Molecular Basis for SH3 Domain Regulation of F-BAR-Mediated Membrane Deformation

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Basis for SH3 Domain Regulation of F-BAR-Mediated Membrane Deformation Molecular basis for SH3 domain regulation of F-BAR-mediated membrane deformation Inaugural-Dissertation to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin By Yijian Rao From Fujian, China November, 2010 Die vorliegende Arbeit wurde in der Zeit von März 2007 bis November 2010 unter Anleitung von Prof. Dr. Volker Haucke am Institut für Chemie-Biochemie der Freien Universität Berlin im Fachbereich Biologie, Chemie, Pharmazie durchgeführt. 1st Reviewer: Prof. Dr. Volker Haucke 2nd Reviewer: Prof. Dr. Wolfram Saenger Date of defence: 13-01-2011 Acknowledgements I would like to thank all people who have helped and inspired me during my doctoral study. First and foremost, I would like to express my deep and sincere gratitude to my supervisor Prof. Dr. Volker Haucke. Thank you for giving me the opportunity to enter the world of biological science and perform my research in his lab. His contagious enthusiasm for science has motivated all people in his lab, including me. In addition, I am thankful for his understanding, encouraging and personal guidance. I would like to thank all former and current members of AG Haucke’s lab for my thesis support and for creating a homey place to work. Special thanks to Dr. Arndt Pechstein and Dr. Dmytro Puchkov for their contribution to my project. Special thanks also to Dr. Tanja Maritzen and Dr. Arndt Pechstein for their critical reading of this dissertation manuscript. In particular, I am deeply grateful to Julia Mössinger, “my neighbor in the lab” and a very nice lady. You are always accessible and willing to help me. Thank you, Julia. I gratefully thank Prof. Dr. Wolfram Saenger, Dr. Qingjun Ma and Dr. Ardeschir Vahedi-Faridi for your wonderful collaboration and contribution to my project. Without your contribution, we cannot publish the Syndapin story so fast. I also thank Prof. Dr. Wolfram Saenger for his assistance and support as my thesis committee member. I would like to thank Prof. Dr. Oleg Shupliakov and Dr. Anna Sundborger at Department of Neuroscience, Linné Center in Developmental Biology and Regenerative Medicine, Karolinska Institutet. Thanks for your collaboration and contribution to my project. I would like to thank all my friends in Berlin for spending so much happy time with me! My deepest gratitude goes to my parents and my family for their unflagging love and support throughout my life. This dissertation is simply impossible without them. Last but not least, thanks to my wife Lifeng Yang for her patience, love and support. Directory I Directory Directory ............................................................................................................ I Summary......................................................................................................... IV Zusammenfassung............................................................................................V 1 Introduction.................................................................................................1 1.1 Mechanisms of membrane curvature gerenation and membrane deformation......................................................................................................1 1.1.1 Changes in lipid composition..............................................................2 1.1.2 Influence of integral membrane proteins ............................................2 1.1.3 Cytoskeletal proteins and microtubule motor activity........................3 1.1.4 Scaffolding by peripheral membrane proteins....................................6 1.1.5 Helix insertion into membranes........................................................11 1.2 BAR domains.......................................................................................11 1.2.1 BAR/N-BAR.....................................................................................16 1.2.2 F-BAR (EFC) domain.......................................................................17 1.2.3 I-BAR domain...................................................................................21 1.3 Membrane deformation in the endocytic pathway...............................24 1.3.1 Vesicle budding.................................................................................26 1.3.2 Vesicle formation..............................................................................27 1.3.3 Vesicle fission...................................................................................28 1.4 Syndapins/Pacsins ................................................................................29 1.4.1 Interactions of the syndapin protein family ......................................30 1.4.2 Syndapins play a role in endocytic pathway.....................................31 1.4.3 Syndapin 1 shapes the plasma membrane.........................................33 2 Aims of this study......................................................................................34 3 Materials and Methods.............................................................................35 3.1 Materials...............................................................................................35 3.1.1 Chemicals and consumables .............................................................35 3.1.2 Enzymes and kits..............................................................................35 3.1.3 Markers and loading dyes .................................................................35 3.1.4 Synthetic oligonucleotides................................................................36 3.1.5 Synthetic peptides.............................................................................36 