CR-/3017S B ORBITING SOLAR OBSERVATORY FINAL REPORT

Total Page:16

File Type:pdf, Size:1020Kb

CR-/3017S B ORBITING SOLAR OBSERVATORY FINAL REPORT 4: it W::: 050-7 ~AS ACR-/3017s B ORBITING SOLAR OBSERVATORY FINAL REPORT N C) U2a ~ 0mU 4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-4' W 10 ~~~~~~ -7 Ol C",.1-a -9- ---- o ' ocl '.-l Q) o QU2i~WL4cO 1-a . ), 3xr N~~~~~~~~~~~~~~~. .~ tjir~ V I ed F7. 3 wUii rH1 _.1- ~~z,~~OULECORD r~ BALBOTESRSERHCRPRTO o~~~~~USDAY FBL OPRTO BOULDER, COLRAD I~ ~..... LDER-'COLOR.DO '-01 OSO-7 ORBITING SOLAR OBSERVATORY PROGRAM FINAL REPORT F72-01 December 31, 1972 PREPARED BY APPROVED BY OSO Program Staff J. O. Simpson Director, OSO Programs BALL BROTHERS RESEARCH CORPORATION SUBSIDIARY OF BALL CORPORATION BOULDER, COLORADO F72-01 PREFACE During the 1950's rapid progress was made in solar physics and in instrument and space hardware technology, using rocket and balloon flights that, although of brief duration, provided a view of the sun free from the obscuring atmosphere. The significance of data from these flights confirmed the often-asserted value of long-term observations from a spacecraft in advancing our knowledge of the sun's behavior. Thus, the first of NASA's space platforms designed for long-term observations of the universe from above the atmosphere was planned, and the Orbiting Solar Observatory program started in 1959. Solar physics data return began with the launch of OSO-1 in March of 1962. OSO-2 and OSO-3 were launched in 1965, OSO-4 and OS0-5 in 1967, OSO-6 in 1969, and the most recent, OSO-7/, was launched on September 29, 1971. All seven OSO's have been highly successful both in scientific data return and in per- formance of the engineering systems. The gain to date in scientific knowledge amply justifies the foresight of the early planners. OSO lifetimes have been several years, allowing long-term observations of solar and other galactic and extra-galactic events as planned. This report describes OSO-7, the seventh of the continuing series of Orbiting Solar Observatories. iii/iv F72-01 CONTENTS Section Page PREFACE iii 1 PROGRAM SUMMARY 1-1 1.1 Overall Orbiting Solar Observatory Program Objectives 1-1 1.2 OSO-7 Program Activity Summary 1-2 1.3 Observatory Description 1-6 1.4 Mission Performance 1-15 2 HARDWARE PERFORMANCE 2-1 2.1 In-Orbit Performance 2-1 2.2 Launch Phase Performance 2-14 3 DESIGN, INTEGRATION, AND TEST PROGRAM SUMMARY 3-1 3.1 Subassembly Qualification 3-1 3.2 Observatory Qualification Model Testing 3-1 3.3 Flight Model Test History 3-2 4 DYNAMICS 4-1 4.1 Rotational Dynamics of OSO 4-1 4.2. Ballasting for Proper Moment of Inertia 4-10 4.3 Stability and Dynamics During Initial Acquisition 4-11 5 OBSERVATORY ASPECT MONITORS 5-1 5.1 General Description 5-1 5.2 Fine Pitch Monitor 5-2 5.3 Large-Angle Pitch Monitor 5-4 5.4 Coarse Aspect Monitor (SORE) 