Mathematical Work on the Foundation of Jones-Mueller Formalism and Its Application to Nano Optics

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Work on the Foundation of Jones-Mueller Formalism and Its Application to Nano Optics Mathematical work on the foundation of Jones-Mueller formalism and its application to nano optics Ertan Kuntman ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intelꞏlectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR o al Repositorio Digital de la UB (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora. WARNING. On having consulted this thesis you’re accepting the following use conditions: Spreading this thesis by the TDX (www.tdx.cat) service and by the UB Digital Repository (diposit.ub.edu) has been authorized by the titular of the intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not authorized nor its spreading and availability from a site foreign to the TDX service or to the UB Digital Repository. Introducing its content in a window or frame foreign to the TDX service or to the UB Digital Repository is not authorized (framing). Those rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate the name of the author. Mathematical work on the foundations of Jones-Mueller formalism and its application to nano optics Ertan Kuntman Departament de Física Aplicada Universitat de Barcelona Supervisors: Dr. Oriol Arteaga Barriel and Dr. Adolf Canillas Biosca This dissertation is submitted for the degree of Doctor of Philosophy in Physics October 2019 This thesis has been supported by an APIF-Universitat de Barcelona (UB) grant. The work has been partially funded by projects from Ministerio de Ciencia, Innovación del Min- isterio de Economía, Industria y Competitividad (MINECO) (CTQ2013-47401-C2-1-P, CTQ2017-87864-C2-1-P, EUIN2017- 88598) and from European Commission (PIIF-GA-2012-330513). Table of contents Acknowledgment1 Resumen en Español3 Summary5 Preface7 1 Background9 2 Introduction 15 2.1 Representations of deterministic optical media states and their properties . 16 2.2 Coherent linear combination of states . 18 2.3 Coherent combinations of states in a Young’s double slit experiment . 19 2.4 Quaternion formulation of optical media states . 20 2.5 Outer product of vector states and the density matrix . 21 2.6 Applications of the formalism: Interacting optical systems at the nano scale 22 2.7 Depolarization effects and decomposition of depolarizing Mueller matrices 26 3 List of Publications 29 3.1 Decomposition of a depolarizing Mueller matrix into its nondepolarizing components by using symmetry conditions . 31 3.2 Vector and matrix states for Mueller matrices of nondepolarizing optical media 39 3.3 Formalism of optical coherence and polarization based on material media states 46 3.4 Mueller matrix polarimetry on a Young’s double-slit experiment analog . 57 3.5 Light scattering by coupled oriented dipoles: Decomposition of the scattering matrix . 61 3.6 Quaternion algebra for Stokes–Mueller formalism . 73 vi Table of contents 4 Discussion and Conclusions 81 Appendix: list of vectors and matrix states 89 Bibliography 93 Acknowledgment This thesis is a summary of five years of work and it would not have been possible to finishit without the help of many people. I would like to acknowledge some of them to emphasize my gratitude. First of all, my supervisor of this thesis, Oriol Arteaga. He introduced me to this field of physics and his work was the main influence for me. Without hishelpand contribution this work would not have been possible. I am also very grateful for his patience during those periods when my own motivation was low. I would also like to thank my thesis advisor Adolf Canillas. He has been a great influence for me in this field, and helped me throughout my teaching experience at the faculty. I must also mention my father, Mehmet Ali Kuntman, who had many intellectual contributions. His creativity, knowledge and vision has been an invaluable source of inspiration throughout this thesis, without which I would not have been able to finish it. I must also