3.1.6 Bacterial strains.................................................................................36 3.1.7 Plasmids ............................................................................................36 3.1.8 Constructs..........................................................................................37 3.1.9 Mammalian cell lines........................................................................38 3.1.10 Buffers, medium and solutions......................................................38 3.1.11 Devices and equipment..................................................................39 Directory II 3.1.12 Software and internet resources.....................................................39 3.2 Molecular biology................................................................................40 3.2.1 Polymerase chain reaction (PCR) .....................................................40 3.2.2 Overlap extension PCR.....................................................................41 3.2.3 Agarose gel electrophoresis and gel extraction ................................41 3.2.4 DNA restriction digest and dephosphorylation of vector DNA........41 3.2.5 Ligation of DNA inserts into linearized vectors ...............................42 3.2.6 Preparation of chemically competent E. coli cells............................42 3.2.7 Transformation of chemically competent E. coli cells .....................42 3.2.8 Colony PCR......................................................................................43 3.2.9 Plasmid DNA mini and midi preparation .........................................43 3.2.10 DNA sequencing............................................................................43 3.2.11 Glycerol stocks..............................................................................44 3.3 Biochemistry ........................................................................................44 3.3.1 Overexpression of recombinant proteins in E. coli...........................44 3.3.2 Affinity-purification of recombinant GST........................................45 3.3.3 Affinity-purification of recombinant Hisx6-fusion proteins..............45 3.3.4 Protein quantification - Bradford assay ............................................46 3.3.5 In vitro binding Assays.....................................................................46 3.3.6 SDS polyacrylamide gel electrophoresis (SDS-PAGE)....................47 3.4 Cell Biology.........................................................................................47 3.4.1 Mammalian cell culture ....................................................................47 3.4.2 Transfection of mammalian cells with plasmid DNA ......................48 3.4.3 Live cell confocal imaging experiment.............................................48 3.4.4 Electron microscopy analysis of Cos7 cells .....................................49 3.4.5 Transferrin uptake assay ...................................................................49 3.5 Protein crystallography........................................................................49 3.5.1 Crystallizaiton ...................................................................................49 3.5.2 X-ray data collection and processing................................................51 3.5.3 Structure determination.....................................................................52 3.5.4 Model building and refinement.........................................................54 3.6 Tubulation assay in vitro ......................................................................54 3.6.1 Liposome preparation.......................................................................54 3.6.2 Electron microscopy analysis of protein-lipid tubes.........................55 3.6.3 Liposome sedimentation assay
Recommended publications
  • Sorting Nexins in Protein Homeostasis Sara E. Hanley1,And Katrina F
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 November 2020 doi:10.20944/preprints202011.0241.v1 Sorting nexins in protein homeostasis Sara E. Hanley1,and Katrina F. Cooper2* 1Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA 1 [email protected] 2 [email protected] * [email protected] Tel: +1 (856)-566-2887 1Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA Abstract: Sorting nexins (SNXs) are a highly conserved membrane-associated protein family that plays a role in regulating protein homeostasis. This family of proteins is unified by their characteristic phox (PX) phosphoinositides binding domain. Along with binding to membranes, this family of SNXs also comprises a diverse array of protein-protein interaction motifs that are required for cellular sorting and protein trafficking. SNXs play a role in maintaining the integrity of the proteome which is essential for regulating multiple fundamental processes such as cell cycle progression, transcription, metabolism, and stress response. To tightly regulate these processes proteins must be expressed and degraded in the correct location and at the correct time. The cell employs several proteolysis mechanisms to ensure that proteins are selectively degraded at the appropriate spatiotemporal conditions. SNXs play a role in ubiquitin-mediated protein homeostasis at multiple levels including cargo localization, recycling, degradation, and function. In this review, we will discuss the role of SNXs in three different protein homeostasis systems: endocytosis lysosomal, the ubiquitin-proteasomal, and the autophagy-lysosomal system. The highly conserved nature of this protein family by beginning with the early research on SNXs and protein trafficking in yeast and lead into their important roles in mammalian systems.