5-7 5.5 Fine Aspect Monitor (ASA) 5-13 6 CONTROL SYSTEMS 6-1 6.1 Introduction 6-1 6.2 Pneumatic Pitch-Attitude Control 6-2 6.3 Pneumatic Roll-Attitude Control 6-5 6.4 Pneumatic Spin-Rate Control 6-5 6.5 Magnetic Roll, Pitch and Spin Control 6-12 6.6 Pointing Control 6-14 6.7 Launch-Sequence Control 6-45 6.8 Nutation Control 6-50 7 POWER SYSTEM 7-1 7.1 General Description 7-1 7.2 Observatory Power Budget 7-1 7.3 Power Source 7-3 7.4 Energy Storage 7-7 7.5 Power Control 7-9 7.6 Power Distribution 7-12 8 TELEMETRY SYSTEM 8-1 8.1 Introduction 8-1 8.2 Data Handling Subsystem 8-4 8.3 Spacecraft Housekeeping Data Acquisition 8-32 8.4 RF Subsystem 8-33 8.5 Telemetry Link Analysis 8-42 v F72-01 CONTENTS (Cont.) Section Page 9 COMMAND SYSTEM 9-1 9.1 General Description 9-1 9.2 Command and Address Formats 9-4 9.3 Decoder Description 9-6 9.4 Command Receivers 9-17 9.5 System Performance Requirements 9-18 10 STRUCTURAL, PNEUMATIC AND THERMAL CONTROL DESCRIPTION 10-1 10.1 Development History of OSO-7 10-1 10.2 Observatory Structure 10-5 10.3 Pneumatic Systems 10-9 10.4 Structural Analysis Summary 10-10 10.5 Mass Properties 10-16 10.6 OSO-7 Thermal System Description 10-19 Appendix Page A SORE AND ASA SOFTWARE AND ASPECT COORDINATE SYSTEMS A-1 B THERMAL ANALYSIS METHODS B-1 vi F72-01 ILLUSTRATIONS Figure Page 1-1 OSO-7 Program Activities Summary 1-7 1-2 OS0-7 Configuration 1-8 1-3 OSO-7 Dimensions 1-9 1-4 Spacecraft Structural Breakdown 1-10 1-5 Azimuth Drive Assembly 1-11 1-6 Pointing Modes 1-12 2-1 Attitude History, Spacecraft Spin Axis 2-2 2-2 Wheel Spin Rate and Spin Gas Pressure History 2-2 2-3 Pitch Attitude, Pitch Coil Status, and Pitch Gas Pressure History 2-3 2-4 Spacecraft Bus Voltage, Load Current, and Solar Array Current History 2-3 2-5 Solar Array Energy Developed During Orbit Revolution Nos. 225, 274, 665, 892, 1905 2-4 2-6 Elevation and Azimuth Motor Torque History 2-5 2-7 Solar Array Temperature History 2-5 2-8 Spin-Axis (Pitch) Motion After Dawn Acquisition (Gyro Control During Night-Orbit Revolution No. 968) 2-6 2-9 Pitch Motion During Changes in Pointing Modes - Orbit Revolution No. 846 2-7 2-10 Pointing Control Performance Read-Out Sensor. Output - Orbit Revolution No. 75 2-8 2-11 Typical Gyro Azimuth Drift (Orbit Revolution No. 225) Measured Relative to Stars Observed by Star Scanner 2-9 2-12 Star Scanner Sensitivity 2-10 2-13 Star Sensor Performance During Orbit Revolution No. 271. Comparison of Results Using Original and Improved Data Reduction 2-11 2-14 Power System Parameters - Normal Profiles (Pars 318) and Overcharge Condition (Pars 76) 2-12 2-15 Wheel Experiment Temperature, Orbit Revolution 77 2-15 2-16 OSO-7 Wheel Temperatures, Orbit Revolution 77 2-16 2-17 OSO-7 Pointed Experiment Temperature, Orbit Revolution 77 2-17 2-18 OSO-7 Sail Temperatures, Orbit Revolution 77 2-18 2-19 Nominal and Actual OSO-7 Launch