Sh3 Domain Mediated Virus- Host Cell Interactions by the Nonstructural Protein 1 (Ns1) of Influenza a Virus

Total Page:16

File Type:pdf, Size:1020Kb

Sh3 Domain Mediated Virus- Host Cell Interactions by the Nonstructural Protein 1 (Ns1) of Influenza a Virus SH3 DOMAIN MEDIATED VIRUS- HOST CELL INTERACTIONS BY THE NONSTRUCTURAL PROTEIN 1 (NS1) OF INFLUENZA A VIRUS LEENA YLÖSMÄKI UNIVERSITY OF HELSINKI FACULTY OF MEDICINE SH3 domain mediated virus-host cell interactions by the nonstructural protein 1 (NS1) of influenza A virus Department of Virology Faculty of Medicine University of Helsinki Finland Leena Ylösmäki ACADEMIC DISSERTATION To be presented, with the permission of the Faculty of Medicine, University of Helsinki, for public examination in the Lecture Hall 2, Haartmaninkatu 3, on June 28th, 2016, at 12 noon. Helsinki 2016 SUPERVISED BY: Kalle Saksela, MD, PhD, Professor Department of Virology Faculty of Medicine University of Helsinki Finland REVIEWED BY: Tero Ahola, PhD, Docent Department of Food and Environmental Sciences Faculty of Agriculture and Forestry University of Helsinki Finland Denis Kainov, PhD, Docent Institute for Molecular Medicine Finland (FIMM) University of Helsinki Finland OPPONENT: Varpu Marjomäki, PhD, Docent Department of Biological and Environmental Science Faculty of Mathematics and Science University of Jyväskylä Finland ISBN 978-951-51-2283-4 (paperback) ISBN 978-951-51-2284-1 (PDF) Picaset Oy http://ethesis.helsinki.fi Helsinki 2016 2 To my family 3 Table of Contents LIST OF ORIGINAL PUBLICATIONS .................................................................................. 7 ABSTRACT ..................................................................................................................... 8 ABBREVIATIONS ............................................................................................................ 9 1 REVIEW OF LITERATURE ....................................................................................... 11 1.1 Influenza A virus ............................................................................................... 11 1.1.1 Disease and epidemics ............................................................................... 11 1.1.2 Structure of the virion ................................................................................ 12 1.2 Influenza A virus life cycle ................................................................................ 13 1.2.1 Entry .......................................................................................................... 13 1.2.2 Nuclear import of the viral genome............................................................ 14 1.2.3 Transcription and replication of the viral genome ...................................... 14 1.2.4 Export of the viral genome from the nucleus ............................................. 15 1.2.5 Virion assembly and budding ..................................................................... 16 1.3 Influenza A virus NS1 protein ........................................................................... 16 1.3.1 Stucture of NS1 .......................................................................................... 16 1.3.2 Intracellular localization of NS1 .................................................................. 17 1.3.3 Post-translational modifications of NS1 ...................................................... 17 1.3.4 Inhibition of interferon production by NS1 ................................................ 18 1.3.4.1 Inhibition of the RIG-I pathway .......................................................... 19 1.3.4.2 Inhibition of host gene expression ..................................................... 20 1.3.4.3 JNK pathway ...................................................................................... 20 1.3.4.4 Inhibition of the activity of antiviral proteins PKR and OAS................. 21 1.3.5 NS1 in apoptotic pathways ......................................................................... 22 1.3.6 Interactions of NS1 with other host cell factors .......................................... 22 1.3.6.1 PDZ domain mediated interactions .................................................... 22 1.3.6.2 SH3 domain mediated interactions .................................................... 23 1.3.7 Regulation of viral RNA and protein synthesis by NS1 ................................ 23 1.4 PI3K/Akt pathway ............................................................................................. 24 1.4.1 An overview of the PI3K/Akt pathway ........................................................ 24 1.4.2 Targeting of the PI3K/Akt pathway by viruses ............................................ 25 1.4.3 Induction of the PI3K/Akt pathway by NS1 protein..................................... 26 1.5 SH3 domains .................................................................................................... 