    [Show full text]
  • Paxillin: a Focal Adhesion-Associated Adaptor Protein
    Oncogene (2001) 20, 6459 ± 6472 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc Paxillin: a focal adhesion-associated adaptor protein Michael D Schaller*,1 1Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center and Comprehensive Center for In¯ammatory Disorders, University of North Carolina, Chapel Hill, North Carolina, NC 27599, USA Paxillin is a focal adhesion-associated, phosphotyrosine- The molecular cloning of paxillin revealed a number containing protein that may play a role in several of motifs that are now known to function in mediating signaling pathways. Paxillin contains a number of motifs protein ± protein interactions (see Figure 1) (Turner that mediate protein ± protein interactions, including LD and Miller, 1994; Salgia et al., 1995a). The N-terminal motifs, LIM domains, an SH3 domain-binding site and half of paxillin contains a proline-rich region that SH2 domain-binding sites. These motifs serve as docking could serve as an SH3 domain-binding site. Several sites for cytoskeletal proteins, tyrosine kinases, serine/ tyrosine residues conforming to SH2 domain binding threonine kinases, GTPase activating proteins and other sites were also noted. In addition, the N-terminal adaptor proteins that recruit additional enzymes into domain of paxillin contains ®ve copies of a peptide complex with paxillin. Thus paxillin itself serves as a sequence, called the LD motif, which are now known docking protein to recruit signaling molecules to a to function as binding sites for other proteins (see speci®c cellular compartment, the focal adhesions, and/ Table 1) (Brown et al., 1998a). The C-terminal half of or to recruit speci®c combinations of signaling molecules paxillin is comprised of four LIM domains, which are into a complex to coordinate downstream signaling.
    [Show full text]
  • The PX Domain Protein Interaction Network in Yeast
    The PX domain protein interaction network in yeast Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) der Fakultät für Chemie und Biowissenschaften der Universität Karlsruhe (TH) vorgelegte DISSERTATION von Dipl. Biol. Carolina S. Müller aus Buenos Aires Dekan: Prof. Dr. Manfred Kappes Referent: Dr. Nils Johnsson Korreferent: HD. Dr. Adam Bertl Tag der mündlichen Prüfung: 17.02.2005 I dedicate this work to my Parents and Alex TABLE OF CONTENTS Table of contents Introduction 1 Yeast as a model organism in proteome analysis 1 Protein-protein interactions 2 Protein Domains in Yeast 3 Classification of protein interaction domains 3 Phosphoinositides 5 Function 5 Structure 5 Biochemistry 6 Localization 7 Lipid Binding Domains 8 The PX domain 10 Function of PX domain containing proteins 10 PX domain structure and PI binding affinities 10 Yeast PX domain containing proteins 13 PX domain and protein-protein interactions 13 Lipid binding domains and protein-protein interactions 14 The PX-only proteins Grd19p and Ypt35p and their phenotypes 15 Aim of my PhD work 16 Project outline 16 Searching for interacting partners 16 Confirmation of obtained interactions via a 16 second independent method Mapping the interacting region 16 The Two-Hybrid System 17 Definition 17 Basic Principle of the classical Yeast-Two Hybrid System 17 Peptide Synthesis 18 SPOT synthesis technique 18 Analysis of protein- peptide contact sites based on SPOT synthesis 19 TABLE OF CONTENTS Experimental procedures 21 Yeast two-hybrid assay
    [Show full text]
  • Insulin Receptor Tyrosine Kinase Substrate Links the E. Coli O157:H7