Sequence 2-20 2-20 Pitch Attitude and Spin Rate Data 2-22 2-21 Pitch Attitude Sensor Geometry 2-23 2-22 Permissible Pitch Attitude Readout-Momentum Vector 19 Degrees from Line of Sight to Sun 2-23 2-23 Telemetry Data, Modes, and Corrective Commands - OSO-7 Recovery 2-24 3-1 Qualification Model Test History 3-3 3-2 Spacecraft Test History 3-5 3-3 Observatory Test History 3-7 4-1 Motion of R and S During Pitch Precession 4-3 4-2 Residual Nutation of S After Constant Torquing Stops 4-6 4-3 Dusk Transient 4-7 4-4 Dawn Transient 4-8 4-5 Time Required to Enter Dynamically Stable Region During Launch Sequence 4-13 4-6 Worst Case Expected Nutation Decay During First Solar Acquisition 4-14 vii F72-01 ILLUSTRATIONS (Cont.) Figure Page 5-1 Location of Aspect Sensors and Reference Axes 5-3 5-2 Diagram of Pitch Readout Sensor 5-4 5-3 Pitch Readout Sensor Output Curve 5-5 5-4 Principle of Large-Angle Pitch Monitor 5-6 5-5 Flux-Gate Magnetometer 5-8 5-6 Azimuth Encoder (Blipper) Operation 5-9 5-7 SORE Functional Block Diagram 5-10 5-8 Aspect Sensor Assembly 5-14 5-9 ASA Optics 5-15 5-10 ASA Data Words 5-16 5-11 ASA Timing Relationships 5-17 6-1 Pneumatic Pitch Control Block Diagram 6-3 6-2 Pitch Control Sensors 6-4 6-3 Typical Pitch Control Sensor Response 6-4 6-4 Pneumatic Spin Control Block Diagram 6-6 6-5 Spin-Down-Loop Timing Diagram 6-8 6-6 Spin-Up Loop Timing Diagram 6-9 6-7 Day/Night Sensing and Timing 6-11 6-8 Pitch and Roll Coils Functional Diagram 6-13 6-9 Servo Loops Functional Interfacing 6-15 6-10 OSO-7 Pointing Control Block Diagram 6-18 6-11 Coarse Sensor Assemblies 6-19 6-12 Coarse Sensor Signal 6-20 6-13 Rate Signal Compensation 6-21 6-14 Net Despin Drive Efficiency 6-23 6-15 Coarse-Azimuth Preamp/AC Amplifier Response 6-24 6-16 Typical PWM/Power Switch Response 6-25 6-17 Fine Control Eyes and Response Curve 6-28 6-18 Offset-Mode Patterns 6-32 6-19 Offset Mode Block Diagram 6-33 6-20 OIRU Configuration and Dimensions 6-36 6-21 Night-Pointing Control Functional Diagram 6-39 6-22 Rate-Integrating Gyro 6-44 6-23 Launch Sequence Control Block Diagram 6-47 6-24 Time-Delay Relay Driver 6-49 6-25 Nutation Damper 6-51 6-26 Nutation Damper Effectiveness 6-54 7-1 Simplified OSO-7 Power System Schematic 7-2 7-2 OSO-7 Power Load Tree 7-4 7-3 OSO-7 Solar Panel Layout and Module Dimensions 7-6 7-4 Solar Cell and Interconnect 7-7 7-5 OSO-7 Seven-Cell Battery Pack 7-8 7-6 Dummy Load System Simplified Schematic 7-10 7-7 Dummy Load Locations 7-11 viii F72-01 ILLUSTRATIONS (Cont.) Figure Page 7-8 Simplified Power Distribution 7-13 7-9 Flex Cable 7-13 7-10 Flex Cable Mounting Configuration 7-14 8-1 Telemetry System Block Diagram 8-2 8-2 Data-Handling System Functional Block Diagram 8-9 8-3 Digital Multiplexer and Encoder Logic Diagram 8-11 8-4 DME Timing Chart 8-14 8-5 ASC Functional Block Diagram 8-17 8-6 Analog Subcommutator Logic