Novel Pyranose Oxidase Processes for the Production and Use Thereof and Test Compositions for Use Therein

Total Page:16

File Type:pdf, Size:1020Kb

Novel Pyranose Oxidase Processes for the Production and Use Thereof and Test Compositions for Use Therein Europaisches Patentamt (19) J European Patent Office @ Publication number: 0119332 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION Application number: 83301376.6 @ intcL».-C12N 9/04, C 12 Q 1/26 Date of filing: 11.03.83 Date of publication of application: 26.09.84 @ Applicant: KYOWA HAKKO KOGYO CO., LTD., Bulletin 84/39 Ohtemachi Bldg., 6-1 Ohtemachi Itchome, Chiyoda-ku Tokyo 100 (JP) Inventor: Nakanishi, Toru, 145-42 Tomuro, Atsugi-shi Kanagawa-ken (JP) Inventor: Machida, Yozo, 500-50, Arai Hodogaya-ku, Yokohama-shi Kanagawa-ken (JP) Representative: Thomas, Roger Tamlyn et al, D. Young & @ Designated Contracting States : DE FR GB IT Co. 10 Staple Inn, London WC1V7RD (GB) @ Novel pyranose oxidase processes for the production and use thereof and test compositions for use therein. A novel pyranose oxidase exhibiting strong specific activity substantially only on glucose is disclosed, as well as a method for its preparation by fermentation of a microor- ganism of the genus Coriolus, Daedaleopsis, Gloeophyllum or Pleurotus. The enzyme is useful for the determination of glucose, and methods for doing this, as well as components for use therein are described. The present invention relates to the preparation and use of pyranose oxidases and, in particular, to the production of a novel pyranose oxidase exhibiting a stong specific activity on glucose alone. In the prior art a pyranose oxidase (EC 1.1.3.10) is known which catalyzes the oxidation of glucose, xylose and sorbose into glucosone, xylosone and 5-ketofructose, respectively (Methods in Enzymol, vol. XLI, p.170, (1975)). In oxidizing these substances, oxygen is consumed and hydrogen peroxide is formed and the enzyme is, therefore, useful for the total quantitative determintation of pyranoses such as glucose, xylose and sorbose but without distinction between them. This known enzyme is produced by culturing a microorganism belonging to the genus Polyporus (Methods in Enzymol, Vol. XLI p.170 (1975)). In contrast, the present invention provides a novel pyranose oxidase which shows strong specific activity which is substantially restric- ted to activity on glucose alone. According to the present invention, this novel pyranose oxidase is obtained by culturing a microorganism belonging to the genus Coriolus, Daedaleopsis, Gloeophyllum or Pleurotus and which is capable of producing the novel pyranose oxidase, in a nutrient medium until enzymatic activity is detected in the culture liquor and thereafter recovering the pyranose oxidase therefrom. The novel enzyme of this invention is useful for the quanti- tative determination of pyranose oxidase substrates, especially D-glucose, by oxidizing the substrate in the presence of oxygen and measuring the amount of a product of the reaction, usually the hydrogen peroxide, or the amount of oxygen consumed by said reaction. In the following description of the properties of the novel enzyme of this invention, the following method is used for the deter- mination of the enzymatic activity. Assay Method A 3.0 ml sample is first prepared comprising 1.0 ml of 0.1 M tris- hydrochloride buffer (pH 7.0), 0.2 ml of a colouring reagent prepared in advance as hereinafter described, 0.1 ml of 1 M glucose solution, 0.1 ml of a solution of the pyranose oxidase at a known concentration, 0.1 ml of 0.1 mM flavinadenine dinucleotide and 1.5 ml of distilled water. Said colouring reagent is prepared by adding 0.1 M tris-hydrochloride buffer (pH 7.0) containing 10 m mol l4-aminoantipyrine (hereinafter referred to as 4AA) and 10 m mol/Zphenol, to an amount of a peroxidase which is sufficient to provide a peroxidase concentration in said buffer of 2000 U per 100 mI. The pyranose oxidase containing sample is incubated at 37°C and the increasing rate of the absorbancy at 500 nm is automatically measured on a spectrophotometer. If the molecular extinction coefficient of a quinoneimine pigment formed under these conditions is defined as 5.3 x 103, and one unit of enzymatic activity is defined as the amount of the enzyme that produces one µ mole of hydrogen peroxide per minute at a temperature of 37°C and at a pH of 7.0, then the enzymatic activity (A) of the pyranose oxidase in the sample can be defined by the following formula:- where A500 is the rate of increase of the absorbancy of the sample per minute at 500nm. The properties of the novel enzyme of this invention are also described hereinafter with reference to the accompanying drawings ,in which:- Figure 1 shows the relationship between the relative activity of the enzyme and the stable pH range. Figure 2 shows the relationship between the relative activity of