acknowledge his moral support during this period, he is a great mentor in my life and I am incredibly lucky to have him. I would also like to thank my beloved mother, Nihal Akata Kuntman, and my dear brother, Ahmet Kuntman, who never stopped supporting me in life. I would like to thank Razvigor Ossikovski, Jordi Sancho-Parramon, Tanzer Çakır and Joan Antó for their collaboration in this work. During the years that I have spent in Barcelona I have met many important people in my life. Firstly, I would like to thank Martín Girón Rodríguez for three great years that we spent together. I have learned so much from him and he made me a complete person in many ways. I am really lucky to know him. Also my close friends who taught me Spanish and helped me through everything that I have been through, such as Annalisa Albanese, Bruna Amoros, Georgios Domparas, Lesly Ponce, Vermeer Grange, Yuanzhen Liu. My great flatmates: Çaglar Küçük, Joshua Cawkill, Gwendolly Guadarrama and the amazing twins Oriol and Joel Pocostales, for always making me feel at home and introducing me to so many amazing aspects of life. Andrew Lavelle and Killian Dunne for their thought-provoking conversations during our incredible trips to the acid rock. Finally, Leticia Belazquez and Gary Amseian for their friendship and teaching me so many aspects of medicine. Resumen en Español La matriz de Jones y la matriz de Mueller-Jones (es decir la matriz de Mueller no despo- larizante) son los elementos matemáticos centrales del cálculo de óptica de polarización. En esta tesis discutimos otras formas que pueden usarse para representar las propiedades de polarización de los sistemas deterministas. Investigamos cuatro formas diferentes que interpretamos como los estados de los sistemas ópticos deterministas. El estado vectorial h j i es el elemento central de nuestro formalismo. La combinación paralela coherente de sistemas ópticos deterministas puede expresarse, más convenientemente, como una combinación lineal de estados vectoriales. En otras palabras, cualquier sistema óptico no despolarizante puede considerarse como una combinación coherente de otros sistemas deterministas que sirven como sistemas basé. Sin embargo, los estados vectoriales no son adecuados para representar la combinación en serie de sistemas ópticos, porque los vectores h no se pueden multiplicar j i como h h h . Observamos que existe un estado de matriz complejo Z que imita todas j 1ij 2ij 3i las propiedades de las matrices de Jones, incluida la propiedad de multiplicación de estados. Las matrices Z también son similares a las matrices de Mueller no despolarizantes por la relación M = ZZ∗. Mostramos que las matrices Z transforman la matriz de Stokes S en otra † matriz de Stokes S0 de acuerdo con la relación S0 = ZSZ , donde la matriz S corresponde al vector Stokes s y S corresponde al vector Stokes transformado s ( s = M s ). j i 0 j 0i j 0i j i Las matrices Z también transforman los vectores de Stokes, s , en vectores complejos j i s˜ según s˜ = Z s . Se puede demostrar que, a diferencia de un vector s , un vector s˜ j i j i j i j i j i contiene la fase introducida por el sistema óptico. Además observamos que los vectores h j i y las matrices Z son representaciones diferentes de estados cuaternión, h. Los estados de cuaternión se pueden agregar o multiplicar para producir nuevos estados de cuaternión, por lo tanto, son adecuados para representar cualquier combinación coherente de sistemas ópticos deterministas. Los resultados muestran que los estados de cuaternión transforman cuaternion † de Stokes, s, en un cuaternión de Stokes, s0, de acuerdo con el esquema s0 = hhssshh . Las formulaciones de matriz Z y cuaternión son especialmente útiles para describir la aparición de efectos de despolarización. El enfoque de matriz de densidad es más conveniente cuando queremos encontrar los componentes originales de una matriz de Mueller despolarizante. 4 Table of contents Las matrices de densidad asociadas con los sistemas ópticos deterministas (puros) se definen en términos de vectores h como H = h h .