27 1.5.1 SH3 domain structure ................................................................................ 28 1.5.2 SH3 domain ligand binding motifs .............................................................. 28 4 1.5.2.1 Typical ligand binding motifs .............................................................. 28 1.5.2.2 Atypical ligand binding motifs ............................................................ 29 1.5.3 Affinity and specificity of SH3 domains ....................................................... 29 1.5.4 Viral proteins as SH3 domain ligands .......................................................... 30 1.6 Crk adaptor proteins ........................................................................................ 31 1.6.1 Stucture and binding specificities of Crk proteins ....................................... 32 1.6.2 Regulation of Crk proteins .......................................................................... 33 1.6.3 Nuclear import and export of Crk proteins ................................................. 34 1.6.4 Biological function of Crk proteins .............................................................. 34 1.6.4.1 Crk in PI3K signaling ........................................................................... 35 1.6.4.2 Crk in apoptotic pathways .................................................................. 36 2 AIMS OF THE STUDY ............................................................................................. 37 3 MATERIALS AND METHODS .................................................................................. 38 3.1 Cell culture and transfections (I-III) ................................................................... 38 3.2 Plasmid constructs ........................................................................................... 38 3.2.1 Eukaryotic expression vectors (I-III) ............................................................ 38 3.2.2 Bacterial expression vectors (I,II) ................................................................ 39 3.3 Viruses and virus infections (I,III) ...................................................................... 39 3.4 Antibodies (I-III)................................................................................................ 40 3.5 Protein sequence alignment (I)......................................................................... 40 3.6 Recombinant protein production, purification and phage screening (I,II) ......... 41 3.7 Protein precipitation and Western blot (I-III) .................................................... 41 3.8 Detection of phosphorylated proteins (I-III)...................................................... 41 3.9 Dual-luciferase assays (I) .................................................................................. 41 3.10 In vitro protein binding assays (I,II) ................................................................. 41 3.11 Cell fractionation (III) ...................................................................................... 42 3.12 Immunostaining and imaging (III) ................................................................... 42 4 RESULTS ............................................................................................................... 43 4.1 Novel SH3 domain interaction partner for IAV NS1 protein (I-III) ...................... 43 4.1.1 Characterization of a novel interaction partner for NS1 protein (I-III) ......... 43 4.1.2 Functional role for the Crk-NS1 interaction (I,II) ......................................... 44 4.1.3 Trimeric complex formation upon Crk-NS1 interaction (II) ......................... 45 4.1.4 Functional consequences of the trimeric complex (II)................................. 47 4.2 Localization of the Crk-NS1 complex (III) .......................................................... 47 4.2.1 NS1 mediates nuclear translocation of Crk proteins (III) ............................. 47 5 4.2.2 Functional role of Crk translocation into the nucleus by NS1 (III) ................ 47 5 DISCUSSION .......................................................................................................... 49 5.1 Crk-NS1 interaction and PI3K activation ........................................................... 49 5.2 Crk-NS1-PI3K complex formation ..................................................................... 50 5.3 Nuclear localization of Crk-NS1 complex .......................................................... 51 5.4 Multiple functions of Crk-NS1 interaction......................................................... 52 5.5 Diversity in the SH3 binding motif of NS1 ......................................................... 53 5.6 Significance of the NS1 SH3 binding motif for IAV ............................................ 53 6 CONCLUSIONS .....................................................................................................