    Insulin receptor tyrosine kinase substrate links the E. coli O157:H7 actin assembly effectors Tir and EspFU during pedestal formation Didier Vingadassaloma, Arunas Kazlauskasb, Brian Skehana, Hui-Chun Chengc, Loranne Magouna, Douglas Robbinsa, Michael K. Rosenc, Kalle Sakselab, and John M. Leonga,1 aDepartment of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655; bDepartment of Virology, Haartman Institute, University of Helsinki and HUSLAB, Helsinki University Central Hospital, FIN-00014, Helsinki, Finland; and cDepartment of Biochemistry and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390 Edited by R. John Collier, Harvard Medical School, Boston, MA, and approved March 2, 2009 (received for review September 12, 2008) Enterohemorrhagic Escherichia coli O157:H7 translocates 2 effec- host cell plasma membrane with N- and C-terminal intracellular tors to trigger localized actin assembly in mammalian cells, result- domains and a central extracellular domain that binds to the ing in filamentous actin ‘‘pedestals.’’ One effector, the translocated bacterial outer membrane protein intimin. Clustering of Tir in the intimin receptor (Tir), is localized in the plasma membrane and host cell membrane upon intimin binding initiates a signaling clustered upon binding the bacterial outer membrane protein cascade, ultimately leading to actin pedestal formation. intimin. The second, the proline-rich effector EspFU (aka TccP) For the canonical EPEC strain, serotype O127:H6, Tir is the activates the actin nucleation-promoting factor WASP/N-WASP, only translocated effector required for pedestal formation, and and is recruited to sites of bacterial attachment by a mechanism after becoming phosphorylated on tyrosine residue 474 (Y474) dependent on an Asn-Pro-Tyr (NPY458) sequence in the Tir C- by mammalian kinases, recruits the SH2 domain-containing terminal cytoplasmic domain.
    [Show full text]
  • From Src Homology Domains to Other Signaling Modules: Proposal of the `Protein Recognition Code'
    Oncogene (1998) 17, 1469 ± 1474 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 http://www.stockton-press.co.uk/onc From Src Homology domains to other signaling modules: proposal of the `protein recognition code' Marius Sudol The Department of Biochemistry, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA The study of oncogenes has illuminated many aspects of domains have identi®ed a set of common features cellular signaling. The delineation and characterization which aids in their description. The domains are of protein modules exempli®ed by Src Homology composed of 40 ± 150 amino acids which fold to domains has revolutionized our understanding of the generate one or more ligand-binding surfaces, known molecular events underlying signal transduction path- as `recognition pockets'. Generally, conserved residues ways. Several well characterized intracellular modules of the domain are directly involved in mediating which mediate protein-protein interactions, namely SH2, contacts with the amino acids of the ligand and in SH3, PH, PTB, EH, PDZ, EVH1 and WW domains, maintaining the structure of the domain. Ligands are directly involved in the multitude of membrane, interact with their complementary domains through cytoplasmic and nuclear processes in multicellular and/or short sequence motifs (also called core motifs), unicellular organisms. The modular character of these composed of only 3 ± 6 amino acids (Figure 1). The protein domains and their cognate motifs, the univers- sequence of the core determines the selection of the ality of their molecular function, their widespread domains (Songyang and Cantley, 1995). The most occurrence, and the speci®city as well as the degeneracy `important' amino acid within the core is traditionally of their interactions have prompted us to propose the designated `0' and the remaining amino acids are concept of the `protein recognition code'.