the enzyme and the optimum pH. Figure 3 shows the relationship beween the relative activity of the enzyme and the optimum temperature. Figure 4 shows the relationship between the relative activity of the enzyme and the heat stability. Figure 5 shows the relationship between the absorbancy and the glucose concentration. In further detail, the properties of the novel enzyme of this invention are:- (1) Stable pH range Samples of the enzyme were dissolved in three different buffers, to make up enzyme solutions having an activity of 100 mU/0.7 ml. viz a citrate buffer, a Tris buffer and a borate buffer. In this test buffer solutions were used having the pH values indicated in Figure 1. Each enzyme solution was incubated at 50°C for 30 minutes, cooled and neutralized prior to measurement of the residual enzymatic activity by the above described assay method. The present enzyme is stable at a pH of 5.0-7.4 as shown in Figure 1. (2) Optimum pH Samples of the enzyme were dissolved in Tris buffer solutions have the pH indicated in Figure 2 to make up enzyme solutions having an activity of 250 mU/3.7 ml. Each of the enzyme solutions was put into a BIOXYGRAPH cell (trade name for a cell for measuring oxygen concen- tration made by Kyusui Kagaku Laboratory, Japan), and 50 µl of 1 M glucose were added. Measurements were made to determine the amount of absorbed oxygen. The optimum pH for this enzyme was shown to be around 6.2. (3) Optimum temperature The same enzymatic reactions as described in the assay method were repeated for 5 minutes at the temperatures indicated in Figure 3, except that pyranose oxidase concentrations of 100 mU were used. The optimum temperature for the present enzyme was determined to be 30°C. (4) Heat stability The enzyme was dissolved in 0.6 ml of 0.2 M Tris buffer solution (pH 6.0) to make up an enzyme solution having an activity of 100 mU/0.7 ml. The enzyme solution was incubated for 30 minutes at the tempera- tures indicated in Figure 4 and measurements made to measure the residual enzymatic activity. As shown, the enzyme keeps 90% of its activity with treatment at 60°C for 30 minutes. (5) Substrate specificity The same reactions as described in the assay method for enzymatic activity were repeated except that an enzyme concentration of 2.5 U/ml was used, and, as the substrate, 0.1 ml samples of various carbohydrate liquors indicated in Table I were used, each such liquor having a concentration of 100 mM. The results are expressed as percentages of the glucose reaction and as will be seen the specificity of this enzyme with glucose is very high and substantially exclusive thereto with only minor levels of activity on mannote, galactose, sorbose and xylose. The specificity with respect to the latter two, in particular being a great deal lower than that of the known pyranose oxidase derived from microorganisms of the genus Polyporus (Table 1 of B.B.A. 167, 501-510 (1968)). (6) Electron acceptor In this phase, 1.4 ml of 50 mM tris-hydrochloride buffer (pH 7.0), 0.1. ml of 250 mU enzyme solution and 0.5 ml of electron acceptor solutions having various concentrations as indicated in Table 2 were put into a cell with Thunberg tube. After saturating with dissolved oxygen, the reaction solution was mixed with 0.5 ml of a 0.1 M glucose solution. The change in absorbancy per minute from 30 minutes to 90 minutes after mixing was determined and the activities of the electron acceptors are expressed as relative activity. As will be seen the optimum electron acceptor for this enzyme is oxygen. (7) Enzyme inhibition Various inhibitors were studied in the same manner as that adopted in determination of the optimum pH. A reaction solution comprising 3.4 ml of 50 mM tris-hydrochloride buffer (pH 7.0), 0.1 ml of enzyme solutin containing 280 mU of pyranose oxidase and 0.2 ml of 18.5 mM inhibitor solution were put into a cell for measuring oxygen uptake and 50µlof 1M glucose were added thereto and the sample incubated at 37°C. The results are given in Table 3. As shown the enzymatic action is substantially inhibited by Cu2+, Ag+, Ni2+ and p-chloromercuribenzoate, and to a lesser extent by Co2+,8-hydroxyquinoline and hydrogen peroxide, and not at all by Mg . (8) Isoelectric point The isoelectric point of the enzyme is 4.2 as determined by the isoelectric focussing method using carrier ampholyte at a pH of 3.5 - 10.0 (9) Molecular weight By the gel-filtration method on Sephadex G-200 (Registered Trade Mark) and using, as the standard protein, egg albumin, bovine blood serum, alcohol dehydrogenase, Y-globulin and xanthin oxidase derived from milk, the molecular weight of the enzyme is calculated to be about 220,000. (10) Km value According to the Lineweaver-Burk plot method using 2.5 U pyranose oxidase the Km value for glucose is determined to be 0.83 mM, which is about one-twelfth to one-twenty fourth of that of glucose oxidase (10 - 20mM).