Recommended publications
  • Polarization Optics Polarized Light Propagation Partially Polarized Light
    The physics of polarization optics Polarized light propagation Partially polarized light Polarization Optics N. Fressengeas Laboratoire Mat´eriaux Optiques, Photonique et Syst`emes Unit´ede Recherche commune `al’Universit´ede Lorraine et `aSup´elec Download this document from http://arche.univ-lorraine.fr/ N. Fressengeas Polarization Optics, version 2.0, frame 1 The physics of polarization optics Polarized light propagation Partially polarized light Further reading [Hua94, GB94] A. Gerrard and J.M. Burch. Introduction to matrix methods in optics. Dover, 1994. S. Huard. Polarisation de la lumi`ere. Masson, 1994. N. Fressengeas Polarization Optics, version 2.0, frame 2 The physics of polarization optics Polarized light propagation Partially polarized light Course Outline 1 The physics of polarization optics Polarization states Jones Calculus Stokes parameters and the Poincare Sphere 2 Polarized light propagation Jones Matrices Examples Matrix, basis & eigen polarizations Jones Matrices Composition 3 Partially polarized light Formalisms used Propagation through optical devices N. Fressengeas Polarization Optics, version 2.0, frame 3 The physics of polarization optics Polarization states Polarized light propagation Jones Calculus Partially polarized light Stokes parameters and the Poincare Sphere The vector nature of light Optical wave can be polarized, sound waves cannot The scalar monochromatic plane wave The electric field reads: A cos (ωt kz ϕ) − − A vector monochromatic plane wave Electric field is orthogonal to wave and Poynting vectors
    [Show full text]
  • Ellipsometric Characterization of Silicon and Carbon Junctions for Advanced Electronics Alexander G
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research from Electrical & Computer Engineering, Department of Electrical & Computer Engineering Winter 12-7-2015 Ellipsometric Characterization of Silicon and Carbon Junctions for Advanced Electronics Alexander G. Boosalis University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/elecengtheses Part of the Electromagnetics and Photonics Commons, and the Semiconductor and Optical Materials Commons Boosalis, Alexander G., "Ellipsometric Characterization of Silicon and Carbon Junctions for Advanced Electronics" (2015). Theses, Dissertations, and Student Research from Electrical & Computer Engineering. 68. http://digitalcommons.unl.edu/elecengtheses/68 This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research from Electrical & Computer Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ELLIPSOMETRIC CHARACTERIZATION OF SILICON AND CARBON JUNCTIONS FOR ADVANCED ELECTRONICS by Alexander George Boosalis A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Electrical Engineering Under the Supervision of Professors Mathias Schubert and Tino Hofmann Lincoln, Nebraska December, 2015 ELLIPSOMETRIC CHARACTERIZATION OF SILICON AND CARBON JUNCTIONS FOR ADVANCED ELECTRONICS Alexander George Boosalis, Ph.D. University of Nebraska, 2015 Advisers: Mathias Schubert, Tino Hofmann Ellipsometry has long been a valuable technique for the optical characterization of layered systems and thin films. While simple systems like epitaxial silicon diox- ide are easily characterized, complex systems of silicon and carbon junctions have proven difficult to analyze.
    [Show full text]
  • 3.3 Mueller Matrix Spectro-Polarimeter (MMSP)
    Characterization of Turbid Media Using Stokes and Mueller-Matrix Polarimetry Manzoor Ahmad A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad 45650, Pakistan. 2014 Dedicated to My Parents, Wife and sweet kids Muhammad Hassaan and Muhammad Abdullah, my inspirations ii Declaration I hereby declare that the work contained in this thesis and the intellectual content of this thesis are the product of my own work. This thesis has not been previously published in any form nor does it contain any verbatim of the published resources which could be treated as infringement of the international copyright law. I also declare that I do understand the terms ‘copyright’ and ‘plagiarism’, and that in case of any copyright violation or plagiarism found in this work, I will be held fully responsible of the consequences of any such violation. Signature : _______________________ Name: _____ Manzoor Ahmad___ Date: _______________________ Place: _______________________ iii Certificate This is to certify that the work contained in this thesis entitled: Characterization of turbid media using Stokes and Mueller-matrix polarimetry was carried out by Mr. Manzoor Ahmad, and in my opinion, it is fully adequate, in scope and quality, for the degree of Doctor in Philosophy. Dr Masroor Ikram Dr Shamaraz Firdous Supervisor Co-Supervisor Department of Physics and Applied National Institute of Laser and Mathematics, Pakistan Institute of Optoronics Engineering and Applied Sciences, Islamabad, Pakistan Islamabad, Pakistan Dr Shahid Qamar Head of Department, Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan iv Acknowledgments First and foremost, I would like to articulate-my-heartedly thanks to Almighty Allah for His blessings in achieving my goals.
