Spin-1/2 one- and two- particle systems in physical space without eigen-algebra or tensor product. S. Andoni*, Technical University of Denmark, Kgs. Lyngby 2800, Denmark *Corresponding author, [email protected]

Abstract. A novel representation of spin 1/2 combines in a single geometric object the roles of the standard Pauli spin vector and spin state. Under the spin-position decoupling approximation it consists of the ordered sum of three orthonormal vectors comprising a gauge phase. In the one-particle case the representation: (1) is Hermitian; (2) is oriented due to ordering; (3) reproduces all standard expectation values, including the total one-particle spin modulus = 3 2; (4) constrains basis opposite spins to have same orientation or handiness; (5) allows to formalize irreversibility in spin measurement. In the two-particle case: (1) entangled ๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก spin pairs have opposite handiness๐‘†๐‘† โˆš andโ„โ„ precisely related gauge phases; (2) the dimensionality of the spin space doubles due to variation of handiness; (3) the four maximally entangled states are naturally defined by the four improper rotations in 3D: reflections onto the three orthogonal frame planes (triplets) and inversion (singlet). The cross-product terms in the expression for the squared total spin of two particles relates to experiment and they yield the standard expectation values after measurement. Here spin is directly defined and transformed in 3D orientation space, without use of eigen algebra and tensor product as in the standard formulation. The formalism allows working with whole geometric objects instead of only components, thereby helping keep a clear geometric picture of โ€˜on paperโ€™ (controlled gauge phase) and โ€˜on labโ€™ (uncontrolled gauge phase) spin transformations.

1. Introduction Key developments in Quantum Mechanics (QM), such as the first phenomenological description of spin 1/2 by Pauli [1] and the first quantum relativistic description of the electron by Dirac [2], โ€˜re-inventedโ€™ Clifford algebras (in the matrix representation), seemingly unaware of Grassmannโ€™s [3] and Cliffordโ€™s [4] works more than half a century earlier. The promotion of vector-based Clifford algebras in Physics and in particular the development of the spacetime algebra (STA) was undertaken by Hesteness [5,6], with more scientists joining in during the last 2 โ€“ 3 decades [7-10]. Spin formalism is arguably the main application of STA in QM [7]. Here we address spin in the non-relativistic regime under the spinโ€“position decoupling approximation [6,7,11]. The 3D physical space in this case reduces to orientation space at a point (the origin) and the relevant symmetry operations of interest are proper rotations and reflections. The three frame vectors and the scalar 1 generate a real 8D matching the equivalent real dimensions of the 2 x 2 complex๐‘—๐‘— Pauli matrices. The space is endowed with the even sub-algebra of STA [5,7], which is isomorphic to ๐›”๐›”the (Clifford) algebra of Pauli matrices [9], therefore the notation. A basis of the real vector space consists of one unit scalar, three orthonormal vectors, three and one trivector, or pseudoscalar (below , are the Kronecker and the totally antisymmetric Levi-Civita symbols): ๐›ฟ๐›ฟ๐‘—๐‘—๐‘—๐‘— ๐œ€๐œ€๐‘—๐‘—๐‘—๐‘—๐‘—๐‘— 1 (1), (3), = + ; , , = 1,2,3 (3), (1) (1)

Notice๏ฟฝ that๐›”๐›”๐‘—๐‘— ๐›”๐›”are๐‘—๐‘—๐›”๐›” vectors๐‘˜๐‘˜ โ‰ก ๐›”๐›”๐‘—๐‘—๐‘—๐‘—, ๏ฟฝnot ๐›ฟ๐›ฟmatri๐‘—๐‘—๐‘—๐‘— ces.๐œ€๐œ€๐‘—๐‘—๐‘—๐‘—๐‘—๐‘— ๐ผ๐ผGeometrically๐›”๐›”๐‘™๐‘™ ๐‘—๐‘— ๐‘˜๐‘˜ ๐‘™๐‘™ , the๏ฟฝ bivectors๐›”๐›”123 โ‰ก ๐ผ๐ผ, e.g.๏ฟฝ = , represent oriented = surface element๐‘—๐‘— s, while the pseudoscalar is an oriented volume๐‘™๐‘™ element.2 The 31geometric or Clifford โ€™s product combin๐›”๐›” es Hamiltonโ€™s scalar (symmetric) and Grassmannโ€™s๐ผ๐ผ wedge๐›”๐›” (antisymmetric)๐ผ๐ผ๐›”๐›” ๐›”๐›” products; for 123 two nonzero vectors it is invertible and as๐ผ๐ผ will๐›”๐›” become clear in definition (3) it is proportional to a rotor: = + = ; ( ) = . In terms of anti-commutator and commutator brackets: { , } + = 2 ; [ , โˆ’]1 2 =2 2 . (2) ๐ฎ๐ฎ๐ฎ๐ฎ ๐ฎ๐ฎ โˆ™ ๐ฏ๐ฏ ๐ฎ๐ฎ โˆง ๐ฏ๐ฏ ๐ฏ๐ฏ โˆ™ ๐ฎ๐ฎ โˆ’ ๐ฏ๐ฏ โˆง ๐ฎ๐ฎ ๐ฎ๐ฎ๐ฎ๐ฎ ๐ฏ๐ฏ๐ฏ๐ฏโ„๐ฎ๐ฎ ๐ฏ๐ฏ The geometric๐ฎ๐ฎ ๐ฏ๐ฏ productโ‰ก ๐ฎ๐ฎ๐ฎ๐ฎ generalizes๐ฏ๐ฏ๐ฏ๐ฏ ๐ฎ๐ฎ โˆ™ to๐ฏ๐ฏ any๐ฎ๐ฎ ๐ฏ๐ฏ dimensionโ‰ก ๐ฎ๐ฎ๐ฎ๐ฎ โˆ’ ๐ฏ๐ฏ, whereas๐ฎ๐ฎ ๐ฎ๐ฎ โˆงthe๐ฏ๐ฏ cross product, valid only in 3D is related to the wedge product by: ( ร— ) = . In the STA literature [6,7] it has become customary to represent spin either by a vector or by a normal to it, both in the nonrelativistic and relativistic regimes. ๐ผ๐ผ ๐ฎ๐ฎ ๐ฏ๐ฏ ๐ฎ๐ฎ โˆง ๐ฏ๐ฏ Notably, such representations of spin s = 1/2 do not reproduce the standard squared total spin modulus S , which according to the rules of QM on angular momentum should equal S = ( + 1) = 3 4. 2 2 2 The rest of the report comprises three parts. The new definition of spin opensโ„โ„ Section๐‘ ๐‘  ๐‘ ๐‘  2. Transformationโ„ properties for the one and two particle cases will appear in this section in the vector form, i.e. as two-sided rotor (unitary) transformations. In Section 3 the transformation properties for the same two cases will be demonstrated in the form, i.e. as one-sided rotor transformations. Orthogonality relations, e.g. between spin up and spin down hold only in spinor representation. The connection between the vector and the spinor forms will also be discussed in Section 3. The report closes by conclusions presented in Section 4.