Recommended publications
  • Western Blot Sandwich ELISA Immunohistochemistry
    $$ 250 - 150 - 100 - 75 - 50 - 37 - Western Blot 25 - 20 - 15 - 10 - 1.4 1.2 1 0.8 0.6 OD 450 0.4 Sandwich ELISA 0.2 0 0.01 0.1 1 10 100 1000 Recombinant Protein Concentration(mg/ml) Immunohistochemistry Immunofluorescence 1 2 3 250 - 150 - 100 - 75 - 50 - Immunoprecipitation 37 - 25 - 20 - 15 - 100 80 60 % of Max 40 Flow Cytometry 20 0 3 4 5 0 102 10 10 10 www.abnova.com June 2013 (Fourth Edition) 37 38 53 Cat. Num. Product Name Cat. Num. Product Name MAB5411 A1/A2 monoclonal antibody, clone Z2A MAB3882 Adenovirus type 6 monoclonal antibody, clone 143 MAB0794 A1BG monoclonal antibody, clone 54B12 H00000126-D01 ADH1C MaxPab rabbit polyclonal antibody (D01) H00000002-D01 A2M MaxPab rabbit polyclonal antibody (D01) H00000127-D01 ADH4 MaxPab rabbit polyclonal antibody (D01) MAB0759 A2M monoclonal antibody, clone 3D1 H00000131-D01 ADH7 MaxPab rabbit polyclonal antibody (D01) MAB0758 A2M monoclonal antibody, clone 9A3 PAB0005 ADIPOQ polyclonal antibody H00051166-D01 AADAT MaxPab rabbit polyclonal antibody (D01) PAB0006 Adipoq polyclonal antibody H00000016-D01 AARS MaxPab rabbit polyclonal antibody (D01) PAB5030 ADIPOQ polyclonal antibody MAB8772 ABCA1 monoclonal antibody, clone AB.H10 PAB5031 ADIPOQ polyclonal antibody MAB8291 ABCA1 monoclonal antibody, clone AB1.G6 PAB5069 Adipoq polyclonal antibody MAB3345 ABCB1 monoclonal antibody, clone MRK16 PAB5070 Adipoq polyclonal antibody MAB3389 ABCC1 monoclonal antibody, clone QCRL-2 PAB5124 Adipoq polyclonal antibody MAB5157 ABCC1 monoclonal antibody, clone QCRL-3 PAB9125 ADIPOQ polyclonal antibody
    [Show full text]
  • A Review on Glucose Oxidase
    Int.J.Curr.Microbiol.App.Sci (2015) 4(8): 636-642 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 4 Number 8 (2015) pp. 636-642 http://www.ijcmas.com Review Article A Review on Glucose Oxidase Shaikh Sumaiya A* and Ratna Trivedi Department of Microbiology, Shree Ramkrishna Institute of Applied Sciences, Athwalines, Surat-395001, India *Corresponding author ABSTRACT K eywo rd s Glucose oxidase (GOX) from Aspergillus niger is a very much portrayed glycoprotein comprising of two indistinguishable 80-kDa subunits with two Glucose oxidase FAD co-factors bound. Both the DNA grouping and protein structure at 1.9 (GOX; GOD), Ǻ have been resolved. GOX catalyzes the oxidation of D- glucose (C6H12O6) Food to D-gluconolactone (C H O ) and hydrogen peroxide. GOX production is processing, 6 10 6 natural in some fungi and insects where its reactant by-product, hydrogen Additive, peroxide, goes about as a hostile to bacterial and against fungal cultures. Enzyme , Properties , GOX is Generally Regarded as Safe (GRAS), and GOX from A. niger is the Physical premise of numerous modern applications. GOX-catalyzed response uproots properties , oxygen and produces hydrogen peroxide, a characteristic used in Structure, nourishment protection. This paper will give a brief foundation on the Stability , normal event, capacities, weaknesses of different chemicals that oxidize Substrates, glucose, Isolation of and early deal with the protein, structure of GOD and Reaction how it identifies with the immobiliz ation and strength of the chemical and in mechanism addition the properties of glucose oxidase. Introduction The living cell is the site of huge This building up and tearing down happens biochemical movement called metabolism.
