Microbotryum Violaceum on Silene Dioica - Understanding Traits That Influence Plant-Pathogen Interactions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Enemies and Sex: How Seed Predators and Pathogens Contribute to Sex-Differential Reproductive Success in a Gynodioecious Plant
Oecologia (2002) 131:94–102 DOI 10.1007/s00442-001-0854-8 PLANT ANIMAL INTERACTIONS C.L. Collin · P. S. Pennings · C. Rueffler · A. Widmer J.A. Shykoff Natural enemies and sex: how seed predators and pathogens contribute to sex-differential reproductive success in a gynodioecious plant Received: 3 May 2001 / Accepted: 5 November 2001 / Published online: 14 December 2001 © Springer-Verlag 2001 Abstract In insect-pollinated plants flowers must bal- Introduction ance the benefits of attracting pollinators with the cost of attracting natural enemies, when these respond to floral Flowering plants have many different reproductive sys- traits. This dilemma can have important evolutionary tems, the most predominant being hermaphroditism, consequences for mating-system evolution and polymor- which is found in 72% of all species (Klinkhamer and de phisms for floral traits. We investigate the benefits and Jong 1997). However, unisexuality or dioecy has risks associated with flower size and sex morph variation evolved many times, with gynodioecy – the coexistence in Dianthus sylvestris, a gynodioecious species with pis- of female and hermaphrodite individuals within a species – tillate flowers that are much smaller than perfect flowers. seen as a possible intermediate state between hermaphro- We found that this species is mainly pollinated by noc- ditism and dioecy (Darwin 1888; Thomson and Brunet turnal pollinators, probably moths of the genus Hadena, 1990). Delannay (1978) estimates that 10% of all angio- that also oviposit in flowers and whose caterpillars feed sperm species have this reproductive system, which is on developing fruits and seeds. Hadena preferred larger widespread in the Lamiaceae, Plantaginaceae (Darwin flowers as oviposition sites, and flowers in which Hadena 1888), and Caryophyllaceae (Desfeux et al. -
The Distribution and Host Range of Thecaphora Melandrii, with First Records for Britain
KEW BULLETIN (2020) 75:39 ISSN: 0075-5974 (print) DOI 10.1007/S12225-020-09895-3 ISSN: 1874-933X (electronic) The distribution and host range of Thecaphora melandrii, with first records for Britain Paul A. Smith1 , Matthias Lutz2 & Marcin Piątek3 Summary. Thecaphora melandrii (Syd.) Vánky & M.Lutz infects species in the Caryophyllacaeae forming sori with spore balls in the floral organs. We report new finds from Britain, supported by phylogenetic analysis, that confirm its occurrence on Silene uniflora Roth. We review published and web accessible records and note the relatively few records of this smut, its sparse distribution, confined to Europe but scattered predominantly from central to eastern Europe. Analysis of the rDNA ITS and 28S sequences demonstrates little variability among specimens, even those parasitising different host genera, which suggests that the species has evolved relatively recently. Some Microbotryum species infect the same host plants, and we found two species, M. lagerheimii Denchev and M. silenes- inflatae (DC. ex Liro) G.Deml & Oberw., in the same locations as T. melandrii, identified by morphology and molecular phylogenetic analysis. These species may form a stable multi-species community of parasites of Silene uniflora. Key Words. Caryophyllaceae, gall, Glomosporiaceae, Microbotryum, Silene uniflora, smut. Introduction Caryophyllaceae, and specifically on T. melandrii (Syd.) The Caryophyllaceae is a large family of dicotyledonous Vánky & M.Lutz. Vánky (2012) lists five species of plants (Greenberg & Donoghue 2011), and its species Thecaphora with hosts in this family, all destroying the are hosts for many plant-parasitic microfungi, among inner floral organs; most remain within the outer floral them at least 38 species of smut fungi assigned to the envelope (the calyx), but T. -
Identification of White Campion (Silene Latifolia) Guaiacol O-Methyltransferase Involved in the Biosynthesis of Veratrole, a Key Volatile for Pollinator Attraction