Recommended publications
  • Paxillin: a Focal Adhesion-Associated Adaptor Protein
    Oncogene (2001) 20, 6459 ± 6472 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc Paxillin: a focal adhesion-associated adaptor protein Michael D Schaller*,1 1Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center and Comprehensive Center for In¯ammatory Disorders, University of North Carolina, Chapel Hill, North Carolina, NC 27599, USA Paxillin is a focal adhesion-associated, phosphotyrosine- The molecular cloning of paxillin revealed a number containing protein that may play a role in several of motifs that are now known to function in mediating signaling pathways. Paxillin contains a number of motifs protein ± protein interactions (see Figure 1) (Turner that mediate protein ± protein interactions, including LD and Miller, 1994; Salgia et al., 1995a). The N-terminal motifs, LIM domains, an SH3 domain-binding site and half of paxillin contains a proline-rich region that SH2 domain-binding sites. These motifs serve as docking could serve as an SH3 domain-binding site. Several sites for cytoskeletal proteins, tyrosine kinases, serine/ tyrosine residues conforming to SH2 domain binding threonine kinases, GTPase activating proteins and other sites were also noted. In addition, the N-terminal adaptor proteins that recruit additional enzymes into domain of paxillin contains ®ve copies of a peptide complex with paxillin. Thus paxillin itself serves as a sequence, called the LD motif, which are now known docking protein to recruit signaling molecules to a to function as binding sites for other proteins (see speci®c cellular compartment, the focal adhesions, and/ Table 1) (Brown et al., 1998a). The C-terminal half of or to recruit speci®c combinations of signaling molecules paxillin is comprised of four LIM domains, which are into a complex to coordinate downstream signaling.
    [Show full text]
  • The PX Domain Protein Interaction Network in Yeast
    The PX domain protein interaction network in yeast Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) der Fakultät für Chemie und Biowissenschaften der Universität Karlsruhe (TH) vorgelegte DISSERTATION von Dipl. Biol. Carolina S. Müller aus Buenos Aires Dekan: Prof. Dr. Manfred Kappes Referent: Dr. Nils Johnsson Korreferent: HD. Dr. Adam Bertl Tag der mündlichen Prüfung: 17.02.2005 I dedicate this work to my Parents and Alex TABLE OF CONTENTS Table of contents Introduction 1 Yeast as a model organism in proteome analysis 1 Protein-protein interactions 2 Protein Domains in Yeast 3 Classification of protein interaction domains 3 Phosphoinositides 5 Function 5 Structure 5 Biochemistry 6 Localization 7 Lipid Binding Domains 8 The PX domain 10 Function of PX domain containing proteins 10 PX domain structure and PI binding affinities 10 Yeast PX domain containing proteins 13 PX domain and protein-protein interactions 13 Lipid binding domains and protein-protein interactions 14 The PX-only proteins Grd19p and Ypt35p and their phenotypes 15 Aim of my PhD work 16 Project outline 16 Searching for interacting partners 16 Confirmation of obtained interactions via a 16 second independent method Mapping the interacting region 16 The Two-Hybrid System 17 Definition 17 Basic Principle of the classical Yeast-Two Hybrid System 17 Peptide Synthesis 18 SPOT synthesis technique 18 Analysis of protein- peptide contact sites based on SPOT synthesis 19 TABLE OF CONTENTS Experimental procedures 21 Yeast two-hybrid assay
    [Show full text]
  • Insulin Receptor Tyrosine Kinase Substrate Links the E. Coli O157:H7
    Insulin receptor tyrosine kinase substrate links the E. coli O157:H7 actin assembly effectors Tir and EspFU during pedestal formation Didier Vingadassaloma, Arunas Kazlauskasb, Brian Skehana, Hui-Chun Chengc, Loranne Magouna, Douglas Robbinsa, Michael K. Rosenc, Kalle Sakselab, and John M. Leonga,1 aDepartment of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655; bDepartment of Virology, Haartman Institute, University of Helsinki and HUSLAB, Helsinki University Central Hospital, FIN-00014, Helsinki, Finland; and cDepartment of Biochemistry and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390 Edited by R. John Collier, Harvard Medical School, Boston, MA, and approved March 2, 2009 (received for review September 12, 2008) Enterohemorrhagic Escherichia coli O157:H7 translocates 2 effec- host cell plasma membrane with N- and C-terminal intracellular tors to trigger localized actin assembly in mammalian cells, result- domains and a central extracellular domain that binds to the ing in filamentous actin ‘‘pedestals.’’ One effector, the translocated bacterial outer membrane protein intimin. Clustering of Tir in the intimin receptor (Tir), is localized in the plasma membrane and host cell membrane upon intimin binding initiates a signaling clustered upon binding the bacterial outer membrane protein cascade, ultimately leading to actin pedestal formation. intimin. The second, the proline-rich effector EspFU (aka TccP) For the canonical EPEC strain, serotype O127:H6, Tir is the activates the actin nucleation-promoting factor WASP/N-WASP, only translocated effector required for pedestal formation, and and is recruited to sites of bacterial attachment by a mechanism after becoming phosphorylated on tyrosine residue 474 (Y474) dependent on an Asn-Pro-Tyr (NPY458) sequence in the Tir C- by mammalian kinases, recruits the SH2 domain-containing terminal cytoplasmic domain.
