On the Complexity of Holant Problems Heng Guo1 and Pinyan Lu2 1 School of Mathematical Sciences, Queen Mary University of London, London, UK
[email protected] 2 Institute for Theoretical Computer Science, School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai, China
[email protected] Abstract In this article we survey recent developments on the complexity of Holant problems. We discuss three different aspects of Holant problems: the decision version, exact counting, and approximate counting. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com- binatorics. Keywords and phrases Computational complexity, Counting complexity, Dichotomy theorems, Approximate counting, Holant problems Digital Object Identifier 10.4230/DFU.Vol7.15301.159 1 Introduction Ladner’s theorem [53] states that if P 6= NP then there is an infinite hierarchy of intermediate problems that are not polynomial time interreducible. For certain restrictions of these classes, however, dichotomy theorems can be achieved. For NP a dichotomy theorem would state that any problem in the restricted subclass of NP is either in P or NP-complete (or both, in the eventuality that NP equals P.) The restrictions for which dichotomy theorems are known can be framed in terms of local constraints, most importantly, Constraint Satisfaction Problems (CSP) [58, 28, 4, 5, 6, 33, 38, 27, 37], and Graph Homomorphism Problems [34, 42, 8]. Explicit dichotomy results, where available, manifest a total understanding of the class of computation in question, within polynomial time reduction, and modulo the collapse of the class. In this article we survey dichotomies in a framework for characterizing local properties that is more general than those mentioned in the previous paragraph, namely the so-called Holant framework [18, 19].