    [Show full text]
  • Meltrin a Cytoplasmic Domain Interacts with SH3 Domains of Src and Grb2 and Is Phosphorylated by V-Src
    Oncogene (2000) 19, 5842 ± 5850 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc Meltrin a cytoplasmic domain interacts with SH3 domains of Src and Grb2 and is phosphorylated by v-Src Akiko Suzuki1, Nae Kadota1, Tomokazu Hara1, Yoshiko Nakagami1, Toshiaki Izumi1, Tadaomi Takenawa2, Hisataka Sabe3 and Takeshi Endo*,1 1Department of Biology, Faculty of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan; 2Department of Biochemistry, Institute of Medical Science, University of Tokyo, Shirokanedai, Minatoku, Tokyo 108-8639, Japan; 3Department of Molecular Biology, Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan Meltrin a/ADAM12 is a member of the ADAM/MDC receptor tyrosine kinases, tyrosine kinase-coupled family proteins characterized by the presence of cytokine receptors, TGF-b family receptor serine/ metalloprotease and disintegrin domains. This protein threonine kinases, and seven-pass G protein-coupled also contains a single transmembrane domain and a receptors. Integrins and cadherins not only serve as relatively long cytoplasmic domain containing several transmembrane adhesion molecules but also participate proline-rich sequences. These sequences are compatible in intracellular and extracellular signaling (Schwartz et with the consensus sequences for binding the Src al., 1995; Ben-Ze'ev, 1997; Yamada and Geiger, 1997). homology 3 (SH3) domains. To determine whether the ADAM/MDC family proteins have emerged as proline-rich sequences interact with SH3 domains in candidate molecules for proteolytic processing, cell ± several proteins, binding of recombinant SH3 domains to cell attachment, and cell fusion (Wolfsberg et al., 1995; the meltrin a cytoplasmic domain was analysed by pull- Wolfsberg and White, 1996; Huovila et al., 1996; Black down assays.
    [Show full text]
  • C-Abl: Activation and Nuclear Targets
    Cell Death and Differentiation (2000) 7, 10 ± 16 ã 2000 Macmillan Publishers Ltd All rights reserved 1350-9047/00 $15.00 www.nature.com/cdd Review c-Abl: activation and nuclear targets Y Shaul*,1 fibroblasts it resides predominantly in the nucleus while in primary haematopoietic cells and neurons c-Abl is more 1 Department of Molecular Genetics, Weizmann Institute of Science, Rehovot cytoplasmic. In sharp contrast, all the transforming Abl 76100, Israel variants are exclusively cytoplasmic. The cellular subcellular * Corresponding author: Y Shaul, Department of Molecular Genetics, Weizmann localization of c-Abl is controlled by NLSs (nuclear localization Institute of Science, Rehovot 76100, Israel. Tel: 972-8-934-2320; signals) and an NES (nuclear export signal). This pattern of Fax: 972-8-934-4108; E-mail: [email protected] cellular distribution of c-Abl hints at its possible involvement in multiple molecular pathways, and indeed various nuclear and Received 30.9.99; accepted 26.10.99 cytoplasmic functions have been attributed to c-Abl (reviewed 1 Edited by R Knight in ). Cellular processes involving the nuclear c-Abl will be discussed below. Some of the functional domains of c-Abl have been Abstract characterized (Figure 1). Common features to this family are the myristoylation site (found at the N terminus of the The c-Abl tyrosine kinase and its transforming variants have alternatively spliced human Ib and mouse IV transcripts), been implicated in tumorigenesis and in many important the tyrosine kinase domain with substrate specificity,2 the cellular processes. c-Abl is localized in the nucleus and the Src homology 2 (SH2) and 3 (SH3), both regulating c-Abl cytoplasm, where it plays distinct roles.