    [Show full text]
  • Recent Progress in Applications of Enzymatic Bioelectrocatalysis
    catalysts Review Recent Progress in Applications of Enzymatic Bioelectrocatalysis , Taiki Adachi, Yuki Kitazumi, Osamu Shirai and Kenji Kano * y Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan; [email protected] (T.A.); [email protected] (Y.K.); [email protected] (O.S.) * Correspondence: [email protected] Present address: Center for Advanced Science and Innovation, Kyoto University, Gokasho, Uji, y Kyoto 611-0011, Japan. Received: 15 November 2020; Accepted: 1 December 2020; Published: 3 December 2020 Abstract: Bioelectrocatalysis has become one of the most important research fields in electrochemistry and provided a firm base for the application of important technology in various bioelectrochemical devices, such as biosensors, biofuel cells, and biosupercapacitors. The understanding and technology of bioelectrocatalysis have greatly improved with the introduction of nanostructured electrode materials and protein-engineering methods over the last few decades. Recently, the electroenzymatic production of renewable energy resources and useful organic compounds (bioelectrosynthesis) has attracted worldwide attention. In this review, we summarize recent progress in the applications of enzymatic bioelectrocatalysis. Keywords: bioelectrocatalysis; nanostructured electrodes; protein engineering; bioelectrosynthesis; photo-bioelectrocatalysis 1. Introduction Oxidoreductases catalyze redox reactions between two sets of redox substrate couples and are considered industrially useful catalysts due to their high activities and substrate specificities under mild conditions (room temperature, normal pressure, and neutral pH). However, most oxidoreductases, in addition to nicotinamide cofactor (NAD(P))-dependent enzymes, show low substrate specificities for one of the substrates. Such redox enzymes can accept or donate electrons from or to electrodes directly or via artificial redox mediators.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • UC Davis UC Davis Previously Published Works
    UC Davis UC Davis Previously Published Works Title Strategies for Enhancing the Effectiveness of Metagenomic-based Enzyme Discovery in Lignocellulolytic Microbial Communities Permalink https://escholarship.org/uc/item/5bh2q8rd Journal BioEnergy Research, 3(2) ISSN 1939-1242 Authors DeAngelis, Kristen M. Gladden, John M. Allgaier, Martin et al. Publication Date 2010-06-01 DOI 10.1007/s12155-010-9089-z Peer reviewed eScholarship.org Powered by the California Digital Library University of California Bioenerg. Res. (2010) 3:146–158 DOI 10.1007/s12155-010-9089-z Strategies for Enhancing the Effectiveness of Metagenomic-based Enzyme Discovery in Lignocellulolytic Microbial Communities Kristen M. DeAngelis & John M. Gladden & Martin Allgaier & Patrik D’haeseleer & Julian L. Fortney & Amitha Reddy & Philip Hugenholtz & Steven W. Singer & Jean S. Vander Gheynst & Whendee L. Silver & Blake A. Simmons & Terry C. Hazen Published online: 30 March 2010 # The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Producing cellulosic biofuels from plant material are often too complex for enzyme discovery using current has recently emerged as a key US Department of Energy metagenomic sequencing technologies. One potential strat- goal. For this technology to be commercially viable on a egy to overcome this problem is to selectively cultivate the large scale, it is critical to make production cost efficient by microbial communities from these complex ecosystems on streamlining both the deconstruction of lignocellulosic biomass under defined conditions, generating less complex biomass and fuel production. Many natural ecosystems biomass-degrading microbial populations. To test this efficiently degrade lignocellulosic biomass and harbor premise, we cultivated microbes from Puerto Rican soil or enzymes that, when identified, could be used to increase green waste compost under precisely defined conditions in the the efficiency of commercial biomass deconstruction.