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Identification of white campion (Silene latifolia) guaiacol O-methyltransferase involved in the biosynthesis of veratrole, a key volatile for pollinator attraction Gupta, Alok K ; Akhtar, Tariq A ; Widmer, Alex ; Pichersky, Eran ; Schiestl, Florian P Abstract: BACKGROUND: Silene latifolia and its pollinator, the noctuid moth Hadena bicruris, repre- sent an open nursery pollination system wherein floral volatiles, especially veratrole (1, 2-dimethoxybenzene), lilac aldehydes, and phenylacetaldehyde are of key importance for floral signaling. Despite the important role of floral scent in ensuring reproductive success in S. latifolia, the molecular basis of scent biosyn- thesis in this species has not yet been investigated. RESULTS: We isolated two full-length cDNAs from S. latifolia that show similarity to rose orcinol O-methyltransferase. Biochemical analysis showed that both S. latifolia guaiacol O-methyltransferase1 (SlGOMT1) S. latifolia guaiacol O-methyltransferase2 (SlGOMT2) encode proteins that catalyze the methylation of guaiacol to form veratrole. A large Km value difference between SlGOMT1 ( 10 M) and SlGOMT2 ( 501 M) resulted that SlGOMT1 is31-fold more catalytically efficient than SlGOMT2. qRT-PCR expression analysis showed that theSlGOMT genes are specifically expressed in flowers and male S. latifolia flowers had 3- to 4-folds higher levelof GOMT gene transcripts than female flower tissues. Two related cDNAs, S. dioica O-methyltransferase1 (SdOMT1) and S. dioica O-methyltransferase2 (SdOMT2), were also obtained from the sister species Silene dioica, but the proteins they encode did not methylate guaiacol, consistent with the lack of ver- atrole emission in the flowers of this species. -
Untangling Phylogenetic Patterns and Taxonomic Confusion in Tribe Caryophylleae (Caryophyllaceae) with Special Focus on Generic
TAXON 67 (1) • February 2018: 83–112 Madhani & al. • Phylogeny and taxonomy of Caryophylleae (Caryophyllaceae) Untangling phylogenetic patterns and taxonomic confusion in tribe Caryophylleae (Caryophyllaceae) with special focus on generic boundaries Hossein Madhani,1 Richard Rabeler,2 Atefeh Pirani,3 Bengt Oxelman,4 Guenther Heubl5 & Shahin Zarre1 1 Department of Plant Science, Center of Excellence in Phylogeny of Living Organisms, School of Biology, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran 2 University of Michigan Herbarium-EEB, 3600 Varsity Drive, Ann Arbor, Michigan 48108-2228, U.S.A. 3 Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, P.O. Box 91775-1436, Mashhad, Iran 4 Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Göteborg, Sweden 5 Biodiversity Research – Systematic Botany, Department of Biology I, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638 München, Germany; and GeoBio Center LMU Author for correspondence: Shahin Zarre, [email protected] DOI https://doi.org/10.12705/671.6 Abstract Assigning correct names to taxa is a challenging goal in the taxonomy of many groups within the Caryophyllaceae. This challenge is most serious in tribe Caryophylleae since the supposed genera seem to be highly artificial, and the available morphological evidence cannot effectively be used for delimitation and exact determination of taxa. The main goal of the present study was to re-assess the monophyly of the genera currently recognized in this tribe using molecular phylogenetic data. We used the sequences of nuclear ribosomal internal transcribed spacer (ITS) and the chloroplast gene rps16 for 135 and 94 accessions, respectively, representing all 16 genera currently recognized in the tribe Caryophylleae, with a rich sampling of Gypsophila as one of the most heterogeneous groups in the tribe. -
Anther Smuts of Caryophyllaceae: Molecular Characters Indicate Host-Dependent Species Delimitation+
Mycological Progress 4(3): 225–238, August 2005 225 Anther smuts of Caryophyllaceae: molecular characters indicate host-dependent species delimitation+ Matthias LUTZ1,*, Markus GÖKER1, Marcin PIATEK2, Martin KEMLER1, Dominik BEGEROW1, and Franz OBERWINKLER1 Phylogenetic relationships of Microbotryum species (Urediniomycetes, Basidiomycota) inhabiting anthers of Caryophyllaceae were investigated by molecular analyses using internal transcribed spacer (ITS) sequences and collections from different host plants. The data show that the current taxonomy of Microbotryum on Caryophyllaceae is only partly satisfactory. Micro- botryum violaceum is confirmed to be a paraphyletic grouping and is split up in monophyletic