Diagram 8-18 8-7 ASC Timing Chart 8-19 8-8 ASC Block Diagram 8-21 8-9 PCM Junction Box Functional Block Diagram 8-23 8-10 PCM Junction Box Power Switching 8-24 8-11 Frame Counter and Digital Submultiplexer Functional Block Diagram 8-25 8-12 Tape Recorder Block Diagram 8-27 8-13 Tape Recorder Switching Diagram 8-30 8-14 Tape Recorder Timer 8-31 8-15 ASSC Synchronization Circuit 8-33 8-16 Telemetry System (PSK-600A) Block Diagram 8-34 8-17 Turnstile Slot Antenna 8-36 8-18 Progressive Phase Feed Layout 8-37 8-19 Progressive Phase Feed Block Diagram 8-38 8-20 Feed Network Schematic 8-39 8-21 Telemetry Frequency Radiation Pattern (RHC Polarized) 8-40 8-22 Telemetry Frequency Radiation Pattern (LHC Polarized) 8-40 8-23 Telemetry Frequency Radiation Pattern (Combined RHC and LHC) 8-41 8-24 Vehicle/Antenna Coordinate System 8-42 8-25 Command Frequency Radiation Pattern (RHC Polarized) 8-43 9-1 OSO-7 Command System Block Diagram 9-1 9-2 Command and Address Word Format 9-5 9-3 Command Frame Timing Formats 9-7 9-4 Command Decoder Functional Diagram 9-11 9-5 Decoder Timing Diagram 9-14 9-6 Output Switch Configuration 9-17 9-7 VHF Command Receiver Block
Recommended publications
  • The Highly Structured Outer Solar Corona
    The Astrophysical Journal, 862:18 (18pp), 2018 July 20 https://doi.org/10.3847/1538-4357/aac8e3 © 2018. The American Astronomical Society. The Highly Structured Outer Solar Corona C. E. DeForest1 , R. A. Howard2 , M. Velli3 , N. Viall4 , and A. Vourlidas5,6 1 Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302, USA; [email protected] 2 Naval Research Laboratory, Washington, DC, USA 3 University of California, Los Angeles, CA, USA 4 NASA/Goddard Space Flight Center, Greenbelt, MD, USA 5 Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA Received 2018 March 6; revised 2018 April 28; accepted 2018 May 22; published 2018 July 18 Abstract We report on the observation of fine-scale structure in the outer corona at solar maximum, using deep-exposure campaign data from the Solar Terrestrial Relations Observatory-A (STEREO-A)/COR2 coronagraph coupled with postprocessing to further reduce noise and thereby improve effective spatial resolution. The processed images reveal radial structure with high density contrast at all observable scales down to the optical limit of the instrument, giving the corona a “woodgrain” appearance. Inferred density varies by an order of magnitude on spatial scales of 50 Mm and follows an f −1 spatial spectrum. The variations belie the notion of a smooth outer corona. They are inconsistent with a well-defined “Alfvén surface,” indicating instead a more nuanced “Alfvén zone”—a broad trans-Alfvénic region rather than a simple boundary. Intermittent compact structures are also present at all observable scales, forming a size spectrum with the familiar “Sheeley blobs” at the large-scale end.