    [Show full text]
  • Co-Immobilization of (2,2'-Bipyridyl) (Pentamethylcyclopentadienyl
    Co-immobilization of (2,2’-bipyridyl) (pentamethylcyclopentadienyl)-rhodium complex and NAD-dependent dehydrogenases for enzymatic electrosynthesis Lin Zhang To cite this version: Lin Zhang. Co-immobilization of (2,2’-bipyridyl) (pentamethylcyclopentadienyl)-rhodium complex and NAD-dependent dehydrogenases for enzymatic electrosynthesis. Organic chemistry. Université de Lorraine, 2016. English. NNT : 2016LORR0283. tel-01665493 HAL Id: tel-01665493 https://tel.archives-ouvertes.fr/tel-01665493 Submitted on 16 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété
    [Show full text]
  • Enzyme Classification
    1st Proof 29-7-08 + 0)26-4 ENZYME CLASSIFICATION 2.1 INTRODUCTION 2.1.1 Enzymes Enzymes are biological catalysts that increase the rate of chemical reactions by lowering the activation energy. The molecules involved in the enzyme mediated reactions are known as substrates and the outcome of the reaction or yield is termed product. Generally, the chemical nature of most of the enzymes are proteins and rarely of other types (e.g., RNA). The enzymes are too specific towards their substrates to which they react and thereby the reaction will also be so specific. Sometimes the enzyme needs the presence of a non-protein component (co-enzyme, if it is a vitamin derived organic compound or co-factor, if it is a metal ion) for accomplishing the reaction. In this case, the whole enzyme may be called a holoenzyme, the protein part as apoenzyme and the non-protein constituent a prosthetic group. 2.1.2 Enzyme Nomenclature Principles The sixth complete edition of Enzyme Nomenclature, was published under the patronage of the International Union of Biochemistry and Molecular Biology (formerly the International Union of Biochemistry). By the late 1950s it had become evident that the nomenclature of enzymology was not following the guidelines formulated owing to an increase in the number of enzymes. The naming of enzymes by individual workers had proved far from satisfactory in practice. In many cases the same enzymes were known by several different names, while conversely the same name was sometimes coined to different enzymes. Many of the names conveyed little or no idea about the nature of the reactions catalyzed.
    [Show full text]
  • Site-Directed Mutagenesis of Selected Residues at the Active Site of Aryl-Alcohol Oxidase, an H2O2-Producing Ligninolytic Enzyme Patricia Ferreira1,*, Francisco J
    Site-directed mutagenesis of selected residues at the active site of aryl-alcohol oxidase, an H2O2-producing ligninolytic enzyme Patricia Ferreira1,*, Francisco J. Ruiz-Duen˜ as1, Marı´a J. Martı´nez1, Willem J. H. van Berkel2 and Angel T. Martı´nez1 1 Centro de Investigaciones Biolo´ gicas, CSIC, Madrid, Spain 2 Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands Keywords Aryl-alcohol oxidase provides H2O2 for lignin biodegradation, a key pro- aryl-alcohol oxidase (EC 1.1.3.7); cess for carbon recycling in land ecosystems that is also of great biotechno- flavoenzyme; molecular docking; site- logical interest. However, little is known of the structural determinants of directed mutagenesis; substrate-binding site the catalytic activity of this fungal flavoenzyme, which oxidizes a variety of Correspondence polyunsaturated alcohols. Different alcohol substrates were docked on the A. T. Martı´nez, Centro de Investigaciones aryl-alcohol oxidase molecular structure, and six amino acid residues sur- Biolo´ gicas, CSIC, Ramiro de Maeztu 9, rounding the putative substrate-binding site were chosen for site-directed E-28040 Madrid, Spain mutagenesis modification. Several Pleurotus eryngii aryl-alcohol oxidase Fax: +34 915360432 variants were purified to homogeneity after heterologous expression in Tel: +34 918373112 Emericella nidulans, and characterized in terms of their steady-state kinetic E-mail: [email protected] properties. Two histidine residues (His502 and His546) are strictly required *Present address for aryl-alcohol oxidase catalysis, as shown by the lack of activity of differ- Department of Biochemistry and Molecular ent variants. This fact, together with their location near the isoalloxazine Biology, College of Medicine, Drexel Univer- ring of FAD, suggested a contribution to catalysis by alcohol activation, sity, Philadelphia, PA, USA enabling its oxidation by flavin-adenine dinucleotide (FAD).