    [Show full text]
  • Architecture and Mechanism of Metazoan Retromer:SNX3 Tubular Coat Assembly
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.28.401588; this version posted November 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Architecture and mechanism of metazoan retromer:SNX3 tubular coat assembly Natalya Leneva1,2*, Oleksiy Kovtun2*, Dustin R. Morado2,3, John A. G. Briggs2*, David J. Owen1* 1 – Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK. 2 – MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK. 3 – current address: Cryo-EM Swedish National Facility, SciLifeLab, Solna, Sweden *Correspondence should be addressed to NL ([email protected]), OK (okovtun@ mrc-lmb.cam.ac.uk) JAGB ([email protected]) or DJO ([email protected]) Abstract Retromer is a master regulator of cargo retrieval from endosomes, which is critical for many cellular processes including signalling, immunity, neuroprotection and virus infection. To function in different trafficking routes, retromer core (VPS26/VPS29/VPS35) assembles with a range of sorting nexins to generate tubular carriers and incorporate assorted cargoes. We elucidate the structural basis of membrane remodelling and coupled cargo recognition by assembling metazoan and fungal retromer core trimers on cargo-containing membranes with sorting nexin adaptor SNX3 and determining their structures using cryo-electron tomography. Assembly leads to formation of tubular carriers in the absence of canonical membrane curvature drivers. Interfaces in the retromer coat provide a structural explanation for Parkinson's disease-linked mutations.
    [Show full text]
  • Membrane Curvature Sorting and Generation by the Bar Domain Proteins Endophilin and Syndapin
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2014 Membrane Curvature Sorting And Generation By The Bar Domain Proteins Endophilin And Syndapin Chen Zhu University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Chemistry Commons Recommended Citation Zhu, Chen, "Membrane Curvature Sorting And Generation By The Bar Domain Proteins Endophilin And Syndapin" (2014). Publicly Accessible Penn Dissertations. 1527. https://repository.upenn.edu/edissertations/1527 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1527 For more information, please contact [email protected]. Membrane Curvature Sorting And Generation By The Bar Domain Proteins Endophilin And Syndapin Abstract Membrane curvature provides a means to control spatial organization and activity of cells. It is regulated by plenty of peripherally binding membrane proteins, including BAR domain proteins. Two important sub- families of BAR domain containing proteins are NBAR and FBAR domain proteins. However, the current understanding of BAR domain protein membrane curvature (MC) sensing and generation is insufficient. My thesis intends to contribute to alleviating this situation. We first performed curvature sorting and generation experiments of an NBAR domain protein: endophilin. We found that the endophilin NBAR domain (ENBAR) behaved as a curvature sensor or generator at different concentrations. We studied lateral diffusion of ENBAR and found its diffusion coefficients depending on its membrane density. We developed an analytical model to explain our experimental results. Our theory predicts that the membrane curvature serves as a switch that is modulated by a thermodynamic phase transition. Then we studied the influence of membrane insertion helices on NBAR domain protein MC sensing and membrane dissociation kinetics by comparing ENBAR WT protein with helices deletion mutants.
    [Show full text]
  • Novel Roles of SH2 and SH3 Domains in Lipid Binding
    cells Review Novel Roles of SH2 and SH3 Domains in Lipid Binding Szabolcs Sipeki 1,†, Kitti Koprivanacz 2,†, Tamás Takács 2, Anita Kurilla 2, Loretta László 2, Virag Vas 2 and László Buday 1,2,* 1 Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University Medical School, 1094 Budapest, Hungary; [email protected] 2 Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; [email protected] (K.K.); [email protected] (T.T.); [email protected] (A.K.); [email protected] (L.L.); [email protected] (V.V.) * Correspondence: [email protected] † Both authors contributed equally to this work. Abstract: Signal transduction, the ability of cells to perceive information from the surroundings and alter behavior in response, is an essential property of life. Studies on tyrosine kinase action fundamentally changed our concept of cellular regulation. The induced assembly of subcellular hubs via the recognition of local protein or lipid modifications by modular protein interactions is now a central paradigm in signaling. Such molecular interactions are mediated by specific protein interaction domains. The first such domain identified was the SH2 domain, which was postulated to be a reader capable of finding and binding protein partners displaying phosphorylated tyrosine side chains. The SH3 domain was found to be involved in the formation of stable protein sub-complexes by constitutively attaching to proline-rich surfaces on its binding partners. The SH2 and SH3 domains have thus served as the prototypes for a diverse collection of interaction domains that recognize not only proteins but also lipids, nucleic acids, and small molecules.