    [Show full text]
  • Development of Instrumentation for Mueller Matrix Ellipsometry
    Author Frantz Stabo-Eeg Title SDevelopmentubtitle? Subtitle? S uofbti tinstrumentationle? Subtitle? Subtitle? Subtitle? Subtitle? Subtitle? for Mueller matrix ellipsometry Thesis for the degree of Philosophiae Doctor Trondheim, February 2009 Thesis for the degree of Philosophiae Doctor Norwegian University of Science and Technology FTrondheim,aculty of FebruaryXXXXXXX 2009XXXXXXXXXXXXXXXXX Department of XXXXXXXXXXXXXXXXXXXXX Norwegian University of Science and Technology Faculty of Natural Sciences and Technology Department of Physics NTNU Norwegian University of Science and Technology Thesis for the degree of Philosophiae Doctor Faculty of Natural Sciences and Technology Department of Physics © Frantz Stabo-Eeg ISBN 978-82-471-1432-2 (printed ver.) ISBN 978-82-471-1434-6 (electronic ver.) ISSN 1503-8181 Doctoral theses at NTNU, 2009:32 Printed by NTNU-trykk Abstract This thesis gives an introduction to the Mueller-Stokes calculus, which is used to describe partially and fully polarized light. It describes how polarized light inter- acts with various sample configurations resulting in a Mueller matrix, and how this can be measured by using appropriate instrumentation. Specifically, two such Mueller matrix ellipsometers have been realized. One system is based on rotating Fresnel bi-prism and the other on Ferro-electric liquid crystals. The systems are unique in different ways. The rotating Fresnel bi-prism Mueller matrix ellipsome- ter is an optimal UV-NIR achromatic suitable for high power angular scattering measurements. The Ferro-electric liquid crystals Mueller matrix ellipsometer is a fast acquisition system capable of measuring Mueller matrices at 50 Hz. The thesis gives an introduction to the topics discussed in the attached six scientific papers. The first three papers report on construction and design of the ellipsometers.
    [Show full text]
  • Transitivity in the Theory of the Lorentz Group and the Stokes–Mueller Formalism in Polarization Optics
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE °c 2010 Proceedings of the "Foundations & Advances in Nonlinear Science" Conference-School Transitivity in the Theory of the Lorentz Group and the Stokes{Mueller Formalism in Polarization Optics V. M. Red'kov and E.M. Ovsiyuk¤ Institute of Physics, NAS of Belarus Mozyr State Pedagogical University Group-theoretical analysis of arbitrary polarization devices is performed, based on the theory of the Lorentz group. In e®ective "non-relativistic" Mueller case, de- scribed by 3-dimensional orthogonal matrices, results of the one polarization measu- rement S !O S0 determine group theoretical parameters within the accuracy of an arbitrary numerical variable. There are derived formulas, de¯ning Muller parameter of the "non-relativistic" optical element uniquely and in explicit form by by the results of two independent polarization measurements. Analysis is extended to Lorentzian optical devices, described by 4-dimensional L Mueller matrices. In this case, any single polarization measurement (S0; S) ! 0 0 (S0; S ) ¯xes parameters of the corresponding Mueller matrix up to 3 arbitrary variables. Formulas, de¯ning Muller parameter of any relativistic Mueller device uniquely can be found from results of four independent polarization measurements. Analytical expressions for Muller parameters of any optical element can be given the most simple form when using the results of 6 independent measurements, the corresponding formulas are written down in explicit form. 1. The transitivity problem in the theory of the Lorentz group The polarization of light is one of the most remarkable phenomena in natur and has led to numerous discoveries and applications.