groups. Microbotryum silenes- inflatae and M. violaceo-verrucosum appear as polyphyletic. Host data are in good agreement with molecular results. Two new species, Microbotryum chloranthae-verrucosum and M. saponariae, are described based on morphological, ecological, and molecular characteristics. An emended circumscription of Microbotryum dianthorum is given. The name Ustilago major (= Microbotryum major) is lectotypified. Taxonomic novelties: Microbotryum chloranthae-verrucosum M. Lutz, Göker, M. Piatek, Kemler, Begerow et Oberw.; Microbotryum saponariae M. Lutz, Göker, M. Piatek, Kemler, Begerow et Oberw. Keywords: anther parasites, ITS, Microbotryum, molecular analysis, smut fungi, Urediniomycetes n the current classification of Microbotryum (VÁNKY ecological factors (e.g., THRALL, BIERE & ANTONOVICS 1993) 1998), 15 species on Caryophyllaceae are accepted, eight and numerous publications dealt with population studies (e.g., I of which occur in the host’s anthers, more rarely also in LEE 1981; MILLER ALEXANDER & ANTONOVICS 1995; MILLER other floral parts. These anther parasites exhibit a couple of ALEXANDER et al. 1996), including investigations in recent outstanding features. Infected anthers become completely host shifts (ANTONOVICS, HOOD & PARTAIN 2002). -
<I>Microbotryum Scorzonerae</I>
MYCOTAXON Volume 108, pp. 245–247 April–June 2009 Microbotryum scorzonerae (Microbotryaceae), new to China, on a new host plant Tiezhi Liu1, Huimin Tian1, Shuanghui He2, 3 & Lin Guo2* 1 [email protected] *[email protected] 1Department of Life Sciences, Chifeng College Inner Mongolia, Chifeng 024000, China 2Key Laboratory of Systematic Mycology and Lichenology Institute of Microbiology, Chinese Academy of Sciences Beijing 100101, China 3Graduate University of Chinese Academy of Sciences Beijing 100049, China Abstract — A new Chinese record, Microbotryum scorzonerae on Scorzonera albicaulis, is provided. It was collected from Saihanwula National Nature Reserve, Inner Mongolia Autonomous Region, in northern China. Key words — Microbotryales, Microbotryum piperi, smut fungi, taxonomy A specimen of Microbotryum on Scorzonera albicaulis was collected from Saihanwula National Nature Reserve, Inner Mongolia Autonomous Region, in the north of China in 2008. This species, which is parasitic on floral heads of host plants belonging to the Asteraceae family, has been identified as Microbotryum scorzonerae, a species new to China. Microbotryum scorzonerae has never previously been reported with S. albicaulis as host. Microbotryum scorzonerae (Alb. & Schwein.) G. Deml & Prillinger, in Prillinger, et al., Bot. Acta 104(1): 10, 1991. Figs. 1–4 ≡Uredo tragopogonis ββ scorzonerae Alb. & Schwein., Consp. Fung. Lusat. p. 130, 1805. ≡Ustilago scorzonerae (Alb. & Schwein.) J. Schröt., in Cohn, Krypt.-Fl. Schlesien 3(1): 274, 1887. ≡Bauhinus scorzonerae (Alb. & Schwein.) R.T. Moore, Mycotaxon 45: 99, 1992. Sori in the floral heads. Spore mass powdery, blackish-violet. Ustilospores when young agglutinated in loose, irregular groups, later single, globose, subglobose, *corresponding author 246 ... Liu & al. -
Taxonomy and Distribution of Microbotryum Pinguiculae, a Species of Smut Fungi New for the Carpathians
Polish Botanical Journal 50(2): 153–158, 2005 TAXONOMY AND DISTRIBUTION OF MICROBOTRYUM PINGUICULAE, A SPECIES OF SMUT FUNGI NEW FOR THE CARPATHIANS MARCIN PIĄTEK, WIESŁAW MUŁENKO, JOLANTA PIĄTEK & KAMILA BACIGÁLOVÁ Abstract. Microbotryum pinguiculae (Rostr.) Vánky on Pinguicula alpina L., a rarely collected smut fungus belonging to the genus Microbotryales in the class Urediniomycetes, is reported for the fi rst time from the Carpathians as well as from Poland and Slovakia. The species is described and illustrated by a drawing of infected plants and SEM micrographs of spores. Microbotryum pinguiculae is a very rare fungus parasitizing various species of Pinguicula (Lentibulariaceae). It is known from Europe, Asia and North America, where it shows a true arctic-alpine type of distribution. Taxonomically its generic position is not completely stabilized and needs further studies employing modern techniques (e.g., molecular, ultrastructural). Key words: Microbotryum, Pinguicula alpina, smut fungi, Microbotryales, Urediniomycetes, Carpathians, Poland, Slovakia Marcin Piątek, Department of Mycology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland; e-mail: [email protected] Wiesław Mułenko, Department of General Botany, Maria Curie-Skłodowska University, Akademicka 19, PL-20-033 Lublin, Poland; e-mail: [email protected] Jolanta Piątek, Department of Phycology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland; e-mail: [email protected] Kamila Bacigálová, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-845-23 Bratislava, Slovak Republic; e-mail: [email protected] INTRODUCTION In the current circumscription, the smut genus species occurs in other populations of Pinguicula Microbotryum Lév. -