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • OSO 20M Telescope Handbook
    OSO 20m Telescope Handbook Onsala Space Observatory August 31, 2016 The latest version of this handbook can be found here. Original version by Lars E.B. Johansson. Latest revisions by A.O.H.Olofsson and E. De Beck. Table of Contents Contents2 List of Figures5 List of Tables6 1 Introduction7 1 Quick system overview..........................7 2 Observing.................................8 3 Staff....................................9 4 Communication..............................9 2 Technical description 10 1 The telescope............................... 10 2 Receivers / frontends........................... 10 2.1 3 mm: 85 – 116 GHz........................ 11 2.2 4 mm: 67 – 87 GHz........................ 12 2.3 100 GHz receiver......................... 12 3 Spectrometers / backends........................ 14 4 Telescope and instrument control system................ 15 3 Spectral-line observations 16 1 Observing modes............................. 16 1.1 Beam switching.......................... 16 1.2 Position switching......................... 17 1.3 Frequency switching....................... 17 1.4 Mapping.............................. 17 2 Calibration................................ 18 3 Pointing strategy............................. 18 4 Velocity systems.............................. 18 5 Time estimates.............................. 19 6 Atmospheric transmission........................ 20 4 Data 22 1 Backups, retrieval and transfer...................... 22 2 File names................................. 22 2 OSO 20 m Telescope Handbook Table
    [Show full text]
  • A Journey of Exploration to the Polar Regions of a Star: Probing the Solar
    Experimental Astronomy manuscript No. (will be inserted by the editor) A journey of exploration to the polar regions of a star: probing the solar poles and the heliosphere from high helio-latitude Louise Harra · Vincenzo Andretta · Thierry Appourchaux · Fr´ed´eric Baudin · Luis Bellot-Rubio · Aaron C. Birch · Patrick Boumier · Robert H. Cameron · Matts Carlsson · Thierry Corbard · Jackie Davies · Andrew Fazakerley · Silvano Fineschi · Wolfgang Finsterle · Laurent Gizon · Richard Harrison · Donald M. Hassler · John Leibacher · Paulett Liewer · Malcolm Macdonald · Milan Maksimovic · Neil Murphy · Giampiero Naletto · Giuseppina Nigro · Christopher Owen · Valent´ın Mart´ınez-Pillet · Pierre Rochus · Marco Romoli · Takashi Sekii · Daniele Spadaro · Astrid Veronig · W. Schmutz Received: date / Accepted: date L. Harra PMOD/WRC, Dorfstrasse 33, CH-7260 Davos Dorf and ETH-Z¨urich, Z¨urich, Switzerland E-mail: [email protected]; ORCID: 0000-0001-9457-6200 V. Andretta INAF, Osservatorio Astronomico di Capodimonte, Naples, Italy E-mail: vin- [email protected]; ORCID: 0000-0003-1962-9741 T. Appourchaux Institut d’Astrophysique Spatiale, CNRS, Universit´e Paris–Saclay, France; E-mail: [email protected]; ORCID: 0000-0002-1790-1951 F. Baudin Institut d’Astrophysique Spatiale, CNRS, Universit´e Paris–Saclay, France; E-mail: [email protected]; ORCID: 0000-0001-6213-6382 L. Bellot Rubio Inst. de Astrofisica de Andaluc´ıa, Granada Spain A.C. Birch Max-Planck-Institut f¨ur Sonnensystemforschung, 37077 G¨ottingen, Germany; E-mail: arXiv:2104.10876v1 [astro-ph.SR] 22 Apr 2021 [email protected]; ORCID: 0000-0001-6612-3861 P. Boumier Institut d’Astrophysique Spatiale, CNRS, Universit´e Paris–Saclay, France; E-mail: 2 Louise Harra et al.
    [Show full text]
  • Pokroky Kosmické Astronomie
    Pokroky matematiky, fyziky a astronomie Marcel Grün; Pavel Koubský Pokroky kosmické astronomie Pokroky matematiky, fyziky a astronomie, Vol. 15 (1970), No. 2, 62--76 Persistent URL: http://dml.cz/dmlcz/138230 Terms of use: © Jednota českých matematiků a fyziků, 1970 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz POKROKY KOSMICKÉ ASTRONOMIE MARCEL GRÚN, PAVEL KOUBSKÝ, Praha Astronomická pozorování konaná ze zemského povrchu jsou znesnadňována přítomností atmosféry, která se chová jako filtr se specifickými vlastnostmi: 1. Je nepropustná pro většinu frekvencí elektromagnetických vln přicházejících z vesmíru (obr. I). 2. Omezuje rozlišovací schopnost v těch oborech, které propouští. Vzhledem k difrakci světla je teoretická rozlišovací schopnost přímoúměrná apertuře (průměru objektivu) a nepřímo- úměrná vlnové délce. To však platí pouze pro ideální podmínky, neboť turbulence atmosféry nedovoluje rozlišit ve viditelném oboru více než 0,1". Obvyklé pozorovací podmínky snižují tuto hodnotu nejméně o řád; třiceticentimetrový dalekohled ve vakuu je po stránce praktické rozlišo­ vací schopnosti ekvivalentní největším pozemským přístrojům. 3. Pozorování je rušeno existencí vlastního záření atmosféry a přítomností záření rozptýleného v atmosféře. Rozptýlené záření způsobuje, že dosah největších fotografických dalekohledů je nižší, než by odpovídalo optice a citlivosti detektorů. Záření atmosféry je překážkou též při spektrální analýze slabých objektů. Ve zprávě [1] se předpokládá, že třímetrový reflektor na oběž­ né dráze pointovaný s přesností 0,004" by byl schopen zachytit objekty do 29m, o 2 řády méně jasné než dosud ze Země.