    [Show full text]
  • Turbid Medium Polarimetry in Biomedical Imaging and Diagnosis
    Eur. Phys. J. Appl. Phys. 54, 30001 (2011) HE UROPEAN DOI: 10.1051/epjap/2011110017 T E PHYSICAL JOURNAL APPLIED PHYSICS Review Article Turbid medium polarimetry in biomedical imaging and diagnosis N. Ghosha, A. Banerjee, and J. Soni Department of Physical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur Campus, PO: BCKV Main Campus Office, Mohanpur 741252, West Bengal, India Received: 13 January 2011 / Accepted: 3 May 2011 Published online: 14 June 2011 – c EDP Sciences Abstract. Studies on polarization properties of scattered light from a random medium like biological tissue have received considerable attention because polarization can be used as an effective tool to discriminate against multiply scattered light (acting as a gating mechanism) and thus can facilitate high resolution imaging through tissue. Further, the polarization properties of scattered light from tissue contain wealth of morphological and functional information of potential biomedical importance. However, in a complex random medium like tissue, numerous complexities due to multiple scattering and simultaneous occur- rences of many scattering and polarization events present formidable challenges both in terms of accurate measurements and in terms of analysis of the tissue polarimetry signal. Several studies have therefore been conducted in the recent past to develop appropriate measurement procedures, suitable light propagation models and polarimetry signal analysis methods to overcome these difficulties. In this review, we focus on some of the recent key developments in this area. Specifically, we describe variety of theoretical and experimental tools, illustrated with selected results, aimed at evaluating the prospect of turbid medium polarimetry for both biomedical imaging and diagnosis.
    [Show full text]
  • Chapter 5.Pdf
    5 LIGHT IN VACUUM Theory of optical polarization Introduction. In regions empty of matter—empty more particularly of charged matter—the electromagnetic field is described by equations that we have learned to write in various ways: ∇··· E =0 ∇×B − 1 ∂ E 0 B c ∂tE =00 (65) ∇· ∇·· B =0 ∇×E 1 ∂ B 0 E + c ∂tB =00 µν ∂µF =0 αρσν (168) ∂α F ρσ =0 Fµν = ∂µAν − ∂ν Aµ Aν − ∂ ν (∂ Aµ) = 0 : arbitrary gauge µ (371) ↓ Aν = 0 : Lorentz gauge And we have learned that, whichever language we adopt, multiple instances of the wave equation hover close by. It was Maxwell himself who first noticed that 292 Light in vacuum equations (65) can be “decoupled by differentiation” to yield six copies of the wave equation: E = B =00 The manifestly covariant version of Maxwell’s argument is less familiar: to a αρσν ∂ arsν · ∂α Fρσ =0 bring the identity233 α α α δ a δ r δ s αρσν 1 αρσ ≡ 1 ρ ρ ρ arsν = g δ ars g δ a δ r δ s σ σ σ δ a δ r δ s 1 α ρ σ − σ ρ = g δ a(δ rδ s δ rδ s) α ρ σ − σ ρ + δ r(δ sδ a δ sδ a) α ρ σ σ ρ + δ s(δ aδ r − δ aδ r) and obtain a (Frs − Fsr)+∂ ∂r(Fsa − Fas)+∂s(Far − Fra) =0 whence (by the antisymmetry of Fµν ) 1 − Fµν = c(∂µjν ∂ν jµ) ↓ = 0 in charge-free space: jµ =0 Finally, at (371) we obtained four copies of the wave equation by covariant specialization of the gauge.