Section Elisanthe)
POPULATION GENETICS AND SPECIATION IN THE PLANT GENUS SILENE (SECTION ELISANTHE) by ANDREA LOUISE HARPER A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Biosciences The University of Birmingham 2009 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT This thesis is concerned with speciation and population genetics in the plant genus Silene (section Elisanthe). The introductory chapter is a literature review covering characteristics of the species studied, and the current literature on their evolutionary dynamics and population genetics. The second and third chapters cover techniques used in all experiments, such as DNA extraction, sequencing and genotyping protocols, and explain the rationale behind the initial experimental design. The fourth chapter focuses on the multi-locus analysis of autosomal gene sequences from S. latifolia and S. dioica. The relationship between the two species was investigated using various analyses such as isolation modeling and admixture analysis providing estimates of evolutionary distance and extent of historical gene flow. The maintenance of the species despite frequent hybridization at present-day hybrid zones is discussed. -
2020 Plant List 1
2020 issima Introductions Sesleria nitida Artemisia lactiflora ‘Smoke Show’ Succisella inflexa 'Frosted Pearls' Impatiens omeiana ‘Black Ice’ Thalictrum contortum Kniphofia ‘Corn Dog’ Thalictrum rochebrunianum var. grandisepalum Kniphofia ‘Dries’ Tiarella polyphylla (BO) Kniphofia ‘Takis Fingers’ Verbascum roripifolium hybrids Persicaria amplexicaulis ‘Ruby Woo’ Veronica austriaca 'Ionian Skies' Sanguisorba ‘Unicorn Tails’ Sanguisorba obtusa ‘Tickled Pink’ Stock Woody and Herbaceous Perennials, New & Returning for 2020 indexed alphabetically: Alchemilla alpina Acanthus ‘Summer Beauty’ Aletris farinosa Acanthus Hollard’s Gold’ Anemone nemorosa ‘Vestal’ Acanthus syriacus Anemone nemorosa Virescens Actaea pachypoda Anemone ranunculoides Actaea rubra leucocarpa Anemone seemannii Adenophora triphylla Berkheya purpurea Pink Flower Agastache ‘Linda’ Berkheya species (Silver Hill) Agastache ‘Serpentine’ Boehmeria spicata 'Chantilly' Ajuga incisa ‘Blue Enigma’ Callirhoe digitata Amorphophallus konjac Carex plantaginea Anemonella thalictroides ‘Cameo’ Carex scaposa Anemonella thalictroides ‘Oscar Schoaff’ Deinanthe caerulea x bifida Anemonopsis macrophylla – dark stems Dianthus superbus var. speciosus Anemonopsis macrophylla – White Flower Digitalis ferruginea Angelica gigas Disporum sessile ‘Variegatum’ Anthemis ‘Cally Cream’ Echium amoenum Anthericum ramosum Echium russicum Arisaema fargesii Echium vulgare Arisaema ringens Erigeron speciosus (KDN) Arisaema sikokianum Eriogonum annuum (KDN) Artemisia lactiflora ‘Elfenbein’ Geranium psilostemon -
Diversity of Sexual Systems Within Different Lineages of the Genus Silene
Research Article Diversity of sexual systems within different lineages of the genus Silene Ine´s Casimiro-Soriguer1,2*, Maria L. Buide1 and Eduardo Narbona1 1 A´ rea de Bota´nica, Departamento de Biologı´a Molecular e Ingenierı´a Bioquı´mica, Universidad Pablo de Olavide, Ctra. de Utrera, km 1, 41013 Sevilla, Spain 2 A´ rea de Bota´nica, Departamento de Biologı´a Vegetal y Ecologı´a, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain Received: 16 December 2014; Accepted: 26 March 2015; Published: 10 April 2015 Associate Editor: Diana Wolf Citation: Casimiro-Soriguer I, Buide ML, Narbona E. 2015. Diversity of sexual systems within different lineages of the genus Silene. AoB PLANTS 7: plv037; doi:10.1093/aobpla/plv037 Abstract. Species and populations can be categorized by their sexual systems, depending on the spatial distribu- tion of female and male reproductive structures within and among plants. Although a high diversity of sexual systems exists in Silene, their relative