The Geometry of Dimer Models
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 4 1 the Permanent of a Matrix
Grafy a poˇcty - NDMI078 April 2009 Lecture 4 M. Loebl J.-S. Sereni 1 The permanent of a matrix 1.1 Minc's conjecture The set of permutations of f1; : : : ; ng is Sn. Let A = (ai;j)1≤i;j≤n be a square matrix with real non-negative entries. The permanent of the matrix A is n X Y perm(A) := ai,σ(i) : σ2Sn i=1 In 1973, Br`egman[4] proved M´ınc’sconjecture [18]. n×n Pn Theorem 1 (Br`egman,1973). Let A = (ai;j)1≤i;j≤n 2 f0; 1g . Set ri := j=1 ai;j. Then, n Y 1=ri perm(A) ≤ (ri!) : i=1 Further, if ri > 0 for every i 2 f1; 2; : : : ; ng, then there is equality if and only if up to permutations of rows and columns, A is a block-diagonal matrix, each block being a square matrix with all entries equal to 1. Several proofs of this result are known, the original being combinatorial. In 1978, Schrijver [22] found a neat and short proof. A probabilistic description of this proof is presented in the book of Alon and Spencer [3, Chapter 2]. The one we will see in Lecture 5 uses the concept of entropy, and was found by Radhakrishnan [20] in the late nineties. It is a nice illustration of the use of entropy to count combinatorial objects. 1.2 The van der Waerden conjecture A square matrix M = (mij)1≤i;j≤n of non-negative real numbers is doubly stochastic if the sum of the entries of every line is equal to 1, and the same holds for the sum of the entries of each column. -
Lecture 12 – the Permanent and the Determinant
Lecture 12 { The permanent and the determinant Uriel Feige Department of Computer Science and Applied Mathematics The Weizman Institute Rehovot 76100, Israel [email protected] June 23, 2014 1 Introduction Given an order n matrix A, its permanent is X Yn per(A) = aiσ(i) σ i=1 where σ ranges over all permutations on n elements. Its determinant is X Yn σ det(A) = (−1) aiσ(i) σ i=1 where (−1)σ is +1 for even permutations and −1 for odd permutations. A permutation is even if it can be obtained from the identity permutation using an even number of transpo- sitions (where a transposition is a swap of two elements), and odd otherwise. For those more familiar with the inductive definition of the determinant, obtained by developing the determinant by the first row of the matrix, observe that the inductive defini- tion if spelled out leads exactly to the formula above. The same inductive definition applies to the permanent, but without the alternating sign rule. The determinant can be computed in polynomial time by Gaussian elimination, and in time n! by fast matrix multiplication. On the other hand, there is no polynomial time algorithm known for computing the permanent. In fact, Valiant showed that the permanent is complete for the complexity class #P , which makes computing it as difficult as computing the number of solutions of NP-complete problems (such as SAT, Valiant's reduction was from Hamiltonicity). For 0/1 matrices, the matrix A can be thought of as the adjacency matrix of a bipartite graph (we refer to it as a bipartite adjacency matrix { technically, A is an off-diagonal block of the usual adjacency matrix), and then the permanent counts the number of perfect matchings. -
Edinburgh Research Explorer
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Edinburgh Research Explorer Edinburgh Research Explorer A Holant Dichotomy: Is the FKT Algorithm Universal? Citation for published version: Cai, J-Y, Fu, Z, Guo, H & Williams, T 2015, A Holant Dichotomy: Is the FKT Algorithm Universal? in IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015. IEEE, pp. 1259-1276, Foundations of Computer Science 2015, Berkley, United States, 17/10/15. DOI: 10.1109/FOCS.2015.81 Digital Object Identifier (DOI): 10.1109/FOCS.2015.81 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015 General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Apr. 2019 A Holant Dichotomy: Is the FKT Algorithm Universal? Jin-Yi Cai∗ Zhiguo Fu∗y Heng Guo∗z Tyson Williams∗x [email protected] [email protected] [email protected] [email protected] Abstract We prove a complexity dichotomy for complex-weighted Holant problems with an arbitrary set of symmetric constraint functions on Boolean variables. -
3.1 Matchings and Factors: Matchings and Covers