    [Show full text]
  • Polarization-Sensitive Mueller-Matrix Optical
    POLARIZATION-SENSITIVE MUELLER-MATRIX OPTICAL COHERENCE TOMOGRAPHY A Dissertation by SHULIANG JIAO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2003 Major Subject: Biomedical Engineering POLARIZATION-SENSITIVE MUELLER-MATRIX OPTICAL COHERENCE TOMOGRAPHY A Dissertation by SHULIANG JIAO Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved as to style and content by: _______________________________ _______________________________ Lihong V. Wang Gerard L. Coté (Chair of Committee) (Member) _______________________________ _______________________________ Jay D. Humphrey Henry F. Taylor (Member) (Member) _______________________________ William Hyman (Head of Department) December 2003 Major Subject: Biomedical Engineering iii ABSTRACT Polarization-sensitive Mueller-Matrix Optical Coherence Tomography. (December 2003) Shuliang Jiao, Ph. D, Huazhong University of Science and Technology, China Chair of Advisory Committee: Dr. Lihong V. Wang Measuring the Mueller matrix with optical coherence tomography (OCT) makes it possible to acquire the complete polarization properties of scattering media with three- dimensional spatial resolution. We first proved that the measured degree-of-polarization (DOP) of the backscattered light by OCT remains unity—a conclusion that validated the use of Jones calculus in OCT. A multi-channel Mueller-matrix OCT system was then built to measure the Jones-matrix, which can be transformed into a Mueller matrix, images of scattering biological tissues accurately with single depth scan. We showed that when diattenuation is negligible, the round-trip Jones matrix represents a linear retarder, which is the foundation of conventional PS-OCT, and can be calculated with a single incident polarization state although the one-way Jones matrix generally represents an elliptical retarder; otherwise, two incident polarization states are needed.
    [Show full text]
  • A Review of Polarization-Based Imaging Technologies for Clinical and Preclinical Applications
    Journal of Optics TOPICAL REVIEW A review of polarization-based imaging technologies for clinical and preclinical applications To cite this article: Jessica C Ramella-Roman et al 2020 J. Opt. 22 123001 View the article online for updates and enhancements. This content was downloaded from IP address 198.11.30.252 on 28/01/2021 at 00:56 Journal of Optics J. Opt. 22 (2020) 123001 (18pp) https://doi.org/10.1088/2040-8986/abbf8a Topical Review A review of polarization-based imaging technologies for clinical and preclinical applications Jessica C Ramella-Roman1,2, Ilyas Saytashev1,2 and Mattia Piccini1,3 1 Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, Miami, FL 33174, United States of America 2 Department of Ophthalmology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, United States of America 3 Department of Information Engineering, University of Modena and Reggio Emilia, Via Pietro Vivarelli 10-41125, Modena, Italy E-mail: [email protected] Received 8 May 2020, revised 10 August 2020 Accepted for publication 1 October 2020 Published 11 November 2020 Abstract Polarization-based imaging can provide new diagnostic capabilities in clinical and preclinical studies. Various methodologies of increasing complexity have been proposed by different groups in the last 30 years. In this review we focus on the most widely used methods in polarization imaging including co- and cross-polarized-based imaging, Mueller matrix imaging, and polarization sensitive optical coherence tomography, among others. This short primer in optical instrumentation for polarization-based imagery is aimed at readers interested in including polarization in their imaging processes.
    [Show full text]
  • ABSTRACT WANG, YIFAN. Snapshot Retinal
    ABSTRACT WANG, YIFAN. Snapshot Retinal Imaging Mueller Matrix Polarimeter. (Under the direction of Michael. W. Kudenov). The polarization properties of materials, such as retardance, diattenuation and depolarization, are important indicators of physical and chemical characteristics. These properties can be decomposed from corresponding Mueller matrix (MM). In clinical practice of ophthalmetry, imaging polarimetry helps to identify retinal diseases such as glaucoma and age related macular degeneration (AMD) in early stages by acquiring and investigating the 2D retinal MM. Currently, the prevailing technique for retinal MM acquisition is scanning laser polarimetry (SLP), in which a laser beam with pre-defined polarization states scans through a certain region of interest (ROI) on retina, the back-scattered light after interaction with retina is collected and analyzed to generate the MM for every point in the scanning area. SLP has major advantages such as high-quality image output, comfortable patient experience with no pupil dilation needed, etc. The temporal scanning nature of the technique, however, limits its temporal resolution and system robustness, increases the complexity of post-processing. The aim of this research is to develop an imaging polarimeter that can obtain full MM information from a 2D area on human retina with a single snapshot. With two pairs of polarization gratings (along with other polarizing elements), the system modulates polarization information of the 2D scene onto different spatial frequency channels and reconstructs 2D MM from the demodulated polarization information with linear algebra operations. Optical design and opto- mechanical design for the device were carried out, and the prototype was assembled in lab, a control program with graphical user interface (GUI) was also created.