    [Show full text]
  • Identification of Interplanetary Coronal Mass Ejection with Magnetic Cloud in Year 2005 at 1 AU
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 6, JUNE 2014 ISSN 2277-8616 Identification Of Interplanetary Coronal Mass Ejection With Magnetic Cloud In Year 2005 At 1 AU D.S.Burud, R .S. Vhatkar, M. B. Mohite Abstract: Coronal mass ejection (CMEs) propagate in to the interplanetary medium are called as Interplanetary Coronal Mass Ejection (ICME). A set of signatures in plasma and magnetic field is used to identify the ICMEs. Magnetic Cloud (MC) is a special kind of ICMEs in which internal magnetic field configuration is similar like flux rope. We have used the data obtained from ACE Advance Composition Explorer (ACE) based in-situ measurements of Magnetic Field Experiment (MAG) and Solar Wind Electron, Proton and Alpha Monitor (SWEPAM) experiment for the data of magnetic field and plasma parameters respectively. The magnetic field data and plasma parameters of ICMEs used to distinguish them as magnetic cloud, non magnetic cloud. We analyzed eighteen ICMEs observed during January 2005 to December 2005, which is the beginning of declining phase of solar cycle 23. The analysis of magnetic field in the frames of the flux ropes like structure using a Minimum Variance Analysis (MVA) method, and have identified 30% ICMEs in the year 2005, which shows magnetic field rotation in a plane and confirmed as ICMEs with MCs. Keywords: magnetic cloud (MC), interplanetary coronal mass ejection (ICME), minimum variance analysis (MVA). ———————————————————— Introduction:- Table No: 1 Signatures used to identify ICMEs in the Coronal mass ejections (CMEs) are an energetic Heliosphere phenomenon originated in the Sun‘s corona, CMEs are eruptions of plasma and magnetic fields that drive space Sr.no.
    [Show full text]
  • Arxiv:1108.6203V1 [Astro-Ph.SR] 31 Aug 2011 Lr Itiuin Aaee Cln
    Noname manuscript No. (will be inserted by the editor) Microflares and the Statistics of X-ray Flares I. G. Hannah1, H. S. Hudson2, M. Battaglia1, S. Christe3, J. Kasparovˇ a´4, S. Krucker2, M. R. Kundu5, and A. Veronig6 Abstract This review surveys the statistics of solar X-ray flares, emphasising the new views that RHESSI has given us of the weaker events (the microflares). The new data reveal that these microflares strongly resemble more energetic events in most respects; they occur solely within active regions and exhibit high-temperature/nonthermal emissions in approximately the same proportion as major events. We discuss the distributions of flare parameters (e.g., peak flux) and how these parameters correlate, for instance via the Neupert effect. We also highlight the systematic biases involved in intercomparing data representing many decades of event magnitude. The intermittency of the flare/microflare occurrence, both in space and in time, argues that these discrete events do not explain general coronal heating, either in active regions or in the quiet Sun. Keywords Sun – Flares – X-rays Contents 1 Introduction ...................................... ........ 2 2 Frommajortominorflares ............................. ......... 4 2.1 Flare classification & general properties . ................ 4 2.1.1 Flare relationship to CMEs and SEPs . ......... 6 2.2 Microflares ...................................... ..... 7 2.2.1 Association with active regions . .......... 7 2.2.2 Physicalproperties . .. .. .. .. .. ....... 9 2.2.3 Associated ejecta and radio emission . ........... 12 2.3 Nanoflares and non-active-region phenomena . ............... 14 3 Flare distributions & parameter scaling . ................. 16 3.1 X-rayfluxdistributions . .......... 17 3.2 Timedistributions............................... ......... 19 3.3 Origin of power-law distribution . ............. 21 3.4 Nonthermal and thermal spectral parameters .