1 3.1 Matchings and Factors: Matchings and Covers This copyrighted material is taken from Introduction to Graph Theory, 2nd Ed., by Doug West; and is not for further distribution beyond this course. These slides will be stored in a limited-access location on an IIT server and are not for distribution or use beyond Math 454/553. 2 Matchings 3.1.1 Definition A matching in a graph G is a set of non-loop edges with no shared endpoints. The vertices incident to the edges of a matching M are saturated by M (M-saturated); the others are unsaturated (M-unsaturated). A perfect matching in a graph is a matching that saturates every vertex. perfect matching M-unsaturated M-saturated M Contains copyrighted material from Introduction to Graph Theory by Doug West, 2nd Ed. Not for distribution beyond IIT’s Math 454/553. 3 Perfect Matchings in Complete Bipartite Graphs a 1 The perfect matchings in a complete b 2 X,Y-bigraph with |X|=|Y| exactly c 3 correspond to the bijections d 4 f: X -> Y e 5 Therefore Kn,n has n! perfect f 6 matchings. g 7 Kn,n The complete graph Kn has a perfect matching iff… Contains copyrighted material from Introduction to Graph Theory by Doug West, 2nd Ed. Not for distribution beyond IIT’s Math 454/553. 4 Perfect Matchings in Complete Graphs The complete graph Kn has a perfect matching iff n is even. So instead of Kn consider K2n. We count the perfect matchings in K2n by: (1) Selecting a vertex v (e.g., with the highest label) one choice u v (2) Selecting a vertex u to match to v K2n-2 2n-1 choices (3) Selecting a perfect matching on the rest of the vertices. -
Matchgates Revisited
THEORY OF COMPUTING, Volume 10 (7), 2014, pp. 167–197 www.theoryofcomputing.org RESEARCH SURVEY Matchgates Revisited Jin-Yi Cai∗ Aaron Gorenstein Received May 17, 2013; Revised December 17, 2013; Published August 12, 2014 Abstract: We study a collection of concepts and theorems that laid the foundation of matchgate computation. This includes the signature theory of planar matchgates, and the parallel theory of characters of not necessarily planar matchgates. Our aim is to present a unified and, whenever possible, simplified account of this challenging theory. Our results include: (1) A direct proof that the Matchgate Identities (MGI) are necessary and sufficient conditions for matchgate signatures. This proof is self-contained and does not go through the character theory. (2) A proof that the MGI already imply the Parity Condition. (3) A simplified construction of a crossover gadget. This is used in the proof of sufficiency of the MGI for matchgate signatures. This is also used to give a proof of equivalence between the signature theory and the character theory which permits omittable nodes. (4) A direct construction of matchgates realizing all matchgate-realizable symmetric signatures. ACM Classification: F.1.3, F.2.2, G.2.1, G.2.2 AMS Classification: 03D15, 05C70, 68R10 Key words and phrases: complexity theory, matchgates, Pfaffian orientation 1 Introduction Leslie Valiant introduced matchgates in a seminal paper [24]. In that paper he presented a way to encode computation via the Pfaffian and Pfaffian Sum, and showed that a non-trivial, though restricted, fragment of quantum computation can be simulated in classical polynomial time. Underlying this magic is a way to encode certain quantum states by a classical computation of perfect matchings, and to simulate certain ∗Supported by NSF CCF-0914969 and NSF CCF-1217549. -
Lectures 4 and 6 Lecturer: Michel X
18.438 Advanced Combinatorial Optimization Feb 13 and 25, 2014 Lectures 4 and 6 Lecturer: Michel X. Goemans Scribe: Zhenyu Liao and Michel X. Goemans Today, we will use an algebraic approach to solve the matching problem. Our goal is to derive an algebraic test for deciding if a graph G = (V; E) has a perfect matching. We may assume that the number of vertices is even since this is a necessary condition for having a perfect matching. First, we will define a few basic needed notations. Definition 1 A skew-symmetric matrix A is a square matrix which satisfies AT = −A, i.e. if A = (aij) we have aij = −aji for all i; j. For a graph G = (V; E) with jV j = n and jEj = m, we construct a n × n skew-symmetric matrix A = (aij) with an entry aij = −aji for each edge (i; j) 2 E and aij = 0 if (i; j) is not an edge; the values aij for the edges will be specified later. Recall: Definition 2 The determinant of matrix A is n X Y det(A) = sgn(σ) aiσ(i) σ2Sn i=1 where Sn is the set of all permutations of n elements and the sgn(σ) is defined to be 1 if the number of inversions in σ is even and −1 otherwise. Note that for a skew-symmetric matrix A, det(A) = det(−AT ) = (−1)n det(A). So if n is odd we have det(A) = 0. Consider K4, the complete graph on 4 vertices, and thus 0 1 0 a12 a13 a14 B−a12 0 a23 a24C A = B C : @−a13 −a23 0 a34A −a14 −a24 −a34 0 By computing its determinant one observes that 2 det(A) = (a12a34 − a13a24 + a14a23) : First, it is the square of a polynomial q(a) in the entries of A, and moreover this polynomial has a monomial precisely for each perfect matching of K4. -
A Short Course on Matching Theory, ECNU Shanghai, July 2011