    [Show full text]
  • From Src Homology Domains to Other Signaling Modules: Proposal of the `Protein Recognition Code'
    Oncogene (1998) 17, 1469 ± 1474 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 http://www.stockton-press.co.uk/onc From Src Homology domains to other signaling modules: proposal of the `protein recognition code' Marius Sudol The Department of Biochemistry, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA The study of oncogenes has illuminated many aspects of domains have identi®ed a set of common features cellular signaling. The delineation and characterization which aids in their description. The domains are of protein modules exempli®ed by Src Homology composed of 40 ± 150 amino acids which fold to domains has revolutionized our understanding of the generate one or more ligand-binding surfaces, known molecular events underlying signal transduction path- as `recognition pockets'. Generally, conserved residues ways. Several well characterized intracellular modules of the domain are directly involved in mediating which mediate protein-protein interactions, namely SH2, contacts with the amino acids of the ligand and in SH3, PH, PTB, EH, PDZ, EVH1 and WW domains, maintaining the structure of the domain. Ligands are directly involved in the multitude of membrane, interact with their complementary domains through cytoplasmic and nuclear processes in multicellular and/or short sequence motifs (also called core motifs), unicellular organisms. The modular character of these composed of only 3 ± 6 amino acids (Figure 1). The protein domains and their cognate motifs, the univers- sequence of the core determines the selection of the ality of their molecular function, their widespread domains (Songyang and Cantley, 1995). The most occurrence, and the speci®city as well as the degeneracy `important' amino acid within the core is traditionally of their interactions have prompted us to propose the designated `0' and the remaining amino acids are concept of the `protein recognition code'.
    [Show full text]
  • Meltrin a Cytoplasmic Domain Interacts with SH3 Domains of Src and Grb2 and Is Phosphorylated by V-Src
    Oncogene (2000) 19, 5842 ± 5850 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc Meltrin a cytoplasmic domain interacts with SH3 domains of Src and Grb2 and is phosphorylated by v-Src Akiko Suzuki1, Nae Kadota1, Tomokazu Hara1, Yoshiko Nakagami1, Toshiaki Izumi1, Tadaomi Takenawa2, Hisataka Sabe3 and Takeshi Endo*,1 1Department of Biology, Faculty of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan; 2Department of Biochemistry, Institute of Medical Science, University of Tokyo, Shirokanedai, Minatoku, Tokyo 108-8639, Japan; 3Department of Molecular Biology, Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan Meltrin a/ADAM12 is a member of the ADAM/MDC receptor tyrosine kinases, tyrosine kinase-coupled family proteins characterized by the presence of cytokine receptors, TGF-b family receptor serine/ metalloprotease and disintegrin domains. This protein threonine kinases, and seven-pass G protein-coupled also contains a single transmembrane domain and a receptors. Integrins and cadherins not only serve as relatively long cytoplasmic domain containing several transmembrane adhesion molecules but also participate proline-rich sequences. These sequences are compatible in intracellular and extracellular signaling (Schwartz et with the consensus sequences for binding the Src al., 1995; Ben-Ze'ev, 1997; Yamada and Geiger, 1997). homology 3 (SH3) domains. To determine whether the ADAM/MDC family proteins have emerged as proline-rich sequences interact with SH3 domains in candidate molecules for proteolytic processing, cell ± several proteins, binding of recombinant SH3 domains to cell attachment, and cell fusion (Wolfsberg et al., 1995; the meltrin a cytoplasmic domain was analysed by pull- Wolfsberg and White, 1996; Huovila et al., 1996; Black down assays.