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • Waves and Magnetism in the Solar Atmosphere (WAMIS)
    METHODS published: 16 February 2016 doi: 10.3389/fspas.2016.00001 Waves and Magnetism in the Solar Atmosphere (WAMIS) Yuan-Kuen Ko 1*, John D. Moses 2, John M. Laming 1, Leonard Strachan 1, Samuel Tun Beltran 1, Steven Tomczyk 3, Sarah E. Gibson 3, Frédéric Auchère 4, Roberto Casini 3, Silvano Fineschi 5, Michael Knoelker 3, Clarence Korendyke 1, Scott W. McIntosh 3, Marco Romoli 6, Jan Rybak 7, Dennis G. Socker 1, Angelos Vourlidas 8 and Qian Wu 3 1 Space Science Division, Naval Research Laboratory, Washington, DC, USA, 2 Heliophysics Division, Science Mission Directorate, NASA, Washington, DC, USA, 3 High Altitude Observatory, Boulder, CO, USA, 4 Institut d’Astrophysique Spatiale, CNRS Université Paris-Sud, Orsay, France, 5 INAF - National Institute for Astrophysics, Astrophysical Observatory of Torino, Pino Torinese, Italy, 6 Department of Physics and Astronomy, University of Florence, Florence, Italy, 7 Astronomical Institute, Slovak Academy of Sciences, Tatranska Lomnica, Slovakia, 8 Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA Edited by: Mario J. P. F. G. Monteiro, Comprehensive measurements of magnetic fields in the solar corona have a long Institute of Astrophysics and Space Sciences, Portugal history as an important scientific goal. Besides being crucial to understanding coronal Reviewed by: structures and the Sun’s generation of space weather, direct measurements of their Gordon James Duncan Petrie, strength and direction are also crucial steps in understanding observed wave motions. National Solar Observatory, USA Robertus Erdelyi, In this regard, the remote sensing instrumentation used to make coronal magnetic field University of Sheffield, UK measurements is well suited to measuring the Doppler signature of waves in the solar João José Graça Lima, structures.