2. Definition and vector (two-sided rotor) transformations for spin 1/2 of one and two particle systems. 2.1. One-particle systems. Spin is represented here by an ordered sum of three orthonormal vectors together with a โ€˜gaugeโ€™ . Specifically, spin up and spin down along the axis is the sum of the three orthonormal vectors , , with a two-sided rotor in the plane = (see figure 1): โ†‘ฯƒ โ†“ฯƒ ๐›”๐›”3 S = ( + ๐›”๐›”+3 ๐›”๐›”1) ๐›”๐›”2 = + ( + ๐‘…๐‘…) ๐œ‘๐œ‘ +๐›”๐›”(12 +๐ผ๐ผ๐›”๐›”3) = + โ„ โ€  โ„ โ€  โ„ โ„ (โ†‘ฯƒ + 2 )๐œ‘๐œ‘ 3 ; 1 = 2 ๐œ‘๐œ‘ =2cos3 ๐œ‘๐œ‘ sin1 ;2 ๐œ‘๐œ‘ 2 3 1 2 ๐œ‘๐œ‘ 2 3 ๐‘…๐‘… ๐›”๐›” ๐›”๐›” ๐›”๐›” ๐‘…๐‘…๐ผ๐ผ๐›”๐›”3๐œ‘๐œ‘ ๏ฟฝ๐›”๐›” ๐‘…๐‘… ๐›”๐›” ๐›”๐›” ๐‘…๐‘… ๏ฟฝ โ‰ก ๏ฟฝ๐›”๐›” ๐›”๐›” ๐›”๐›” ๏ฟฝ ๏ฟฝ๐›”๐›” โˆ’ 2 ๐œ‘๐œ‘ ๐œ‘๐œ‘ S = S u = + ( + ) = + ( + ) ; S S = S S = S = ๐ฎ๐ฎโŠฅ ๐ฎ๐ฎ2 ๐œ‘๐œ‘โˆ’๐œ‘๐œ‘ ๏ฟฝ ๐‘…๐‘…๐œ‘๐œ‘ ๐‘’๐‘’ 2 โˆ’ ๐ผ๐ผ๐›”๐›”3 2 โ„ โ„ 2 โ†“ฯƒ; S 2= โ†‘Sฯƒ ;2S S3 ; S โŠฅ ยฑ2 ๐œ‘๐œ‘uโˆ’+๐œ‘๐œ‘ (ยฑ 3 + ) 1= ยฑ2 โˆ’๐œ‘๐œ‘ (spinโ†‘ โ†‘vectorโ†“ )โ†“ ฯƒ 2 ๐ฎ๐ฎ ๐ฎ๐ฎ 2 ๏ฟฝโˆ’๐›”๐›” ยฑโˆ’๐ฎ๐ฎ ๐ฎ๐ฎ ๏ฟฝ ยฑ 2 ๏ฟฝโˆ’๐›”๐›” โˆ’๐›”๐›” ๐›”๐›” ๏ฟฝ (3) 3โ„ โ€  โ„ 2 โ„ 4 ฯƒ ฯƒ โˆ’ฯƒ โ‰  โˆ’ ฯƒ โŒฉ ฯƒโŒช โ‰ก 2 ๏ฟฝ ๐›”๐›”stands3 โŒฉ๐‘…๐‘… for๐œ‘๐œ‘ anyโŒช ๐›”๐›”polar1 ๐›”๐›”unit2 ๏ฟฝ vector2 i๐›”๐›”n3 the plane (see fig. 1a). The sum of two vectors is commutative, therefore we require an ordered 2 12 sum๐ฎ๐ฎ (mod cyclic permutations), which allows๐›”๐›” to introduce orientation or handiness as discussed in the next paragraph. The Hermitian conjugate of a rotor is also its reverse = . A proper rotation appears as a two-sided (rotor) โ€“ (conjugatedโ€  rotorโˆ’1 ) operator, which is a unitary transformation๐‘…๐‘… preserving๐‘…๐‘… handiness๐‘…๐‘… โ€ . The axial Figure 1. 3D and 2D rendering of (a) the reflection S onto is equivalent๐‘…๐‘… to a -rotation๐‘…๐‘… of S around coordinate and (b) spinor transformation. . The gauge phase factor in (3) is not observable, which we 2 โ†‘ฯƒ 2 2 โ†‘ฯƒ express as sin = cos = 0. Angled brackets๐ฎ๐ฎ denote๐ฎ๐ฎ either๐ฎ๐ฎ the expected value๐œ‹๐œ‹ (a scalar) or the average ๐ฎ๐ฎ2 ๐œ‘๐œ‘ (a scalar, vector, etc.), as illustrated in the bottom line in (3); the average of spin ยฑ being the spin vector, โŒฉ ๐œ‘๐œ‘โŒช โŒฉ ๐œ‘๐œ‘โŒช and ยฑ = cos + sin = 0. I will also use the notation for the expected value, if needed โŒฉ๐‘†๐‘† ฯƒโŒช for clarity2 . We model spin measurement by extracting the phase-insensitive part of a spin or spin โŒฉ๐‘…๐‘… ๐œ‘๐œ‘โŒช โŒฉ ๐œ‘๐œ‘โŒช ๐ผ๐ผ๐›”๐›”3โŒฉ ๐œ‘๐œ‘โŒช โŒฉ โŒช0 combination (see (6-7), (12-13)). The full spin modulus , alike the overall phase, is not measurable; we call it an โ€˜on-paperโ€™ quantity relating to QM angular momentum2 selection rules. It includes equal ๏ฟฝ๐‘†๐‘†ฯƒ contributions from all the three components and exceeds by a factor of 3 the measured (โ€˜on labโ€™) spin vector modulus = 2. โˆš 2 The handiness of๏ฟฝ theโŒฉ๐‘†๐‘†ฯƒ โŒชtripletโ„ ยฑโ„ , in the order appearing in the expression for spin defines its handiness, where by convention is right-handed (R). It is preserved when two of the unit vectors reverse sign, ๐›”๐›”1๐›”๐›”2๐›”๐›”3 e.g. ( ) + and ( ) + are both R. depicts either or , ๐›”๐›”1๐›”๐›”2๐›”๐›”ยฑ3 ยฑ while and standโ„ for opposite spins of same handinessโ„ , as in (3). and can transform onto each ๐›”๐›”3 โ†‘ ๏ฟฝ๐›”๐›”1 โ†บ๐œ‹๐œ‹ 2 ๐›”๐›”2๏ฟฝ ๐œ‘๐œ‘ โˆ’๐›”๐›”3 โ†“ ๏ฟฝโˆ’๐›”๐›”1 โ†ท๐œ‹๐œ‹ 2 ๐›”๐›”2๏ฟฝ ๐œ‘๐œ‘ ๐‘†๐‘†ฯƒ ๐‘†๐‘†โ†‘ฯƒ ๐‘†๐‘†โ†“ฯƒ other by proper rotations at angles of ( 2 ) around an axis lying on the plane, like in (3). The ฯƒ โˆ’ฯƒ ฯƒ โˆ’ฯƒ notation๐‘†๐‘† ( ) ๐‘†๐‘† depicts the only substitution of by in the spin ๐‘†๐‘†, with no๐‘†๐‘† effect on handiness. Any ๐œ‹๐œ‹ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ๐œ‹๐œ‹ ๐›”๐›”12 ๐ฎ๐ฎ2 left-handed (L) spin-up (-down) is the inverse of a right-handed R spin-down (-up): ๐‘†๐‘†ฯƒ โˆ’๐œ‘๐œ‘ ๐œ‘๐œ‘ โˆ’๐œ‘๐œ‘ ๐‘†๐‘†ฯƒ = = (4)

๐‘†๐‘†TฯƒheL two๐ผ๐ผ๐‘†๐‘† spacesโˆ’ฯƒR๐ผ๐ผ L โˆ’and๐‘†๐‘†โˆ’ ฯƒRR are disjoint under proper rotations, while plane reflections and inversion, also known as improper rotations, convert a spin from one space to the other. Focusing on the R space, the combined rotation transforms โ€˜on paperโ€™ (i.e. with conserved gauge phase ) to as follows:

๐‘…๐‘…u โ‰ก ๐‘…๐‘…๐œƒ๐œƒu ๐‘…๐‘…๐œ‘๐œ‘u ๐œ‘๐œ‘ ๐‘†๐‘†ฯƒ ๐‘†๐‘†u ( ) = + ( + ) = cos + sin + ( + ) = 2 2 โ„ โ„ โ€  โ€  + ๐œƒ๐œƒu โˆ’ ๐œƒ๐œƒu โ€  ฯƒ +๐œ‘๐œ‘ ( +u ฯƒ )๐‘ข๐‘ข = (๐œƒ๐œƒu ) 3; (โŠฅ plane2 ๐œ‘๐œ‘) =๐œƒ๐œƒu ( plane); = ; B =๐œƒ๐œƒu โŠฅ =2 ๐œ‘๐œ‘ =๐œƒ๐œƒu = 2๐‘†๐‘† โ†’ ๐‘…๐‘… ๐‘†๐‘† ๐‘…๐‘… ๐‘…๐‘… ๏ฟฝ๐›”๐›” ๐ฎ๐ฎ ๐ฎ๐ฎ ๏ฟฝ๐‘…๐‘… ๏ฟฝ๐ฎ๐ฎ 2 ๐ฎ๐ฎ 2 ๐‘…๐‘… ๐ฎ๐ฎ ๐ฎ๐ฎ ๐‘…๐‘… ๏ฟฝ โ„ โ€ฒ โ€ฒ โ€ฒ B๐œƒ๐œƒuโ„2 โˆ’ + u (5) ๏ฟฝ๐ฎ๐ฎ ๐ฎ๐ฎ1 ๐ฎ๐ฎ2 ๐œ‘๐œ‘ ๏ฟฝ ๐‘†๐‘†u ๐œ‘๐œ‘ ๐œ‘๐œ‘ ๐ฎ๐ฎ12 ๐œ‘๐œ‘ ๐›”๐›”12 ๐‘…๐‘…๐œƒ๐œƒ ๐‘’๐‘’ ๐ฎ๐ฎโŠฅ๐›”๐›”3 ๐ฎ๐ฎ13 ๐ฎ๐ฎ ๐ฎ๐ฎ Noticeโˆ’๐ผ๐ผ๐ฎ๐ฎ2 that (5) can be considered as a generalization of (3) by substituting S with S and with in the first equation in (3). A spin measurement of along u by a Stern-Gerlach (S-G) magnet, โ†‘ฯƒ โ†‘u ๐‘…๐‘…๐œ‘๐œ‘ ๐‘…๐‘…u โ‰ก which we call an โ€˜on labโ€™ transformation, differs from (5) by the two gauge angles and becoming ๐‘…๐‘…๐œƒ๐œƒu ๐‘…๐‘…๐œ‘๐œ‘u ๐‘†๐‘†ฯƒ uncorrelated: โ€ฒ ๐œ‘๐œ‘ ๐œ‘๐œ‘ ( ) ( ) = + ( + ) ; sin sin = sin sin = 0 (6) 2 ๐‘†๐‘†โˆ’๐บ๐บ โ„ โ€ฒ โ€ฒ โ€ฒ โ€ฒ In๐‘†๐‘† ฯƒmany๐œ‘๐œ‘ โ†’ instances๐‘†๐‘†u ๐œ‘๐œ‘ , it is๏ฟฝ ๐ฎ๐ฎsufficient๐ฎ๐ฎ1 to๐ฎ๐ฎ 2appl๐œ‘๐œ‘ ๏ฟฝy theโŒฉ transformation๐œ‘๐œ‘ ๐œ‘๐œ‘โŒช๐‘†๐‘†โˆ’๐บ๐บ to โŒฉonly๐œ‘๐œ‘ theโŒชโŒฉ spin๐œ‘๐œ‘ โŒชvectors, which are phase- insensitive: โ€  = + cos u + sin u = , where: = +; โ€  ( ) = 3 u 3 u 2 2 u 3 u 3 (6โ€™) โ„ โ„ โ„ โ„ ๐œƒ๐œƒ โˆ’ ๐œƒ๐œƒ โˆ’ The2 ๐›”๐›” halfwayโ†’ 2 ๐‘…๐‘…๐œƒ๐œƒ ๐›”๐›” vectors๐‘…๐‘…๐œƒ๐œƒ 2 ๏ฟฝ,๐ฎ๐ฎ (see figure๐ฎ๐ฎ 1b) depict๏ฟฝ 2 one๐ฎ๐ฎ form of๐‘…๐‘… reduced๐œƒ๐œƒ ๐›”๐›” spinor๐ฎ๐ฎ ๐‘…๐‘…ฯ€ representationโˆ’๐œƒ๐œƒ โˆ’๐›”๐›” ๐ฎ๐ฎ and as shown by the last two equalities in+ (6โˆ’โ€™) they can be generated by the action of one-sided rotor (spinor) onto the spin vectors up and down,๐ฎ๐ฎ respectively.๐ฎ๐ฎ Of course, one can obtain both and by action of one-sided rotors on spin-up alone; even then, two terms are needed with distinct probability+ amplitudesโˆ’ for coincidence and anti- coincidence. In order to render the discussion more systematic, we ๐ฎ๐ฎinsist that๐ฎ๐ฎ the spin basis consist of two opposite spins; then they must have same handiness in order for the spinor representation illustrated in fig. 1b to close into a proper rotation, as recounted in Section 3, eq. (16). The expectation value for the โ€˜on labโ€™ transformation (6), i.e. a spin measurement is:

( ) = = = ( ) ( ) = cos = cos sin (7) 2 ๐œƒ๐œƒu 2 ๐œƒ๐œƒu โŒฉF๐‘†๐‘†romฯƒuโŒช 0(7๐‘†๐‘†)โˆ’ the๐บ๐บ probabilityโŒฉ๐›”๐›”3๐ฎ๐ฎโŒช0 for๐›”๐›”3 coincidenceโˆ™ ๐ฎ๐ฎ โˆ’๐›”๐›”3 andโˆ™ โˆ’ anticoincidence๐ฎ๐ฎ ๐œƒ๐œƒu outcome2 โˆ’s is cos2 2 and sin 2. If the relative probabilities and probability amplitudes show up in relations involving2 only spin vectors,2 like in (6โ€™), u u (7) and (19), why do we then need the full spin (3) and its transformations (5) or๐œƒ๐œƒ (โ„16)? Well, the๐œƒ๐œƒ fullโ„ spin allows to account for the modulus, compatible with quantum selection rules for angular momentum of spin 1/2. In this sense, it is analogue to the standard Pauli spin vector. The full spin also constrains the form and handiness of the basis spins to comply with the โ€˜on paperโ€™ transformations (5), (16). In addition, the explicit gauge phase in (3) permits formalizing the entrance of irreversibility in measurement as due to the loss of phase correlation, thus justifying the restricted transformations (6โ€™), (19โ€™). The full spin expression (3) becomes even more important in the two-spin case that will be discussed shortly. Especially the gauge phase and handiness turn out to be key concepts for understanding entanglements in the present framing. For reference in the following discussion of the two-particle case, let spend a few lines to formalize improper rotations (reflections and inversion). As already noted the spin handiness does not change under axial reflection, as in (3), i.e. can be obtained by proper rotations of or :