    [Show full text]
  • Ellipsometry
    ELLIPSOMETRY Stokes’ parameters & related constructs in optics & classical/quantum mechanics Nicholas Wheeler, Reed College Physics Department May 1999 Introduction. Take a sting of length and pin its respective ends to the points (+f,0) and (−f,0) on the (x, y)-plane. Necessarily 2f . Familiarly, the figure which results from the obvious “taut string condition” is an ellipse: x 2 y 2 + = 1 (1) a b where a = 1 is the semi-major axis 2 2 − 2 1 2 − 2 b = a f = 2 4f a is the semi-minor axis It is, in view of my present objectives, interesting to recall1 that Maxwell’s first publication—at fourteen, in the Proceedings of the Royal Society of Edinburgh —concerned an elaboration of this charming construction (which in practice does not work very well; it proves difficult to avoid parallax, the string stretches, pulls out the pins, saws the tip off the pencil). Now pin one end of the string to the ceiling, and the other to a bob. You have constructed a pendulum with two degrees of freedom—an isotropic 2-dimensional oscillator—and observe that the bob traces what appears to be an ellipse, but an ellipse which precesses (and is, when you think about it, inscribed not on a plane but on a sphere of radius ). The figure has been rendered this time not by a draftsman, but by God; i.e., by the laws of motion. Look closely to an illuminated point marked on the plucked E-string of your double bass and you will observe that it traces a (wandering) ellipse.
    [Show full text]
  • Rigorous Description of Biisotropic and Bianisotropic Media and the Mueller Matrix Measurements Approach
    VŠB – Technical University of Ostrava University Study Programmes Nanotechnology Centre Rigorous description of biisotropic and bianisotropic media and the Mueller matrix measurements approach Rigorózní popis biisotropních a bianisotropních prostředí ve vztahu k elipsometrickým měřením Muellerovy matice 2020 Author: Bc. Daniel Vala Contents 1 Introduction 5 2 Mueller calculus: Basics and Insights 7 2.1 Maxwell equations . .7 2.2 Jones calculus . .8 2.3 Mueller calculus . .9 2.4 Poincaré sphere . 10 2.5 Mueller matrix decompositions . 11 2.6 Mueller matrix: Theory versus Experiment . 15 3 Introduction to Molecular optical activity 23 3.1 Historical overview . 23 3.2 Stereochemistry of chiral compounds . 25 3.3 Chiral molecules in the living Nature . 27 3.4 Rotatory power dispersion: Phenomenological approach, history . 28 3.5 Simple measurements of rotatory power . 29 3.6 Optical activity: Perspective of the phenomenon . 30 4 The concept of Chirality: Rigorous approach 33 4.1 Onsager-Casimir principle . 33 4.2 General eigenvalue solution . 36 4.3 Effects of material symmetry . 38 5 Chirality in non-crystalline biisotropic media: liquids 43 5.1 Eigenmodes propagating in chiral liquids . 43 5.2 Chirality of simple saccharide diastereoisomers . 44 5.3 Modelling the chiral liquids . 45 5.4 Ellipsometric measurements of saccharide solutions . 47 5.5 Mutarotation kinetics . 50 5.6 Temperature-dependent measurements . 52 6 Chirality in non-absorbing media of the trigonal point group 32 57 6.1 Propagating eigenmodes . 57 6.2 Mueller matrix of gyrotropic uniaxial retarder . 59 7 Conclusion and perspective 65 Appendix 66 3 A Generalized Jones calculus 67 A.1 Polarization and Complex-Amplitude Transfer Functions .
    [Show full text]