    [Show full text]
  • Sorting Nexin 9 in Clathrin-Mediated Endocytosis
    UMEÅ UNIVERSITY MEDICAL DISSERTATIONS New Series No. 875; ISSN 0346-6612; ISBN 91-7305-599-9 Department of Medical Biochemistry and Biophysics Umeå University, Sweden Editor: The Dean of the Faculty of Medicine Sorting Nexin 9 in Clathrin-mediated Endocytosis Richard Lundmark Department of Medical Biochemistry and Biophysics Umeå University, Sweden Umeå 2004 © Richard Lundmark ISBN 91-7305-599-9 Printed in Sweden at Solfjädern Offset AB Umeå 2004 Tillägnad min älskade familj Samuel, Elias och Ida TABLE OF CONTENTS ABBREVIATIONS ...................................................................................................................2 ABSTRACT...............................................................................................................................3 PUBLICATION LIST ...............................................................................................................4 OVERVIEW ..............................................................................................................................5 1. INTRODUCTION .................................................................................................................5 2. ADAPTOR PROTEIN COMPLEXES..................................................................................6 3. CLATHRIN ...........................................................................................................................6 4. ENDOCYTOSIS....................................................................................................................7
    [Show full text]
  • Fyn/Lck Src Homology 3 Domain-Binding Protein (T-Celil Actvation/Signal Transduction/Protein-Tyrws Kna/Src-Famfly Kinases) KRIS A
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 4135-4139, May 1994 Immunology Rapid T-cell receptor-mediated tyrosine phosphorylation of p120, an Fyn/Lck Src homology 3 domain-binding protein (T-celil actvation/signal transduction/protein-tyrws kna/Src-famfly kinases) KRIS A. REEDQUIST*, TORU FUKAZAWA*, BRIAN DRUKERt, GOVINDASWAMY PANCHAMOORTHY*, STEVEN E. SHOELSONt, AND HAMID BAND*§ *Lymphocyte Biology Section, Department of Rheumatology and Immunology, and tResearch Division, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, SGMB 514, 250 Longwood Avenue, Boston, MA 02115; and tDivision of Hematology and Medical Oncology, Oregon Health Sciences University, Portland, OR 97201. Communicated by K. Frank Austen, December 30, 1993 ABSTRACT Tyrosine phosphorylation ofcellular proteins phosphotyrosyl (pY) peptide motifs and mediate assembly is the earliest identifiable event following T-cell antigen recep- of signaling complexes (15, 16). The SH3 domains bind to tor (TCR) stimulation and is essential for activating down- small proline-rich peptide motifs to mediate protein-protein stream signaling machiner. Two Src-family protein-tyrosine interactions (17, 18). A clear physiological role for SH3 kinas, the TCR-associated pS9f (Fyn) and the CD4/8- domains of the Sem-5/Grb-2 protein in linking receptor associated p561c (Lck), have emerged as the likely mediators of tyrosine kinases to the Ras pathway has been demonstrated early tyrosine phosphorylation in T cells. Here, we show direct (19). Recently, the SH3 domains of Src-family kinases have binding of a 120-kDa TCR-induced phosphotyrosyl polypep- been shown to bind to the p85 subunit of phosphatidylino- tide, p120, to glutathione S-transferase fusion proteins of the sitol (PI) 3-kinase (3-K) (20, 21), paxillin (a focal adhesion Src homology 3 (SH3) domains of Fyn, Lck, and p60 (Src) protein) (22), actin-associated protein p110 (23), and micro- but not other proteins.
    [Show full text]