๐‘˜๐‘˜ u ๐‘˜๐‘˜ u ฯƒ , , ๐›”๐›” ๐‘†๐‘† ๐›”๐›” = = ๐‘†๐‘† ๐‘†๐‘† (8) ๐ผ๐ผ๐›”๐›”๐‘˜๐‘˜๐œ‹๐œ‹ ๐ผ๐ผ๐›”๐›”๐‘˜๐‘˜๐œ‹๐œ‹ โ€  โˆ’ 2 2 Had๐‘…๐‘…๐œ‹๐œ‹ ฯƒ ๐‘˜๐‘˜we๐‘†๐‘†u ๐‘…๐‘…chosen๐œ‹๐œ‹ ฯƒ๐‘˜๐‘˜ โ‰ก plane๐‘’๐‘’ reflections๐‘†๐‘†u๐‘’๐‘’ โˆ’๐ผ๐ผ๐›”๐›”๐‘˜๐‘˜๐‘†๐‘†u๐ผ๐ผ๐›”๐›”=๐‘˜๐‘˜ ๐›”๐›”๐‘˜๐‘˜๐‘†๐‘†u๐›”๐›”๐‘˜๐‘˜ instead, the handiness would have reversed. Handiness reverses in 3D by plane reflections and by inversion (i.e. โ€˜reflectionโ€™ onto the directed volume ๐‘˜๐‘˜ u ๐‘˜๐‘˜ ๐‘˜๐‘˜ u ๐‘˜๐‘˜ unit I), which can be shown by the๐ผ๐ผ๐›”๐›” unified๐‘†๐‘† ๐ผ๐ผ๐›”๐›” expressionโˆ’๐›”๐›” ๐‘†๐‘† ๐›”๐›”(taking = 1): for = 0 S = = ๐›”๐›”0 for = = 1, 2, 3 (9) ๐ผ๐ผ๐ผ๐ผ๐ผ๐ผ๐ผ๐ผ๐ผ๐ผ๐ผ๐ผ๐ผ๐ผ๐ผ๐ผ๐ผ๐ผ ๐œ‡๐œ‡ u โ†’ ๐ผ๐ผ๐›”๐›”๐œ‡๐œ‡๐‘†๐‘†u๐ผ๐ผ๐›”๐›”๐œ‡๐œ‡ โˆ’๐›”๐›”๐œ‡๐œ‡๐‘†๐‘†u๐›”๐›”๐œ‡๐œ‡ ๏ฟฝ ๐‘‡๐‘‡โ„Ž๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ ๐œ‡๐œ‡ ๐‘—๐‘— 2.2. Two-particle systems. The above discussion for the one-particle case generalizes in the following way to the two-particle case, again preserving a clear geometric picture of spin. First, the total spin and its square are now (see (2) for the definition of scalar product in STA): S = S + S ; S = S + S + S S + S S = + 2S S ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) (10) 2 2 2 3โ„ tot 1 2 tot 1 2 1 2 2 1 1 2 S is Hermitian and symmetric with respect to the spin swap S2( ) S( ).โˆ™ Therefore in the following discussion, which will revolve around equation (10), the shorthand S( )and S( ) will stand for S( ) and tot 1 โ‡† 2 S( ) respectively. Similarly to the squared modulus for one-particle1 spin given2 in (3), S for 1or2two particles 2 in 2or1(10) is not measurable. It can be calculated as illustrated below for the maximally entangledtot pairs, where the spins are specular or inverse images of each-other (see (9)). The four maximally entangled two-particle states, also known as Bell states [12] can be defined (below take (S ) = S ) as:

ฯƒ 0 0 ฯƒ ( ) : S( ) = (S ) ; S( ) = S ; = 0,1,2,3 for , โˆ™ ,๐›”๐›” ๐›”๐›”, , respectively (11) โˆ’ โˆ’ + + ฯƒ ๐œ‡๐œ‡ 1 ฯƒ ๐œ‘๐œ‘ 2 ๐œ‡๐œ‡ ฯƒ ๐œ‡๐œ‡ ๐œ‘๐œ‘ Sฮฅ ( ) ๏ฟฝ= S + S = (S๏ฟฝ๐ผ๐ผ)๐›”๐›” ๐›”๐›” ๐ผ๐ผ๏ฟฝS ๐œ‡๐œ‡ = ฮจ ฮฆ ฮฆ ฮจ ๏ฟฝ

๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก ๐œ‡๐œ‡ ฯƒ0 ๐œ‡๐œ‡ ฯƒ ๐œ‡๐œ‡ ฯƒ ๐œ‘๐œ‘ for๐œ‡๐œ‡ ฯƒ =๐œ‡๐œ‡ 0 ( ) ๐ผ๐ผ๐›”๐›” ๐ผ๐ผ๐›”๐›” โˆ’ ๏ฟฝ๐›”๐›” ๐›”๐›” ๏ฟฝ๐œ‘๐œ‘ (11a) 2 S S ; S = 2 for = = 1, 2, 3 ( โˆ’ , , ) ( ) ๐œ‡๐œ‡ ฮจ ๏ฟฝ 2 2 โˆ’ + + 2 S๏ฟฝ ฯƒ โˆ’S๏ฟฝ ฯƒ โˆ™ ๐›”๐›”๐‘—๐‘—=๏ฟฝ๐›”๐›”๐‘—๐‘—๏ฟฝ2(๏ฟฝS ๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก) ๐‘—๐‘— ๏ฟฝ S โ„ =๐œ‡๐œ‡2S ๐‘—๐‘— S 2 Sฮฆ ฮฆ ฮจ = 2 S 2 S = ( ) ( ) ( ) 2 2 1 2 2S = 3 ฯƒ 2๐œ‘๐œ‘ for ๐œ‡๐œ‡ =ฯƒ 0๐œ‡๐œ‡ ฯƒ( )ฯƒ ฯƒ ๐œ‡๐œ‡ ๐œ‡๐œ‡ ฯƒ ฯƒ ๐œ‡๐œ‡ ๏ฟฝ โˆ™ ๏ฟฝ ๐œ‡๐œ‡ โˆ’ โˆ™ ๏ฟฝ๐›”๐›” ๐›”๐›” ๏ฟฝ๐œ‘๐œ‘ โˆ™ ๏ฟฝ โˆ’ ๏ฟฝ โˆ™ ๐›”๐›” ๏ฟฝ๐›”๐›” ๏ฟฝ ๏ฟฝ โˆ’ ๏ฟฝ โˆ™ ๐›”๐›” ๏ฟฝ ๏ฟฝ (11b) 2[3 4 2 2] = 2 2 for = = 1, 2, 3 ( โˆ’, , ) โˆ’ ฯƒ โˆ’ โ„ โ„ ๐œ‡๐œ‡ ฮจ ๏ฟฝ 2 2 2 โˆ’ + + , โ„whereโ„ โˆ’ theโ„ spinโ„ pairโ„ relateโ„ by๐œ‡๐œ‡ inversion๐‘—๐‘— is a singletฮฆ ฮฆ stateฮจ, while the spin pairs in the three triplet states โˆ’, , relate by reflections onto the three frame planes defined by , , , respectively. Relations ฮจ(11+) defineโˆ’ + the two spins and their relative phases in 3D, therefore together with the spin swap symmetry for 12 23 31 ฮจthe crossฮฆ ฮฆ-product in (10) uniquely determine the two-particle states. Spinor๐›”๐›” representation๐›”๐›” ๐›”๐›” of the same states is presented in Section 3, see relations (20-21). S = 2 (or 0) for triplet (singlet) in (11a) correspond to angular momentum of (or 0) for each entangled2 pair. It 2stands clear from the expressions above that tot entangled states are not just combinations of spin vectorโ„ pairs up and down; the spinsโ€™ relative handiness and the gauge phases have โ„to satisfy precise relations as well. The vectors for S of the triplet states in (11a) โ€˜liveโ€™ in the mutually perpendicular planes = , = , = , respectively. Relations (11, a- tot b) demonstrate in a nutshell why and how the full spin (3) is necessary to define two-spin entanglements. ๐ผ๐ผ๐›”๐›”1 ๐›”๐›”23 ๐ผ๐ผ๐›”๐›”2 ๐›”๐›”31 ๐ผ๐ผ๐›”๐›”3 ๐›”๐›”12 Any measurement of spin along a chosen axis u will produce either + or . Therefore the measured โ„ โ„ square value of total spin for two particles cannot exceed , which as seen in (11a) falls short by a factor of 2 ๐ฎ๐ฎ โˆ’ 2 ๐ฎ๐ฎ 2 relative to the โ€˜on paperโ€™ value of S for the triplet states.2 The same reason as for the one-particle case is valid here, the measurement projecting2 out two of each spinโ„ components. Applying the โ€˜on labโ€™ rule of tot transformation to the cross-product terms in (10), which is the part of the squared total spin affected by a measurement, one obtains the correlation expectation values:

S S + S S = S S = = ( ) ( ) ( ) ( ) ( ) ( ) 2 4 โ€  โ€  2 2 = 2 โŒฉฮฅ ๐œ‡๐œ‡ โŒช๐‘†๐‘†โˆ’๐บ๐บ โ‰ก โŒฉโ„ ๏ฟฝ 1 2 2 1 ๏ฟฝ ๐œ‡๐œ‡ โŒช๐‘†๐‘†โˆ’๐บ๐บ โˆ’ โ„ ๏ฟฝ๐‘…๐‘…u ฯƒ๐‘…๐‘…u๏ฟฝ๐‘†๐‘†โˆ’๐บ๐บ โˆ™ ๏ฟฝ๐›”๐›”๐œ‡๐œ‡๐‘…๐‘…v ฯƒ๐‘…๐‘…v ๐›”๐›”๐œ‡๐œ‡๏ฟฝ๐‘†๐‘†โˆ’๐บ๐บ โˆ’๐ฎ๐ฎ โˆ™ ๏ฟฝ๐›”๐›”๐œ‡๐œ‡๐ฏ๐ฏ๐›”๐›”๐œ‡๐œ‡๏ฟฝ ( ๐œ‡๐œ‡ ) = ๐œ‡๐œ‡cos = sin cos ; = 0 ๐ฎ๐ฎ โˆ™ ๐ฏ๐ฏ โˆ’ ๏ฟฝ๐ฎ๐ฎ โˆ™ ๐›”๐›” ๏ฟฝ โˆ™ ๏ฟฝ๐ฏ๐ฏ โˆ™ ๐›”๐›” ๏ฟฝ uv uv (12) 2( )( ) = cos 22๐œ—๐œ— = cos2 ๐œ—๐œ— 2 cos cos ; = = 1,2,3 โˆ’ ๐ฎ๐ฎ โˆ™ ๐ฏ๐ฏ โˆ’ ๐œ—๐œ—uv 2 โˆ’ 2 ๐œ‡๐œ‡ ๏ฟฝ ๐ฎ๐ฎ,โˆ™ ๐ฏ๐ฏ (โˆ’in italics)๐ฎ๐ฎ โˆ™ ๐›”๐›”๐‘˜๐‘˜ are๐ฏ๐ฏ theโˆ™ ๐›”๐›” ๐‘˜๐‘˜scalar component๐œ—๐œ—uv โˆ’ ๐‘ข๐‘ขs๐‘˜๐‘˜ of๐‘ฃ๐‘ฃ๐‘˜๐‘˜ and ๐œ—๐œ— alonguv โˆ’ . (12๐œ—๐œ—uk) renders๐œ—๐œ—vk the๐œ‡๐œ‡ experimental๐‘˜๐‘˜ bounds explicit, i.e. 2 2S( ) S( ) 2 for all two-particle states. It stands also clear from (12) that ๐‘ข๐‘ข๐‘˜๐‘˜ ๐‘ฃ๐‘ฃ๐‘˜๐‘˜ ๐ฎ๐ฎ ๐ฏ๐ฏ ๐›”๐›”๐‘˜๐‘˜ the expectation values2 remain unchanged under2 swapped reflection S S = S S , as โˆ’ โ„ โ„ โ‰ค ๏ฟฝ 1 โˆ™ 2 ๏ฟฝ๐‘†๐‘†โˆ’๐บ๐บ โ‰ค โ„ โ„ they should. Notice that both โ€˜on paperโ€™ and โ€˜on labโ€™ satisfy: S S = 0. ( )u โˆ™ ๏ฟฝ( ๐ผ๐ผ)๐›”๐›”๐œ‡๐œ‡( )v๐ผ๐ผ๐›”๐›”๐œ‡๐œ‡๏ฟฝ ๏ฟฝ๐ผ๐ผ๐›”๐›”๐œ‡๐œ‡ u๐ผ๐ผ๐›”๐›”๐œ‡๐œ‡๏ฟฝ โˆ™ v ๐œ‡๐œ‡ 1 2 The advantage of (12) is that the two terms render the spin swapโˆ‘ ๏ฟฝ symmetryโˆ™ ๏ฟฝ explicit๐œ‡๐œ‡ and directly yield the scalar product of the two spins; however, for calculation purposes, we could also have defined the expectation values by the scalar part of only one term: ( ) ( = 0) = ; = 0 (13) ( ) ( )( )โˆ’ ( ) ( ) 4 2 = = 1,2,3 2 โˆ’ ๐ฎ๐ฎ โˆ™ ๐ฏ๐ฏ ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ โŒฉฮจ โŒช ๐œ‡๐œ‡ โŒฉฮฅ ๐œ‡๐œ‡ โŒช๐‘†๐‘†โˆ’๐บ๐บ โ‰ก โˆ’ โ„ โŒฉ๐‘†๐‘†u๐›”๐›”๐œ‡๐œ‡๐‘†๐‘†v๐›”๐›”๐œ‡๐œ‡โŒช๐‘†๐‘†โˆ’๐บ๐บ ๏ฟฝ โˆ‘๐œ‡๐œ‡โŒฉฮฅ ๐œ‡๐œ‡ โŒช The form of correlation expectation value๏ฟฝ๐ฎ๐ฎ โˆ™ in๐ฏ๐ฏ โˆ’(13) ๐ฎ๐ฎhintsโˆ™ ๐›”๐›”๐‘˜๐‘˜ to ๐ฏ๐ฏa โˆ™possible๐›”๐›”๐‘˜๐‘˜ ๏ฟฝ ๐œ‡๐œ‡ spinor๐‘˜๐‘˜ representation of the four maximally entangled states that is discussed in Section 3.2 (see relations (20-21)). Remembering the discussion on the R and L handiness in connection to definitions (3), (4) one can schematically characterize the four states as the four possible sign combinations in front of the basis vectors for RL pairs, where R is taken by convention to be (+++) and the first column below stands for S( ):

: + : + + + 1 3 Singlet: : + , Triplets: : + + + ; or in general (sum) ( ) ( ) = (14) ๐›”๐›”1 โˆ’ ๐›”๐›”1 โˆ’ +1 : + : + + + โˆ’ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ๐›”๐›”2 โˆ’ ๏ฟฝ๐›”๐›”2 โˆ’ ๐›”๐›”๐‘—๐‘— 1 ๐›”๐›”๐‘—๐‘— 2 ๏ฟฝ ๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก The last equality๐›”๐›”3 โˆ’is a succinct expression๐›”๐›”3 forโˆ’ the โ€˜on paperโ€™ scalar S( ) S( )in units of 4. What about the orthogonality of the maximally entangled states? Alike the one-particle case (remember2 , in fig. 1b), 1 โˆ™ 2 โ„ โ„ orthogonality is experienced in the spinor (one-sided rotor) representation, as described by+ equationโˆ’ s (22-24) and the relative discussions in Section 3.2. ๐ฎ๐ฎ ๐ฎ๐ฎ If the spins are not entangled relations (12, 13) are invalid. In this case the gauge components of the spins S(1), S(2) are not correlated before measurement and the two spins form a mixed state. For example, instead of the singlet state in (12), there will be a pair of antiparallel spins along the ฯƒ3 axis, while the total spin will lie in the ฯƒ12 plane and vary randomly between the limiting values of ยฑ . The expectation value in this case will be the product of the separate expectation values: โ„ ( ) ( ) = = ( )( ) = cos cos (15) 4 2 โŒฉOne๐‘†๐‘† 1 future๐‘†๐‘† 2 โŒช scopeโ„ โŒฉ๐‘†๐‘† ฯƒcould๐ฎ๐ฎโŒชโŒฉ๐‘†๐‘† โˆ’beฯƒ๐ฏ๐ฏ toโŒช adaptโˆ’ ๐›”๐›” the3 โˆ™ ๐ฎ๐ฎpresented๐›”๐›”3 โˆ™ ๐ฏ๐ฏ STAโˆ’ formalism๐œƒ๐œƒu ๐œƒ๐œƒtov describe spin pairs with degrees of entanglement between the maximally entangled states from relations (11)-(13) and the mixed states from (15), as depending on the uncertainty of the relative gauge phase.