A short course on matching theory, ECNU Shanghai, July 2011. Sergey Norin LECTURE 1 Fundamental definitions and theorems. 1.1. Outline of Lecture • Definitions • Hall's theorem • Tutte's Matching theorem 1.2. Basic definitions. A matching in a graph G is a set of edges M such that no two edges share a common end. A vertex v is said to be saturated or matched by a matching M if v is an end of an edge in M. Otherwise, v is unsaturated or unmatched. The matching number ν(G) of G is the maximum number of edges in a matching in G. A matching M is perfect if every vertex of G is saturated. We will be primarily interested in perfect matchings. We will denote by M(G) the set of all perfect matchings of a graph G and by m(G) := jM(G)j the number of perfect matchings. The main goal of this course is to demonstrate classical and new results related to computing or estimating the quantity m(G). Example 1. The graph K4 is the complete graph on 4 vertices. Let V (K4) = f1; 2; 3; 4g. Then f12; 34g; f13; 24g; f14; 23g are all perfect matchings of K4, i.e. all the elements of the set M(G). We have jm(G)j = 3. Every edge of K4 belongs to exactly one perfect matching. 1 2 SERGEY NORIN, MATCHING THEORY Figure 1. A graph with no perfect matching. Computation of m(G) is of interest for the following reasons. If G is a graph representing connections between the atoms in a molecule, then m(G) encodes some stability and thermodynamic properties of the molecule. -
Arxiv:2108.12879V1 [Cs.CC] 29 Aug 2021
Parameterizing the Permanent: Hardness for K8-minor-free graphs Radu Curticapean∗ Mingji Xia† Abstract In the 1960s, statistical physicists discovered a fascinating algorithm for counting perfect matchings in planar graphs. Valiant later showed that the same problem is #P-hard for general graphs. Since then, the algorithm for planar graphs was extended to bounded-genus graphs, to graphs excluding K3;3 or K5, and more generally, to any graph class excluding a fixed minor H that can be drawn in the plane with a single crossing. This stirred up hopes that counting perfect matchings might be polynomial-time solvable for graph classes excluding any fixed minor H. Alas, in this paper, we show #P-hardness for K8-minor-free graphs by a simple and self-contained argument. 1 Introduction A perfect matching in a graph G is an edge-subset M ⊆ E(G) such that every vertex of G has exactly one incident edge in M. Counting perfect matchings is a central and very well-studied problem in counting complexity. It already starred in Valiant’s seminal paper [23] that introduced the complexity class #P, where it was shown that counting perfect matchings is #P-complete. The problem has driven progress in approximate counting and underlies the so-called holographic algorithms [24, 6, 4, 5]. It also occurs outside of counting complexity, e.g., in statistical physics, via the partition function of the dimer model [21, 16, 17]. In algebraic complexity theory, the matrix permanent is a very well-studied algebraic variant of the problem of counting perfect matchings [1]. -
A5730107.Pdf
International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Applications of Bipartite Graph in diverse fields including cloud computing 1Arunkumar B R, 2Komala R Prof. and Head, Dept. of MCA, BMSIT, Bengaluru-560064 and Ph.D. Research supervisor, VTU RRC, Belagavi Asst. Professor, Dept. of MCA, Sir MVIT, Bengaluru and Ph.D. Research Scholar,VTU RRC, Belagavi ABSTRACT: Graph theory finds its enormous applications in various diverse fields. Its applications are evolving as it is perfect natural model and able to solve the problems in a unique way.Several disciplines even though speak about graph theory that is only in wider context. This paper pinpoints the applications of Bipartite graph in diverse field with a more points stressed on cloud computing. KEY WORDS: Graph theory, Bipartite graph cloud computing, perfect matching applications I. INTRODUCTION Graph theory has emerged as most approachable for all most problems in any field. In recent years, graph theory has emerged as one of the most sociable and fruitful methods for analyzing chemical reaction networks (CRNs). Graph theory can deal with models for which other techniques fail, for example, models where there is incomplete information about the parameters or that are of high dimension. Models with such issues are common in CRN theory [16]. Graph theory can find its applications in all most all disciplines of science, engineering, technology and including medical fields. Both in the view point of theory and practical bipartite graphs are perhaps the most basic of entities in graph theory. Until now, several graph theory structures including Bipartite graph have been considered only as a special class in some wider context in the discipline such as chemistry and computer science [1]. -