    [Show full text]
  • The Very-High-Energy Gamma-Ray Sky and the CTA Observatory
    The very-high-energy gamma-ray sky and the CTA Observatory Jürgen Knödlseder (IRAP, Toulouse) Directeur de Recherche (CNRS) The menu Light starter I. Why we do gamma-ray astronomy Assortment of AppeMzers II. What have we learned so far Main Dish III. What comes next Desert IV. Concluding remarks First course I. Why we do gamma-ray astronomy A historical introducMon The discovery of cosmic rays 1910 1920 1930 1940 1950 1960 Viktor Franz Hess (1912) 1970 1980 1990 2000 2010 The nature of cosmic rays 1910 Charged 1920 parMcles! Gamma 1930 rays! 1940 1950 1960 1970 1980 1990 Robert Millikan and Arthur Holly Compton (1931) A hot debate (1932) 2000 2010 Cosmic charged parMcles ! 1910 1920 1930 1940 MS ChrisMan Huygens 1950 Clay and Berlage (1932) 1960 1970 Geiger counter 1980 4 cm gold bar 1990 Geiger counter 2000 Bothe and Kohlhörster (1929) 2010 Cosmic stac 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 Karl Jansky (1933) 2010 An ambiMous amateur 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 Grote Reber (1944) 2010 … and the first radio sky map 1910 1920 Cas A 1930 Cygnus X 1940 1950 1960 1970 1980 Galactic centre 1990 2000 2010 Synchrotron radiaon 1910 1920 1930 1940 1950 1960 Langmuir,Elder,Gurevitsch, 1970 Charleton et Pollock (1948) 1980 1990 2000 Discovery of synchrotron radiaon (1947) 2010 Consequences 1910 Cosmic-ray parMcles emit gamma rays! 1920 1930 Hayakawa (1952) 1940 Hutchinson (1952) 1950 1960 Feenberg and Primakoff (1948) 1970 1980 Curvature Radiation 1990 2000 2010 Radhakrishnan and Cooke (1969) Philip Morrison (1958)
    [Show full text]
  • Observing Photons in Space
    —1— Observing photons in space For the truth of the conclusions of physical science, observation is the supreme court of appeals Sir Arthur Eddington Martin C.E. HuberI, Anuschka PauluhnI and J. Gethyn TimothyII Abstract This first chapter of the book ‘Observing Photons in Space’ serves to illustrate the rewards of observing photons in space, to state our aims, and to introduce the structure and the conventions used. The title of the book reflects the history of space astronomy: it started at the high-energy end of the electromagnetic spectrum, where the photon aspect of the radiation dominates. Nevertheless, both the wave and the photon aspects of this radiation will be considered extensively. In this first chapter we describe the arduous efforts that were needed before observations from pointed, stable platforms, lifted by rocket above the Earth’s atmosphere, became the matter of course they seem to be today. This exemplifies the direct link between technical effort — including proper design, construction, testing and calibration — and some of the early fundamental insights gained from space observations. We further report in some detail the pioneering work of the early space astronomers, who started with the study of γ- and X-rays as well as ultraviolet photons. We also show how efforts to observe from space platforms in the visible, infrared, sub-millimetre and microwave domains developed and led to today’s emphasis on observations at long wavelengths. The aims of this book This book conveys methods and techniques for observing photons1 in space. ‘Observing’ photons implies not only detecting them, but also determining their direction at arrival, their energy, their rate of arrival, and their polarisation.
    [Show full text]
  • Exploring the Solar Poles and the Heliosphere from High Helio-Latitude
    A white paper submitted to ESA for the Voyage 2050 long- term plan ? A journey to the polar regions of a star: Exploring the solar poles and the heliosphere from high helio-latitude Louise Harra ([email protected]) and the solar polar team PMOC/WRC, Dorfstrasse 33, CH-7260 Davos Dorf & ETH-Zürich, Switzerland [Image: Polar regions of major Solar System bodies. Top left, clockwise - Near-surface zonal flows around the solar north pole Bogart et al. (2015); Earth’s changing magnetic field from ESA’s Swarm constellation; Southern polar cap of Mars from ESA’s ExoMars; Jupiter’s poles from the NASA Juno mission; Saturn’s poles from the NASA Cassini mission.] Overview We aim to embark on one of humankind’s great journeys – to travel over the poles of our star, with a spacecraft unprecedented in its technology and instrumentation – to explore the polar regions of the Sun and their effect on the inner heliosphere in which we live. The polar vantage point provides a unique opportunity for major scientific advances in the field of heliophysics, and thus also provides the scientific underpinning for space weather applications. It has long been a scientific goal to study the poles of the Sun, illustrated by the NASA/ESA International Solar Polar Mission that was proposed over four decades ago, which led to the flight of ESA’s Ulysses spacecraft (1990 to 2009). Indeed, with regard to the Earth, we took the first tentative steps to explore the Earth’s polar regions only in the 1800s. Today, with the aid of space missions, key measurements relating to the nature and evolution of Earth’s polar regions are being made, providing vital input to climate-change models.
    [Show full text]