Structural Basis for the Activation of PLC-G Isozymes
RESEARCH ARTICLE Structural basis for the activation of PLC-g isozymes by phosphorylation and cancer- associated mutations Nicole Hajicek1, Nicholas C Keith1, Edhriz Siraliev-Perez2, Brenda RS Temple2,3, Weigang Huang4, Qisheng Zhang1,4,5, T Kendall Harden1, John Sondek1,2,5* 1Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, United States; 2Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, United States; 3R L Juliano Structural Bioinformatics Core Facility, The University of North Carolina at Chapel Hill, Chapel Hill, United States; 4Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, United States; 5Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, United States Abstract Direct activation of the human phospholipase C-g isozymes (PLC-g1, -g2) by tyrosine phosphorylation is fundamental to the control of diverse biological processes, including chemotaxis, platelet aggregation, and adaptive immunity. In turn, aberrant activation of PLC-g1 and PLC-g2 is implicated in inflammation, autoimmunity, and cancer. Although structures of isolated domains from PLC-g isozymes are available, these structures are insufficient to define how release of basal autoinhibition is coupled to phosphorylation-dependent enzyme activation. Here, we describe the first high-resolution structure of a full-length PLC-g isozyme and use it to underpin a detailed model of their membrane-dependent regulation. Notably, an interlinked set of regulatory domains integrates basal autoinhibition, tyrosine kinase engagement, and additional scaffolding functions with the phosphorylation-dependent, allosteric control of phospholipase activation.
[Show full text]