The Complexity of Multivariate Matching Polynomials
The Complexity of Multivariate Matching Polynomials Ilia Averbouch∗ and J.A.Makowskyy Faculty of Computer Science Israel Institute of Technology Haifa, Israel failia,[email protected] February 28, 2007 Abstract We study various versions of the univariate and multivariate matching and rook polynomials. We show that there is most general multivariate matching polynomial, which is, up the some simple substitutions and multiplication with a prefactor, the original multivariate matching polynomial introduced by C. Heilmann and E. Lieb. We follow here a line of investigation which was very successfully pursued over the years by, among others, W. Tutte, B. Bollobas and O. Riordan, and A. Sokal in studying the chromatic and the Tutte polynomial. We show here that evaluating these polynomials over the reals is ]P-hard for all points in Rk but possibly for an exception set which is semi-algebraic and of dimension strictly less than k. This result is analoguous to the characterization due to F. Jaeger, D. Vertigan and D. Welsh (1990) of the points where the Tutte polynomial is hard to evaluate. Our proof, however, builds mainly on the work by M. Dyer and C. Greenhill (2000). 1 Introduction In this paper we study generalizations of the matching and rook polynomials and their complexity. The matching polynomial was originally introduced in [5] as a multivariate polynomial. Some of its general properties, in particular the so called half-plane property, were studied recently in [2]. We follow here a line of investigation which was very successfully pursued over the years by, among others, W. Tutte [15], B. -
Pfaffian Orientations, Flat Embeddings, and Steinberg's Conjecture
PFAFFIAN ORIENTATIONS, FLAT EMBEDDINGS, AND STEINBERG'S CONJECTURE A Thesis Presented to The Academic Faculty by Peter Whalen In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Mathematics Georgia Institute of Technology May 2014 PFAFFIAN ORIENTATIONS, FLAT EMBEDDINGS, AND STEINBERG'S CONJECTURE Approved by: Robin Thomas, Advisor Vijay Vazarani School of Mathematics College of Computing Georgia Institute of Technology Georgia Institute of Technology Sergey Norin Xingxing Yu Department of Mathematics and School of Mathematics Statistics Georgia Institute of Technology McGill University William Trotter Date Approved: 15 April 2014 School of Mathematics Georgia Institute of Technology To Krista iii ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor, Robin Thomas, for his years of guidance and encouragement. He has provided a constant stream of problems, ideas and opportunities and I am grateful for his continuous support. Robin has had the remarkable ability to present a problem and the exact number of hints and suggestions to allow me to push the boundaries of what I can do. Under his tutelage, I've grown both as a mathematician and as a professional. But perhaps his greatest gift is his passion, for mathematics and for his students. As a mentor and as a role-model, I'm grateful to him for his inspiration. I'd like to thank my undergraduate advisor, Sergey Norin, without whom I would have never fallen in love with graph theory. It is a rare teacher that truly changes a life; I'd like to thank Paul Seymour and Robert Perrin for being two that sent me down this path. -
Enumeration Problems on Lattices
Enumeration Problems on Lattices by Evans Doe Ocansey Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Mathematics in the Faculty of Science at Stellenbosch University Department of Mathematics, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa. Supervisor: Prof. Stephan Wagner December 2012 Stellenbosch University http://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Signature: . Evans Doe Ocansey 2012/12/20 Date: . Copyright © 2012 Stellenbosch University All rights reserved. i Stellenbosch University http://scholar.sun.ac.za Abstract Enumeration Problems on Lattices Evans Doe Ocansey Department of Mathematics, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa. Thesis: MSc (Mathematics) December 2012 The main objective of our study is enumerating spanning trees τ(G) and perfect match- ings PM(G) on graphs G and lattices L. We demonstrate two methods of enumerating spanning trees of any connected graph, namely the matrix-tree theorem and as a special value of the Tutte polynomial T (G; x; y). We present a general method for counting spanning trees on lattices in d ≥ 2 dimen- sions. In particular we apply this method on the following regular lattices with d = 2: rectangular, triangular, honeycomb, kagomé, diced, 9 · 3 lattice and its dual lattice to derive a explicit formulas for the number of spanning trees of these lattices of finite sizes.