 (3):p. 40614. 156. Tanikawa,N.,etal., Identification and characterization of a novel type of membrane-associated prostaglandin E synthase. BiochemBiophysResCommun,2002. 291 (4):p.8849. 157. Yamada,T.,etal., Crystal structure and possible catalytic mechanism of microsomal prostaglandin E synthase type 2 (mPGES-2). JMolBiol,2005. 348 (5):p.116376. 158. Jania,L.A.,etal., Microsomal prostaglandin E synthase-2 is not essential for in vivo prostaglandin E2 biosynthesis. ProstaglandinsOtherLipidMediat,2009. 88 (34):p.7381. 159. Tanioka,T.,etal., Regulation of cytosolic prostaglandin E2 synthase by 90-kDa heat shock protein. BiochemBiophysResCommun,2003. 303 (4):p.101823. 160. Kobayashi,T.,etal., Regulation of cytosolic prostaglandin E synthase by phosphorylation. BiochemJ,2004. 381 (Pt1):p.5969. 161. Reid,G.,etal., The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. ProcNatlAcadSciU SA,2003. 100 (16):p.92449. 162. Duncan,A.M.,etal., Chromosomal localization of the human prostanoid receptor gene family. Genomics,1995. 25 (3):p.7402. 163. Bradbury,D.A.,etal., Cyclooxygenase-2 induction by bradykinin in human pulmonary artery smooth muscle cells is mediated by the cyclic AMP response element through a novel autocrine loop involving endogenous prostaglandin E2, E-prostanoid 2 (EP2), and EP4 receptors. JBiolChem, 2003. 278 (50):p.4995464. 164. Fabre,J.E.,etal., Activation of the murine EP3 receptor for PGE2 inhibits cAMP production and promotes platelet aggregation. JClinInvest,2001. 107 (5):p.60310. 165. Botella,A.,etal., Stimulatory (EP1 and EP3) and inhibitory (EP2) prostaglandin E2 receptors in isolated ileal smooth muscle cells. EurJPharmacol,1993. 237 (1):p.1317.