    [Show full text]
  • Springer Handbook of Enzymes
    Dietmar Schomburg Ida Schomburg (Eds.) Springer Handbook of Enzymes Alphabetical Name Index 1 23 © Springer-Verlag Berlin Heidelberg New York 2010 This work is subject to copyright. All rights reserved, whether in whole or part of the material con- cerned, specifically the right of translation, printing and reprinting, reproduction and storage in data- bases. The publisher cannot assume any legal responsibility for given data. Commercial distribution is only permitted with the publishers written consent. Springer Handbook of Enzymes, Vols. 1–39 + Supplements 1–7, Name Index 2.4.1.60 abequosyltransferase, Vol. 31, p. 468 2.7.1.157 N-acetylgalactosamine kinase, Vol. S2, p. 268 4.2.3.18 abietadiene synthase, Vol. S7,p.276 3.1.6.12 N-acetylgalactosamine-4-sulfatase, Vol. 11, p. 300 1.14.13.93 (+)-abscisic acid 8’-hydroxylase, Vol. S1, p. 602 3.1.6.4 N-acetylgalactosamine-6-sulfatase, Vol. 11, p. 267 1.2.3.14 abscisic-aldehyde oxidase, Vol. S1, p. 176 3.2.1.49 a-N-acetylgalactosaminidase, Vol. 13,p.10 1.2.1.10 acetaldehyde dehydrogenase (acetylating), Vol. 20, 3.2.1.53 b-N-acetylgalactosaminidase, Vol. 13,p.91 p. 115 2.4.99.3 a-N-acetylgalactosaminide a-2,6-sialyltransferase, 3.5.1.63 4-acetamidobutyrate deacetylase, Vol. 14,p.528 Vol. 33,p.335 3.5.1.51 4-acetamidobutyryl-CoA deacetylase, Vol. 14, 2.4.1.147 acetylgalactosaminyl-O-glycosyl-glycoprotein b- p. 482 1,3-N-acetylglucosaminyltransferase, Vol. 32, 3.5.1.29 2-(acetamidomethylene)succinate hydrolase, p. 287 Vol.
    [Show full text]
  • Amperometric Biosensors Based on Direct Electron Transfer Enzymes
    molecules Review Amperometric Biosensors Based on Direct Electron Transfer Enzymes Franziska Schachinger †, Hucheng Chang † , Stefan Scheiblbrandner and Roland Ludwig * Biocatalysis and Biosensing Laboratory, Department of Food Sciences and Technology, BOKU–University of Natural Resources and Life Sciences, 1190 Vienna, Austria; [email protected] (F.S.); [email protected] (H.C.); [email protected] (S.S.) * Correspondence: [email protected] † These authors contribute equally to this work. Abstract: The accurate determination of analyte concentrations with selective, fast, and robust methods is the key for process control, product analysis, environmental compliance, and medical applications. Enzyme-based biosensors meet these requirements to a high degree and can be operated with simple, cost efficient, and easy to use devices. This review focuses on enzymes capable of direct electron transfer (DET) to electrodes and also the electrode materials which can enable or enhance the DET type bioelectrocatalysis. It presents amperometric biosensors for the quantification of important medical, technical, and environmental analytes and it carves out the requirements for enzymes and electrode materials in DET-based third generation biosensors. This review critically surveys enzymes and biosensors for which DET has been reported. Single- or multi-cofactor enzymes featuring copper centers, hemes, FAD, FMN, or PQQ as prosthetic groups as well as fusion enzymes are presented. Nanomaterials, nanostructured electrodes, chemical surface modifications, and protein immobilization strategies are reviewed for their ability to support direct electrochemistry of enzymes. Citation: Schachinger, F.; Chang, H.; Scheiblbrandner, S.; Ludwig, R. The combination of both biosensor elements—enzymes and electrodes—is evaluated by comparison Amperometric Biosensors Based on of substrate specificity, current density, sensitivity, and the range of detection.