    [Show full text]
  • C-Abl: Activation and Nuclear Targets
    Cell Death and Differentiation (2000) 7, 10 ± 16 ã 2000 Macmillan Publishers Ltd All rights reserved 1350-9047/00 $15.00 www.nature.com/cdd Review c-Abl: activation and nuclear targets Y Shaul*,1 fibroblasts it resides predominantly in the nucleus while in primary haematopoietic cells and neurons c-Abl is more 1 Department of Molecular Genetics, Weizmann Institute of Science, Rehovot cytoplasmic. In sharp contrast, all the transforming Abl 76100, Israel variants are exclusively cytoplasmic. The cellular subcellular * Corresponding author: Y Shaul, Department of Molecular Genetics, Weizmann localization of c-Abl is controlled by NLSs (nuclear localization Institute of Science, Rehovot 76100, Israel. Tel: 972-8-934-2320; signals) and an NES (nuclear export signal). This pattern of Fax: 972-8-934-4108; E-mail: [email protected] cellular distribution of c-Abl hints at its possible involvement in multiple molecular pathways, and indeed various nuclear and Received 30.9.99; accepted 26.10.99 cytoplasmic functions have been attributed to c-Abl (reviewed 1 Edited by R Knight in ). Cellular processes involving the nuclear c-Abl will be discussed below. Some of the functional domains of c-Abl have been Abstract characterized (Figure 1). Common features to this family are the myristoylation site (found at the N terminus of the The c-Abl tyrosine kinase and its transforming variants have alternatively spliced human Ib and mouse IV transcripts), been implicated in tumorigenesis and in many important the tyrosine kinase domain with substrate specificity,2 the cellular processes. c-Abl is localized in the nucleus and the Src homology 2 (SH2) and 3 (SH3), both regulating c-Abl cytoplasm, where it plays distinct roles.
    [Show full text]
  • Novel Roles of SH2 and SH3 Domains in Lipid Binding
    cells Review Novel Roles of SH2 and SH3 Domains in Lipid Binding Szabolcs Sipeki 1,†, Kitti Koprivanacz 2,†, Tamás Takács 2, Anita Kurilla 2, Loretta László 2, Virag Vas 2 and László Buday 1,2,* 1 Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University Medical School, 1094 Budapest, Hungary; [email protected] 2 Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; [email protected] (K.K.); [email protected] (T.T.); [email protected] (A.K.); [email protected] (L.L.); [email protected] (V.V.) * Correspondence: [email protected] † Both authors contributed equally to this work. Abstract: Signal transduction, the ability of cells to perceive information from the surroundings and alter behavior in response, is an essential property of life. Studies on tyrosine kinase action fundamentally changed our concept of cellular regulation. The induced assembly of subcellular hubs via the recognition of local protein or lipid modifications by modular protein interactions is now a central paradigm in signaling. Such molecular interactions are mediated by specific protein interaction domains. The first such domain identified was the SH2 domain, which was postulated to be a reader capable of finding and binding protein partners displaying phosphorylated tyrosine side chains. The SH3 domain was found to be involved in the formation of stable protein sub-complexes by constitutively attaching to proline-rich surfaces on its binding partners. The SH2 and SH3 domains have thus served as the prototypes for a diverse collection of interaction domains that recognize not only proteins but also lipids, nucleic acids, and small molecules.