3. Spinor (one-sided rotor) transformation of spin 1/2 one and two particle systems. In spinor form, the transformation of a given spin appears as a sum of one-sided rotor transformations of spin-up and spin-down with the standard probability amplitudes for coincidence and anti-coincidence. 3.1. One-particle systems. The vector transformation (5) looks like a โ€˜deterministicโ€™ spin transformation from a given orientation in the system into a definite orientation in the system. One can improve on this impression by applying the STA spinor transformation, which uses one-sided rotors to transform the spin, as illustrated in Fig. 1b: ๐›”๐›” ๐ฎ๐ฎ

( ) cos + ( ) sin = ( ) cos + ( ) ( ) sin = ๐œƒ๐œƒ๐‘ข๐‘ข โ€  ๐œƒ๐œƒ๐‘ข๐‘ข ๐œƒ๐œƒ๐‘ข๐‘ข โ€  โ€  ๐œƒ๐œƒ๐‘ข๐‘ข u u u u ๐‘†๐‘†ฯƒ โ†’ ๐‘…๐‘…( ๐œƒ๐œƒ) ๐‘†๐‘†cosฯƒ ๐œ‘๐œ‘ + 2 sin๐‘…๐‘…ฯ€โˆ’๐œƒ๐œƒu ๐‘†๐‘†=โˆ’ฯƒ โˆ’๐œ‘๐œ‘ ( ) 2 =๐‘…๐‘…๐œƒ๐œƒ ๐‘†๐‘†(ฯƒ ๐œ‘๐œ‘ ), 2 ๐‘…๐‘… ฯ€โˆ’๐œƒ๐œƒ u ๐‘…๐‘…๐œ‹๐œ‹ ๐‘†๐‘†ฯƒ ๐œ‘๐œ‘ ๐‘…๐‘…๐œ‹๐œ‹ 2 (16) ๐œƒ๐œƒ๐‘ข๐‘ข ๐œƒ๐œƒ๐‘ข๐‘ข โ€  u u u ๐‘…๐‘…or๐œƒ๐œƒ: ๐‘†๐‘†ฯƒ ๐œ‘๐œ‘ ๏ฟฝ 2 + ๐ผ๐ผ๐ฎ๐ฎ2( +2 ๏ฟฝ ) ๐‘…๐‘…๐œƒ๐œƒcos๐‘†๐‘†ฯƒ ๐œ‘๐œ‘ +๐‘…๐‘…๐œƒ๐œƒu ๐‘†๐‘†u ๐œ‘๐œ‘โˆ’๐œ‘๐œ‘ ( ) sin = cos + โ„ + ๐œƒ๐œƒ๐‘ข๐‘ข โˆ’ โ€  ๐œƒ๐œƒ๐‘ข๐‘ข โ„ + ๐œƒ๐œƒ๐‘ข๐‘ข u sin๐‘†๐‘†ฯƒ โ†’+2 ๏ฟฝ๏ฟฝ๐ฎ๐ฎ ( ๐‘…๐‘…๐œƒ๐œƒ+ ๐›”๐›”1) ๐›”๐›”2 ๐œ‘๐œ‘cos๏ฟฝ 2 ๏ฟฝ(๐ฎ๐ฎ โˆ’ ๐‘…๐‘…ฯ€โˆ’)๐œƒ๐œƒu ๐›”๐›”1 โˆ’sin๐›”๐›”2 โˆ’๐œ‘๐œ‘๏ฟฝ= 2 ๏ฟฝ+ 2 ๏ฟฝ(๐ฎ๐ฎ + 2 โˆ’ ๐œƒ๐œƒ๐‘ข๐‘ข ๐œƒ๐œƒ๐‘ข๐‘ข ๐œƒ๐œƒ๐‘ข๐‘ข โ„ u u u u ๐ฎ๐ฎ ) 2 cos๐‘…๐‘…๐œƒ๐œƒ ๏ฟฝ+๐ฎ๐ฎโŠฅ sin๐ฎ๐ฎ2 ๐œ‘๐œ‘โˆ’๐œ‘๐œ‘ = 2 +โˆ’ ๐ผ๐ผ๐ฎ๐ฎ2( ๐ฎ๐ฎโŠฅ +โˆ’ ๐ฎ๐ฎ2) โˆ’๐œ‘๐œ‘+๐œ‘๐œ‘ =2 ๏ฟฝ๏ฟฝ +2 ๏ฟฝ(๐ฎ๐ฎ +๐‘…๐‘…๐œƒ๐œƒ )๐ฎ๐ฎโŠฅ = ( ) ๐œƒ๐œƒ๐‘ข๐‘ข ๐œƒ๐œƒ๐‘ข๐‘ข โ„ โ€  โ„ u u u u u ๐ฎ๐ฎ2 ๐œ‘๐œ‘โˆ’๐œ‘๐œ‘ ๏ฟฝ 2 ๐ผ๐ผ๐ฎ๐ฎ2 2 ๏ฟฝ ๏ฟฝ 2 ๏ฟฝ๐ฎ๐ฎ ๐‘…๐‘…๐œƒ๐œƒ ๐ฎ๐ฎโŠฅ ๐ฎ๐ฎ2 ๐œ‘๐œ‘โˆ’๐œ‘๐œ‘ ๐‘…๐‘…๐œƒ๐œƒu ๏ฟฝ 2 ๏ฟฝ๐ฎ๐ฎ ๐ฎ๐ฎ1 ๐ฎ๐ฎ2 ๐œ‘๐œ‘โˆ’๐œ‘๐œ‘ ๏ฟฝ ๐‘†๐‘†u ๐œ‘๐œ‘โˆ’๐œ‘๐œ‘ By insisting that a basis consist of opposite spins then in order for transformation (16) to complete into a proper rotation as it does, the two spins must have same handiness. The plane for the phase angle in the subscripts in (16) follows the plane of the vectors in brackets. The concise form of the transformation in the top two lines of (16) is typical for STA, where full geometric objects transform as a whole, with none or minimal need to work with components. Vector components appear explicitly in the second form of transformation. The full spinor representations for spin up and spin down are:

( ) = + ( + ) and ( ) = + ( + ) (17) + โˆ’ Notice๐‘…๐‘…๐œƒ๐œƒu ๐‘†๐‘†ฯƒ ๐œ‘๐œ‘that the๐ฎ๐ฎ spinor๐‘…๐‘…๐œƒ๐œƒu representation๐ฎ๐ฎโŠฅ ๐ฎ๐ฎ2 ๐œ‘๐œ‘โˆ’๐œ‘๐œ‘ isu not a ๐‘…๐‘…spin๐œƒ๐œƒu ๐‘†๐‘† ฯƒaccording๐œ‘๐œ‘ ๐ผ๐ผ๐ฎ๐ฎ2 to๐ฎ๐ฎ definition๐‘…๐‘…๐œƒ๐œƒu ๐ฎ๐ฎ โŠฅ(3). As๐ฎ๐ฎ2 already๐œ‘๐œ‘โˆ’๐œ‘๐œ‘u ๐ผ๐ผ๐ฎ๐ฎ menti2 oned, the midway vectors and can be taken as reduced spinor representations of the two spins; they are manifestly orthonorm+ al. Spinorโˆ’ representations are not unique. Another reduced spinor representation comprises the factors๐ฎ๐ฎ in ๐ฎ๐ฎfront of the trigonometric functions of the rotor , a scalar 1 and a bivector , respectively, which also appear in (17). These are even-grade elements of ๐œƒ๐œƒtheu 3D algebra and a standard 2 choice in the STA literature [7]. In order for the reduced representation to๐‘…๐‘… be an orthonormal spinor basis๐ผ๐ผ๐ฎ๐ฎ one must have a zero scalar (grade 0) for 1( ) = 0, which is indeed the case. The orthogonality relation for the full spinor representation is (remember that is Hermitian): โŒฉ ๐ผ๐ผ๐ฎ๐ฎ2 โŒช0 ( ) ( ) = =๐‘†๐‘†ฯƒ0 ( ) ( ) 2 , which is clearly satisfied (18) โ€  3โ„ u u โŒฉThe๐‘…๐‘…๐œƒ๐œƒ orthogonality๐‘†๐‘†ฯƒ ๐œ‘๐œ‘ ๐ผ๐ผ๐ฎ๐ฎ2 ๐‘…๐‘…condition๐œƒ๐œƒ ๐‘†๐‘†ฯƒ ๐œ‘๐œ‘ โŒชfor0 theโˆ’ evenโŒฉ 4 ๐ผ๐ผ-grade๐ฎ๐ฎ2โŒช0 reduced representation is a normalized version of (18). There are two things to notice in (16). First, it is clear that the new spin has been expressed by the two basis spins in , each contributing an amplitude given by the trigonometric factors. The basis spins, in addition to being opposite must comply with precise phase angle differences and have same handiness in order for the transformation๐›”๐›” to complete. Second, it is probably more significant to read transformation (16) backwards. Start with and transform it with probability amplitudes of cos and sin into (coincidence) or ๐‘ข๐‘ข ๐‘ข๐‘ข (anticoincidence), respectively: ๐œƒ๐œƒ ๐œƒ๐œƒ ๐‘†๐‘†u 2 2 ๐‘†๐‘†ฯƒ ๐‘†๐‘†โˆ’ฯƒ = cos + sin = cos + sin (16โ€™) ๐œƒ๐œƒ๐‘ข๐‘ข ๐œƒ๐œƒ๐‘ข๐‘ข ๐œƒ๐œƒ๐‘ข๐‘ข โ€  ๐œƒ๐œƒ๐‘ข๐‘ข u u u u u ๐‘†๐‘†Fromu ๐‘…๐‘…(16๐œƒ๐œƒ โ€™),๐‘†๐‘†ฯƒ if 2 is spi๐‘…๐‘…n๐œƒ๐œƒ-up๐‘†๐‘†ฯƒ ๐ผ๐ผ(down)๐ฎ๐ฎ2 then2 ๐‘…๐‘…๐œƒ๐œƒ ๐‘†๐‘†ฯƒ represent2 ๐‘…๐‘…s ๐œƒ๐œƒspin๐‘…๐‘…๐œ‹๐œ‹-up๐‘†๐‘†โˆ’ (down)ฯƒ 2 and = spin- down (up). (16โ€™) is symmetric relative to the exchange and or 1 stand for coincidence, while ๐‘†๐‘†u ๐‘…๐‘…๐œƒ๐œƒu ๐‘†๐‘†ฯƒ ๐ผ๐ผ๐ฎ๐ฎ2๐‘…๐‘…๐œƒ๐œƒu ๐‘†๐‘†โˆ’ฯƒ ๐‘…๐‘…๐œƒ๐œƒu ๐‘†๐‘†ฯƒ๐ผ๐ผ๐ฎ๐ฎ2 or stand for anti-coincidence. It is also relevant to point out that the controlled phase angle in โ†‘ฯƒโ‡„โ†“ฯƒ ๐‘…๐‘…๐œƒ๐œƒu ๐‘†๐‘†ฯƒ (16๐œƒ๐œƒu)โˆ’ actually๐œ‹๐œ‹ โˆ’ฯƒ ensures2 the reversibility of the โ€˜on paperโ€™ spin transformation, ultimately enabling to read it backwards๐‘…๐‘… ๐‘†๐‘† as ๐ผ๐ผin๐ฎ๐ฎ (16โ€™). On the other side, the action of a S-G magnet makes the transformation irreversible relative to the gauge plane; in that case (16โ€™) cannot remain an equality, changing to ( , , uncorrelated; = means average wrt gauge phases): โŒฉ๐œ‘๐œ‘โŒช โ€ฒ ฯ†( ฯ†) ฯ†" ( ) cos + ( ) sin = cos + sin (19) ๐‘†๐‘†โˆ’๐บ๐บ ๐‘ข๐‘ข ๐‘ข๐‘ข โŒฉ๐œ‘๐œ‘โŒช ๐‘ข๐‘ข ๐‘ข๐‘ข โ€ฒ ๐œƒ๐œƒ โ€  ๐œƒ๐œƒ โ„ + ๐œƒ๐œƒ โˆ’ ๐œƒ๐œƒ u In๐‘†๐‘†u theฯ† ๏ฟฝโ€˜onโŽฏ๏ฟฝ ๐‘…๐‘…labโ€™๐œƒ๐œƒ ๐‘†๐‘† caseฯƒ ฯ† it is straightforward2 ๐‘…๐‘…ฯ€โˆ’๐œƒ๐œƒu ๐‘†๐‘†โˆ’ฯƒ toฯ†" apply2 the spinor2 ๏ฟฝ๐ฎ๐ฎ transformation2 ๐ฎ๐ฎ to2 the๏ฟฝ spin vector alone:

= cos + sin = cos + sin (19โ€™) โ„ โ„ ๐œƒ๐œƒ๐‘ข๐‘ข ๐œƒ๐œƒ๐‘ข๐‘ข โ„ + ๐œƒ๐œƒ๐‘ข๐‘ข โˆ’ ๐œƒ๐œƒ๐‘ข๐‘ข u The2 ๐ฎ๐ฎ final2 ๐‘…๐‘… ๐œƒ๐œƒexpression๐›”๐›”3 ๏ฟฝ 2 in (19๐ผ๐ผ๐ฎ๐ฎโ€™2) shows2 ๏ฟฝ explicitly2 ๏ฟฝ๐ฎ๐ฎ the halfway2 ๐ฎ๐ฎ vectors2 ๏ฟฝ , as an orthonormal basis for the spinor representation. As already mentioned in Section 2.1, being insensitive+ โˆ’ to gauge phase, the spin vector is well suited to represent spin transformation by S-G measurement.๐ฎ๐ฎ ๐ฎ๐ฎ

3.2. Two-particle systems. By writing the non-normalized expression in (13) for = = as:

= S S (notice that S is not Hermitian) ๐ฎ๐ฎ ๐ฏ๐ฏ ๐›”๐›”3 (20) โ€  โŒฉon๐‘†๐‘†ฯƒe๐ผ๐ผ realizes๐›”๐›”๐œ‡๐œ‡๐‘†๐‘†ฯƒ๐ผ๐ผ๐›”๐›” ๐œ‡๐œ‡thatโŒช0 a nonโŒฉ๏ฟฝโˆ’-๐ผ๐ผnormalized๐›”๐›”๐œ‡๐œ‡ ฯƒ๏ฟฝ ๏ฟฝ ฯƒ ๐ผ๐ผspinor๐›”๐›”๐œ‡๐œ‡๏ฟฝโŒช0 form for the entangledฯƒ๐ผ๐ผ๐›”๐›”๐œ‡๐œ‡ pairs consists of the conjugate pair:

( )( ) S ; ( )( ) S (21)

ฮฅThe๐œ‡๐œ‡ spinor1๐‘œ๐‘œ๐‘œ๐‘œ2 โ‰ก repreโˆ’๐ผ๐ผ๐›”๐›”sentations๐œ‡๐œ‡ ฯƒ ฮฅ ๐œ‡๐œ‡ (221๐‘œ๐‘œ๐‘œ๐‘œ)1 forโ‰ก theฯƒ๐ผ๐ผ four๐›”๐›”๐œ‡๐œ‡ states comprise only terms that are either even (bivectors) for the singlet state ( = 0) or odd (vectors and pseudoscalar) for the triplet states ( = ). Therefore:

๐œ‡๐œ‡ ๐œ‡๐œ‡ ๐‘—๐‘— ( ) ( ) = ( ) ( ) = 0 for both and (22) โ€  โ€  โŒฉFromฮฅ 0 ฮฅ (22๐‘—๐‘— โŒช)0 the โŒฉsingletฮฅ ๐‘—๐‘— ฮฅ 0 stateโŒช0 is orthogonal" onto thepaper" triplet states."on Thelab" orthogonality test for pairs of different triplet states ( ) in the โ€˜on paperโ€™ spinor representations (21) takes the form:

( ) ( ) =๐‘—๐‘— (โ‰ S ๐‘˜๐‘˜) (S )ยฑ = (S ) S = S S 2 S = โ€  ๐‘—๐‘— ๐‘˜๐‘˜ 0 ฯƒ ๐œ‘๐œ‘ ๐‘—๐‘— ฯƒ ๐œ‘๐œ‘ ๐‘˜๐‘˜ 0 for +ฯƒ ๐œ‘๐œ‘= ๐‘—๐‘—3 ฯƒ ๐‘—๐‘— ๐œ‘๐œ‘ ๐‘—๐‘—๐‘—๐‘— 0 ๐œ‘๐œ‘ ฯƒ ฯƒ ๐‘—๐‘— ฯƒ ๐‘—๐‘— ๐œ‘๐œ‘ ๐‘—๐‘—๐‘—๐‘— 0 โŒฉฮฅ ฮฅ โŒช โŒฉ ๐ผ๐ผ๐›”๐›” ๐ผ๐ผ๐›”๐›” โŒช 2 โˆ’ โŒฉ ๏ฟฝ๐›”๐›” ๐›”๐›” ๏ฟฝ ๐›”๐›” โŒช โŒฉ๐‘…๐‘… ๏ฟฝ โˆ’ ๐›”๐›” ๏ฟฝ โˆ™ ๐›”๐›” ๏ฟฝ๏ฟฝ ๐‘…๐‘… ๐›”๐›” โŒช = โ„ 2 (23) โ„ โ€  โˆ’=2 ๐‘—๐‘—cos ๐‘˜๐‘˜ for + > 3 ๐œ‘๐œ‘ ๐‘˜๐‘˜๐‘˜๐‘˜ ๐œ‘๐œ‘ ๐‘—๐‘—๐‘—๐‘— 0 2 2 โˆ’ 2 โŒฉ๐‘…๐‘… ๐›”๐›” ๐‘…๐‘… ๐›”๐›” โŒช ๏ฟฝ โ„ 2 โ„ From (23) the โ€˜on paperโ€™ spinorโˆ’ 2 โŒฉ๐‘…๐‘… representations๐œ‘๐œ‘โŒช0 โˆ’ 2 (i.e.๐œ‘๐œ‘ with๐‘—๐‘— correlated๐‘˜๐‘˜ gauge phases) (21) do not pass the orthogonality test for + = 3, or pass it only on average w.r.t. cos for + > 3. This relates to the well-known geometric property that in 3D orthogonal planes always share a common line. Finally, I check for orthogonality among๐‘—๐‘— the๐‘˜๐‘˜ triplet states โ€˜on labโ€™: ๐œ‘๐œ‘ ๐‘—๐‘— ๐‘˜๐‘˜

( ) ( ) ( ) = = 0 for (24)

โŒฉFromฮฅ ๐‘—๐‘— ฮฅ (๐‘˜๐‘˜24โŒช)0 the๐‘†๐‘†โˆ’๐บ๐บ โ€˜on labโ€™โŒฉ๐›”๐›”3 ๐ผ๐ผspinor๐›”๐›”๐‘—๐‘—๐›”๐›”3๐ผ๐ผ representations๐›”๐›”๐‘˜๐‘˜โŒช0 ๐‘—๐‘— forโ‰  ๐‘˜๐‘˜ the maximally entangled states are mutually orthogonal. The corresponding reduced spinor representations ยฑ are manifestly orthonormal for the four , = 0,1,2,3 entanglement states . ๐œ‡๐œ‡ ๐œ‡๐œ‡ ๐ผ๐ผ๐›”๐›” A swift comparison ฮฅof the๐œ‡๐œ‡ two-particle spinor representation (21) with the vector representation (11) reveals that inversion and reflection operations apply to one of the spins in (11); the same operations are split between the two spinor representations in (21). Therefore, given that the two spins are experimentally monitored at different locations, one might get the impression that the spinor representation is โ€˜more nonlocalโ€™ than the vector representation (11). However, the two types of transformations are equivalent; in the vector form we assume spin (1) to be the same, i.e. as a reference spin and transform spin (2) relative to it. However, as pointed out in relation to expression (10) there is full symmetry under the exchange S( ) S( ). In addition, it is relevant to remember here that we are working in the decoupling approximation of spin 1 โ‡† from2 position and further development of the STA formalism is necessary to describe nonlocality, which necessarily requires coupling of spin and position, and that most correctly has to be treated relativistically [7]. By construction the expression for the expectation value is the same in both representations and as a correlation expectation value, it takes account of both entangled spins under the same angled brackets. This would represent a nonlocal operation, as the two measurements actually take place at different locations. However, again in the present context, due to decoupling it is local. The common angled bracket here only refers to the statistical dependence between the two measurements, directly connected to the correlation between gauge phases before measurement. 4. Conclusions All the above results were obtained by direct use and transformation (rotation, reflection) of spin in 3D physical orientation space, without invoking concepts like eigen algebra and tensor product, which seem so fundamental in the standard formulation of QM. This also provides a clear geometric meaning for the four Bell states: one singlet state of spin pairs related by inversion and three triplet states, each comprising spin pairs related by reflection onto one of the three coordinate planes. In conclusion, the STA spin model in (3) โ€“ an ordered sum of vectors with a gauge phase, displays many attractive features in the spin-position decoupling approximation. For one and two particle systems the same 3D geometric object (3) shows the correct representation of spin 1/2 relative to both โ€˜on paperโ€™ and โ€˜on labโ€™ calculations. In a STA context (3) merges the roles played by the Pauli spin matrix-vector and spin states in the standard quantum formalism. The explicit gauge phase in (3) allows formalizing the irreversibility introduced by measurement (โ€˜on labโ€™ transformation) as due to loss of phase correlation. Spin pair entanglements emerge from correlations of the gauge phases and opposite handiness in the expression for the total spin. A clear geometric picture can be maintained throughout the process of โ€˜on paperโ€™ and โ€˜on labโ€™ transformations, not the least due to STAโ€™s distinguished capability to work with whole geometric objects instead of components.

References

[1] Pauli, W.: Zur Quantenmechanik des magnetischen Elektrons. Zeitschrift fรผr Physik, 43 (9โ€“10), 601โ€“623 (1927). [2] Dirac, P.A.M.: The quantum theory of the electron. Proc. Roy. Soc. Lon. A, 117:610 (1928). [3] Grassmann, H.: Die Ausdehnungslehre. Enslin, Berlin (1862). [4] Clifford, W.K.: Applications of Grassmannโ€™s extensive algebra. Am. J. Math., 1:350 (1878). [5] Hestenes, D.: Spaceโ€“Time Algebra. Gordon and Breach, New York (1966).

[6] Hestenes, D.: Oersted Medal Lecture 2002: Reforming the Mathematical Language of Physics. Am. J. Phys. 71, 104โ€“ 121 (2003). [7] Doran, C., Lasenby, A.: for Physicists, Cambridge University Press, Cambridge (2007). [8] Doran, C.J.L., Lasenby, A.N. and Gull, S.F.: States and operators in the spacetime algebra. Found. Phys., 23(9):1239 (1993). [9] Doran, C., Lasenby, A., Gull, S., Somaroo, S., Challinor, A.: Spacetime Algebra and Electron Physics. Adv. Imag. & Elect. Phys. 95, 271โ€“365 (1996).

[10] Lasenby, A.: Geometric Algebra as a Unifying Language for Physics and Engineering and Its Use in the Study of Gravity. Adv. Appl. Clifford Algebras 27, 733โ€“759 (2017). [11] Merzbacher, E.: Quantum Mechanics, J. Wiley & Sons, New York, Chichester, Weineheim, Brisbane, Singapore, Toronto (1998).

[12] Bohm, D.: Quantum Theory (17.9), Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1951).