    [Show full text]
  • Chiar.Mo Prof
    UNIVERSITA’ DEGLI STUDI DI MILANO Facoltà di Farmacia Dottorato di Ricerca in Chimica del Farmaco HIGH RESOLUTION MASS SPECTROMETRIC STRATEGIES IN DRUG DISCOVERY FOR THE INVESTIGATION OF COVALENT AND NON COVALENT INTERACTIONS Coordinatore: Chiar.mo Prof. Ermanno VALOTI Docente Guida: Prof. Giancarlo ALDINI Candidato Dr. Danilo DE MADDIS Matr. n. R09058 XXVI Ciclo (A.A. 2010/2011-2012/2013) Index 1. Introduction and aim of the work Pag.9 1.1 References Pag.20 2. Background Pag.22 2.1 Oxidative stress Pag.23 2.1.a Reactive Oxygen species(ROS) Pag.25 2.1.b Chemistry of Endogenous Reactive Oxygen Species Pag.26 2.1.c Endogenous defenses toward ROS Pag.29 2.2 Advanced glycoxidation and lipoxidation end products Pag.30 (AGEs and ALEs): an overview of the mechanisms of formation 2.2.a Protein Carbonylation and Carbonyl Stress Pag.30 2.2.b ALEs: an introduction Pag.32 2.2.c α,β-Unsaturated carbonyls Pag.35 2.2.c.1 Exogenous and endogenous sources Pag.35 2.2.c.2 ALEs formed by α,β-unsaturated carbonyls Pag.36 2.2.d di-carbonyls Pag.42 2.2.d.1 Exogenous and endogenous sources Pag.42 2.2.d.2 ALEs formed by di-carbonyls Pag.42 2.2.d.3 AGEs: an introduction Pag.46 2.2.d.4 Maillard reaction Pag.47 2.2.d.5 AGEs and their reactive precursors Pag.51 2.2.e Glyoxal Pag.52 2.2.e.1 Exogenous and endogenous sources Pag.52 2.2.e.2 Glyoxal-derived AGE Pag.53 2.2.e.3 Exogenous and endogenous sources Pag.55 2.2.e.4 Methylglyoxal-derived AGEs Pag.58 2.3 The receptor for AGEs (RAGE) and its involvement Pag.59 in the inflammation 2.3.a Structure of the receptor for Advanced Glycation.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130244920A1 (19) United States (12) Patent Application Publication (10) Pub. N0.: US 2013/0244920 A1 Lee et al. (43) Pub. Date: Sep. 19, 2013 (54) WATER SOLUBLE COMPOSITIONS (52) US. Cl. INCORPORATING ENZYMES, AND METHOD USPC ......................................... .. 510/392; 264/299 OF MAKING SAME (57) ABSTRACT (76) Inventors: David M. Lee, CroWn Point, IN (US); Jennifer L‘ Sims’ Lowell’ IN (Us) Disclosed herein are Water soluble compositions, such as ?lms, including a mixture of a ?rst Water-soluble resin, an (21) Appl' NO': 13/422’709 enzyme, and an enzyme stabilizer Which comprises a func (22) Filed: Man 16, 2012 tional substrate for the enzyme, methods of making such compositions, and methods of using such compositions, e.g. Publication Classi?cation to make packets containing functional ingredients. The enzymes can include proteases and mixtures of proteases (51) Int. Cl. With other enzymes, and the compositions provide good C11D 3/386 (2006.01) retention of enzyme function following ?lm processing and B29C 39/02 (2006.01) storage. US 2013/0244920 A1 Sep. 19,2013 WATER SOLUBLE COMPOSITIONS preheated to a temperature less than 77° C., optionally in a INCORPORATING ENZYMES, AND METHOD range ofabout 66° C. to about 77° C., or about 74° C.; drying OF MAKING SAME the Water from the cast mixture over a period of less than 24 hours, optionally less than 12 hours, optionally less than 8 FIELD OF THE DISCLOSURE hours, optionally less than 2 hours, optionally less than 1 [0001] The present disclosure relates generally to Water hour, optionally less than 45 minutes, optionally less than 30 soluble ?lms.
    [Show full text]