frequency at the genus and infrageneric level is unknown. Here, we carried out an exten- sive literature search for direct or indirect descriptions of sexual systems in Silene species. We found descriptions of sexual systems for 98 Silene species, where 63 and 35 correspond to the phylogenetically supported subgenera Silene and Behenantha, respectively. Hermaphroditism was the commonest sexual system (58.2 %), followed by dioecy (14.3 %), gynodioecy (13.3 %) and gynodioecy–gynomonoecy (i.e. hermaphroditic, female and gynomonoecious plants coexisting in the same population; 12.2 %). The presence of these sexual systems in both subgenera suggests their multiple origins. -
PLANT LIST for POLLINATORS Part 1 – a Concise List of Suggested Garden Plants That Are Attractive to Pollinating Insects
THE ACTION PLAN FOR POLLINATORS SUGGESTED PLANT LIST FOR POLLINATORS Part 1 – A concise list of suggested garden plants that are attractive to pollinating insects This is a list of suggested garden plants. We have only selected flowers which are garden- worthy, easily obtainable, well-known, and widely acknowledged as being attractive to pollinating insects. In some case we have given extra comments about garden- worthiness. This is intended as a clear and concise short list to help gardeners; it is not intended to be comprehensive and we have avoided suggesting plants which are difficult to grow or obtain, or whose benefit to pollinators is still a matter for debate. We have omitted several plants that are considered to have invasive potential, and have qualified some others on the list with comments advising readers how to avoid invasive forms. PLANT ANGELICA (Angelica species). Attractive to a range of insects, especially hoverflies and solitary bees. AUBRETIA (Aubrieta deltoides hybrids). An important early nectar for insects coming out of hibernation. BELLFLOWER (Campanula species and cultivars). Forage for bumblebees and some solitary bees. BETONY (Stachys officinalis). Attractive to bumblebees. Butterfly Conversation’s Awarded the Royal Horticultural Top Butterflys Society’s ‘Award of Garden Nectar Plants. Merit’. PLANT BIRD’S FOOT TREFOIL (Lotus corniculatus). Larval food plant for Common Blue, Dingy Skipper and several moths. Also an important pollen source for bumblebees. Can be grown in gravel or planted in a lawn that is mowed with blades set high during the flowering period. BOWLES’ WALLFLOWER (Erysimum Bowles Mauve). Mauve perennial wallflower, long season nectar for butterflies, moths and many bee species. -
Floristic Quality Assessment Report
FLORISTIC QUALITY ASSESSMENT IN INDIANA: THE CONCEPT, USE, AND DEVELOPMENT OF COEFFICIENTS OF CONSERVATISM Tulip poplar (Liriodendron tulipifera) the State tree of Indiana June 2004 Final Report for ARN A305-4-53 EPA Wetland Program Development Grant CD975586-01 Prepared by: Paul E. Rothrock, Ph.D. Taylor University Upland, IN 46989-1001 Introduction Since the early nineteenth century the Indiana landscape has undergone a massive transformation (Jackson 1997). In the pre-settlement period, Indiana was an almost unbroken blanket of forests, prairies, and wetlands. Much of the land was cleared, plowed, or drained for lumber, the raising of crops, and a range of urban and industrial activities. Indiana’s native biota is now restricted to relatively small and often isolated tracts across the State. This fragmentation and reduction of the State’s biological diversity has challenged Hoosiers to look carefully at how to monitor further changes within our remnant natural communities and how to effectively conserve and even restore many of these valuable places within our State. To meet this monitoring, conservation, and restoration challenge, one needs to develop a variety of appropriate analytical tools. Ideally these techniques should be simple to learn and apply, give consistent results between different observers, and be repeatable. Floristic Assessment, which includes metrics such as the Floristic Quality Index (FQI) and Mean C values, has gained wide acceptance among environmental scientists and decision-makers, land stewards, and restoration ecologists in Indiana’s neighboring states and regions: Illinois (Taft et al. 1997), Michigan (Herman et al. 1996), Missouri (Ladd 1996), and Wisconsin (Bernthal 2003) as well as northern Ohio (Andreas 1993) and southern Ontario (Oldham et al.