40 166. Fortner,C.N.,R.M.Breyer,andR.J.Paul, EP2 receptors mediate airway relaxation to substance P, ATP, and PGE2. AmJPhysiolLungCellMolPhysiol,2001. 281 (2):p. L46974. 167. Sheller,J.R.,etal., EP(2) receptor mediates bronchodilation by PGE(2) in mice. JAppl Physiol,2000. 88 (6):p.22148. 168. Brzozowski,T.,etal., Role of prostaglandins in gastroprotection and gastric adaptation. J PhysiolPharmacol,2005. 56 Suppl 5 :p.3355. 169. Miller,S.B., Prostaglandins in health and disease: an overview. SeminArthritisRheum,2006. 36 (1):p.3749. 170. Oka,T.,etal., Characteristics of thermoregulatory and febrile responses in mice deficient in prostaglandin EP1 and EP3 receptors. JPhysiol,2003. 551 (Pt3):p.94554. 171. Samad,T.A.,etal., Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature,2001. 410 (6827):p.4715. 172. Davies,P.,etal., The role of arachidonic acid oxygenation products in pain and inflammation. AnnuRevImmunol,1984. 2:p.33557. 173. Shinomiya,S.,etal., Regulation of TNFalpha and interleukin-10 production by prostaglandins I(2) and E(2): studies with -deficient mice and prostaglandin E-receptor subtype-selective synthetic agonists. BiochemPharmacol,2001. 61 (9):p.115360. 174. Bezugla,Y.,etal., COX-1 and COX-2 contribute differentially to the LPS-induced release of PGE2 and TxA2 in liver macrophages. ProstaglandinsOtherLipidMediat,2006. 79 (12): p.93100. 175. Murakami,M.andI.Kudo, Recent advances in molecular biology and physiology of the prostaglandin E2-biosynthetic pathway. ProgLipidRes,2004. 43 (1):p.335. 176. Adam,O.,etal., Anti-inflammatory effects of a low arachidonic acid diet and in patients with rheumatoid arthritis. RheumatolInt,2003. 23 (1):p.2736. 177. Romier,B.,etal., Modulation of signalling nuclear factor-kappaB activation pathway by polyphenols in human intestinal Caco-2 cells. BrJNutr,2008. 100 (3):p.54251. 178. Seno,K.,etal., Pyrrolidine inhibitors of human cytosolic phospholipase A2. Part 2: synthesis of potent and crystallized 4-triphenylmethylthio derivative 'pyrrophenone'. BioorgMedChemLett, 2001. 11 (4):p.58790. 179. Boilard,E.,etal., Secreted phospholipase A2 inhibitors are also potent blockers of binding to the M-type receptor. Biochemistry,2006. 45 (44):p.1320318. 180. Marshall,L.A.,etal., Depletion of human monocyte 85-kDa phospholipase A2 does not alter leukotriene formation. JBiolChem,1997. 272 (2):p.75965. 181. Hsuanyu,Y.andH.B.Dunford, Prostaglandin H synthase kinetics. The effect of substituted phenols on cyclooxygenase activity and the substituent effect on phenolic peroxidatic activity. JBiol Chem,1992. 267 (25):p.1764957. 182. Chang,W.C.,etal., Ellagic acid suppresses oxidised low-density lipoprotein-induced aortic smooth muscle cell proliferation: studies on the activation of extracellular signal-regulated kinase 1/2 and proliferating cell nuclear antigen expression. BrJNutr,2008. 99 (4):p.70914. 183. Masamune,A.,etal., Ellagic acid blocks activation of pancreatic stellate cells. Biochem Pharmacol,2005. 70 (6):p.86978. 184. Edderkaoui,M.,etal., Ellagic acid induces apoptosis through inhibition of nuclear factor kappa B in pancreatic cancer cells. WorldJGastroenterol,2008. 14 (23):p.367280. 185. D'Acquisto,F.,etal., Involvement of NF-kappaB in the regulation of cyclooxygenase-2 protein expression in LPS-stimulated J774 macrophages. FEBSLett,1997. 418 (12):p.1758. 186. Hasan,R.N.andSchafer,A.I., Hemin Upregulates Egr-1 Expression in Vascular Smooth Muscle Cells via reactive Oxygen Species ERK-1/2 - Elk-1 and NF-κB. Circ.Res,2008. 102 : p.4250 187. Seeram,N.P.,etal., Pomegranate juice ellagitannin metabolites are present in human plasma and some persist in urine for up to 48 hours. JNutr,2006. 136 (10):p.24815.

41 Studies of prostaglandin E2 formation in human monocytes

Prostaglandin (PG) E2 is an eicosanoid derived from the polyunsaturated twenty carbon fatty acid arachidonic acid (AA). PGE2 has physiological as well as pathophysiological functions and is known to be a key mediator of inflammatory responses. Formation of PGE2 is dependent upon the activities of three specific enzymes involved in the AA cascade; phospholipase A2 (PLA2), cyclooxygenase (COX) and PGE synthase (PGEs). Although the research within this field has been intense for decades, the regulatory mechanisms concerning the PGE2 synthesising enzymes are not completely established.

PGE2 was investigated in human monocytes with or without lipopolysaccharide (LPS) pre-treatment followed by stimulation with calcium ionophore, opsonised zymosan or phorbol myristate acetate (PMA). Cytosolic PLA2α (cPLA2α) was shown to be pivotal for the mobilization of AA and subsequent formation of PGE2. Although COX-1 was constitutively expressed, monocytes required expression of COX-2 protein in order to convert the mobilized AA into PGH2.

The conversion of PGH2 to the final product PGE2 was to a large extent due to the action of microsomal PGEs-1 (mPGEs-1). In addition, experiments with inhibitors of extracellular signal regulated kinase and p38 activation, indicated that phosphorylation of cPLA2α was markedly advantageous for the formation of PGE2.

Ellagic acid, a natural polyphenolic compound found in fruits and nuts, was shown to inhibit stimuli induced release of PGE2 in human monocytes. The effect of ellagic acid was not due to a direct effect on the activities of the enzymes but rather to inhibition of the LPS-induced protein expression of

COX-2, mPGEs-1 and cPLA2α.

Karlstad University Studies ISSN 1403-8099 ISBN 978-91-7063-266-2