    [Show full text]
  • Fyn/Lck Src Homology 3 Domain-Binding Protein (T-Celil Actvation/Signal Transduction/Protein-Tyrws Kna/Src-Famfly Kinases) KRIS A
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 4135-4139, May 1994 Immunology Rapid T-cell receptor-mediated tyrosine phosphorylation of p120, an Fyn/Lck Src homology 3 domain-binding protein (T-celil actvation/signal transduction/protein-tyrws kna/Src-famfly kinases) KRIS A. REEDQUIST*, TORU FUKAZAWA*, BRIAN DRUKERt, GOVINDASWAMY PANCHAMOORTHY*, STEVEN E. SHOELSONt, AND HAMID BAND*§ *Lymphocyte Biology Section, Department of Rheumatology and Immunology, and tResearch Division, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, SGMB 514, 250 Longwood Avenue, Boston, MA 02115; and tDivision of Hematology and Medical Oncology, Oregon Health Sciences University, Portland, OR 97201. Communicated by K. Frank Austen, December 30, 1993 ABSTRACT Tyrosine phosphorylation ofcellular proteins phosphotyrosyl (pY) peptide motifs and mediate assembly is the earliest identifiable event following T-cell antigen recep- of signaling complexes (15, 16). The SH3 domains bind to tor (TCR) stimulation and is essential for activating down- small proline-rich peptide motifs to mediate protein-protein stream signaling machiner. Two Src-family protein-tyrosine interactions (17, 18). A clear physiological role for SH3 kinas, the TCR-associated pS9f (Fyn) and the CD4/8- domains of the Sem-5/Grb-2 protein in linking receptor associated p561c (Lck), have emerged as the likely mediators of tyrosine kinases to the Ras pathway has been demonstrated early tyrosine phosphorylation in T cells. Here, we show direct (19). Recently, the SH3 domains of Src-family kinases have binding of a 120-kDa TCR-induced phosphotyrosyl polypep- been shown to bind to the p85 subunit of phosphatidylino- tide, p120, to glutathione S-transferase fusion proteins of the sitol (PI) 3-kinase (3-K) (20, 21), paxillin (a focal adhesion Src homology 3 (SH3) domains of Fyn, Lck, and p60 (Src) protein) (22), actin-associated protein p110 (23), and micro- but not other proteins.
    [Show full text]
  • Systematic Identification of SH3 Domain-Mediated Human Protein–Protein Interactions by Peptide Array Target Screening
    Proteomics 2007, 7, 1775–1785 DOI 10.1002/pmic.200601006 1775 RESEARCH ARTICLE Systematic identification of SH3 domain-mediated human protein–protein interactions by peptide array target screening Chenggang Wu1*, Mike Haiting Ma1*, Kevin R. Brown2, Matt Geisler1, Lei Li1, Eve Tzeng1, Christina Y. H. Jia1, Igor Jurisica2 and Shawn S.-C. Li1 1 Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada 2 Ontario Cancer Institute, Northeast Structural Genomics Consortium, Toronto, Ontario, Canada Systematic identification of direct protein–protein interactions is often hampered by difficulties Received: December 12, 2006 in expressing and purifying the corresponding full-length proteins. By taking advantage of the Revised: February 1, 2007 modular nature of many regulatory proteins, we attempted to simplify protein–protein interac- Accepted: February 23, 2007 tions to the corresponding domain-ligand recognition and employed peptide arrays to identify such binding events. A group of 12 Src homology (SH) 3 domains from eight human proteins (Swiss-Prot ID: SRC, PLCG1, P85A, NCK1, GRB2, FYN, CRK) were used to screen a peptide target array composed of 1536 potential ligands, which led to the identification of 921 binary interactions between these proteins and 284 targets. To assess the efficiency of the peptide array target screening (PATS) method in identifying authentic protein–protein interactions, we exam- ined a set of interactions mediated by the PLCg1 SH3 domain by coimmunoprecipitation and/or affinity pull-downs using full-length proteins and achieved a 75% success rate. Furthermore, we characterized a novel interaction between PLCg1 and hematopoietic progenitor kinase 1 (HPK1) identified by PATS and demonstrated that the PLCg1 SH3 domain negatively regulated HPK1 kinase activity.
    [Show full text]
  • Peptide Array X-Linking (PAX): a New Peptide-Protein Identification Approach
    Peptide Array X-Linking (PAX): A New Peptide-Protein Identification Approach The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Okada, Hirokazu et al. “Peptide Array X-Linking (PAX): A New Peptide-Protein Identification Approach.” Ed. Pontus Aspenstrom. PLoS ONE 7.5 (2012): e37035. As Published http://dx.doi.org/10.1371/journal.pone.0037035 Publisher Public Library of Science Version Final published version Citable link http://hdl.handle.net/1721.1/71732 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/2.5/ Peptide Array X-Linking (PAX): A New Peptide-Protein Identification Approach Hirokazu Okada1, Akiyoshi Uezu1, Erik J. Soderblom2, M. Arthur Moseley, III2, Frank B. Gertler3, Scott H. Soderling1* 1 Department of Cell Biology, Duke University Medical School, Durham, North Carolina, United States of America, 2 Institute for Genome Science & Policy Proteomics Core Facility, Duke University Medical School, Durham, North Carolina, United States of America, 3 Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America Abstract Many protein interaction domains bind short peptides based on canonical sequence consensus motifs. Here we report the development of a peptide array-based proteomics tool to identify proteins directly interacting with ligand peptides from cell lysates. Array-formatted bait peptides containing an amino acid-derived cross-linker are photo-induced to crosslink with interacting proteins from lysates of interest. Indirect associations are removed by high stringency washes under denaturing conditions. Covalently trapped proteins are subsequently identified by LC-MS/MS and screened by cluster analysis and domain scanning.
    [Show full text]
  • Mutagenic Analysis of SH3 Binding Site in the Avian Chb6 Alloantigen
    DePaul University Via Sapientiae College of Science and Health Theses and Dissertations College of Science and Health Fall 11-22-2016 Mutagenic Analysis of SH3 Binding Site in the Avian ChB6 Alloantigen Rohini Bhattacharya DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/csh_etd Part of the Biology Commons Recommended Citation Bhattacharya, Rohini, "Mutagenic Analysis of SH3 Binding Site in the Avian ChB6 Alloantigen" (2016). College of Science and Health Theses and Dissertations. 200. https://via.library.depaul.edu/csh_etd/200 This Thesis is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It has been accepted for inclusion in College of Science and Health Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. “Mutagenic Analysis of SH3 Binding Site in the Avian ChB6 Alloantigen” A Thesis Presented in Partial Fulfillment of the Requirement for the Degree of Master of Science Oct 2016 By Rohini Bhattacharya Department of Biological Science College of Science and Health DePaul University Chicago, Illinois 1 Table of contents: Introduction 5 Literature Review 7 B Lymphocytes 7 Problems of antibody 11 Cell signaling 13 SLAM 17 Src Family kinases 19 Bursa of Fabricius 21 chB6 23 Statement of purpose 26 Materials and method 28 Results 33 Discussion 37 References 48 Figure legends 54 Figures 59 2 List of figures Figure # Figure Page # 1 VDJ recombination 59 2 Structure of antibody 60 3 chB6 sequence 61 4 P282A and P279A P282A enzyme digest 62 Table 1 Percent immunofluorescences after anti chB6 63 and FITC staining.
    [Show full text]
  • Structural Basis for the Activation of PLC-G Isozymes
    RESEARCH ARTICLE Structural basis for the activation of PLC-g isozymes by phosphorylation and cancer- associated mutations Nicole Hajicek1, Nicholas C Keith1, Edhriz Siraliev-Perez2, Brenda RS Temple2,3, Weigang Huang4, Qisheng Zhang1,4,5, T Kendall Harden1, John Sondek1,2,5* 1Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, United States; 2Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, United States; 3R L Juliano Structural Bioinformatics Core Facility, The University of North Carolina at Chapel Hill, Chapel Hill, United States; 4Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, United States; 5Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, United States Abstract Direct activation of the human phospholipase C-g isozymes (PLC-g1, -g2) by tyrosine phosphorylation is fundamental to the control of diverse biological processes, including chemotaxis, platelet aggregation, and adaptive immunity. In turn, aberrant activation of PLC-g1 and PLC-g2 is implicated in inflammation, autoimmunity, and cancer. Although structures of isolated domains from PLC-g isozymes are available, these structures are insufficient to define how release of basal autoinhibition is coupled to phosphorylation-dependent enzyme activation. Here, we describe the first high-resolution structure of a full-length PLC-g isozyme and use it to underpin a detailed model of their membrane-dependent regulation. Notably, an interlinked set of regulatory domains integrates basal autoinhibition, tyrosine kinase engagement, and additional scaffolding functions with the phosphorylation-dependent, allosteric control of phospholipase activation.
    [Show full text]