Chapter 4. Precambrian Paleontology of Grand Canyon National Park

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4. Precambrian Paleontology of Grand Canyon National Park Chapter 4. Precambrian Paleontology of Grand Canyon National Park By Justin Tweet1 1National Park Service 9149 79th Street S. Cottage Grove, Minnesota 55016 Introduction The Precambrian paleontology of Grand Canyon National Park (GRCA) is fundamentally unlike the paleontology of any other portion of the park’s substantial stratigraphic column. There are no shells, teeth, bones, footprints, leaves, or similar large fossils. The only fossils visible to the naked eye are layered structures left by microbial mats and the very largest of a diverse assemblage of microfossils. The tools of choice are not shovels and picks, but chemical treatments and powerful microscopes. Very few visitors would be able to spot a Precambrian fossil. Notwithstanding the humble, inconspicuous nature of these fossils, they offer important glimpses at two stages in the development of life, approximately 1,250 to 1,100 million years ago (Ma) and 780 to 730 Ma, long before the appearance of familiar multicellular organisms with hard parts. The Precambrian fossils of GRCA are the oldest fossils of the park and include type specimens for 18 taxa (Appendix 4-B), such as the organic-walled microfossil Chuaria circularis and species of Melanocyrillium, the first described vase-shaped microfossil, as well as the notable pseudofossil (resembling a fossil but inorganic in origin) Brooksella canyonensis, first described as a possible jellyfish. They also have a place in the history of Precambrian paleontology, from Charles Walcott’s early explorations to the present. History of Research An excellent summary of the early Precambrian paleontology of GRCA can be found in Spamer (1984). Although Powell (1876) and White (1876) briefly mentioned potential fossils in the Grand Canyon Supergroup (at that time defined as a group), the study of Precambrian fossils at GRCA was pioneered by Charles Doolittle Walcott in the 1880s and 1890s. The study of Precambrian fossils in general was just beginning, and Walcott made several misidentifications among his more lasting discoveries (see also “Notable Pseudofossils and Dubiofossils” below). For example, his erroneous identifications of several “fossils” led him to initially regard the Chuar Group as Cambrian in age (Walcott 1883). Of his initial assemblage, only the “stromatoporoids” (stromatolites) and some of the “brachiopods” (Chuaria) proved to be legitimate fossils, and he retreated on several of the identifications later (Walcott 1899). Walcott (1899) includes stratigraphic descriptions of the Grand Canyon Supergroup and the description of Chuaria circularis (Figure 4-1). Dawson (1897) also gave the name Cryptozoon occidentale to an example of Walcott’s “stromatoporoids” during this time frame. After the 1890s, Walcott’s attention turned to other topics, including the overlying Cambrian strata at GRCA, and little research on Precambrian fossils at GRCA was conducted until the 1920s. Toward the end of the 1920s, David White briefly mentioned some fossils and potential fossils from the 75 Precambrian rocks of GRCA alongside his research on later Paleozoic plant fossils from the canyon (White 1927, 1928a, 1928b, 1929). Because of White’s paleobotanical focus, the Precambrian fossils and pseudofossils he described were primarily stromatolites, due to their “algal” origin, and “fucoids”, a now-obsolete term for what were then thought to be seaweeds. “Fucoids” as a whole are now known to include various invertebrate burrows and burrow-like sedimentary features such as mud cracks, and the Precambrian “fucoids” appear to be inorganic features. Figure 4-1. Chuaria circularis depicted in Walcott (1899: Plate 27:12). C. circularis specimens are up to 5 mm (0.2 in) across, making them the largest of GRCA’s Precambrian body fossils. Between the 1920s and 1970s, most of the work on GRCA Precambrian paleontology focused on objects now generally regarded as pseudofossils. The most significant of these is the long- controversial Brooksella canyonensis from the Nankoweap Formation, which was first interpreted as a potential jellyfish (Van Gundy 1937, 1951; Bassler 1941). A running dialog on the interpretation of various enigmatic features took place in the literature (e.g., Seilacher 1956; Alf 1959; Cloud 1968; Glaessner 1969; Nitecki 1971). Toward the end of the 1960s, Ford et al. (1969) published initial work toward a complete stratigraphic re-evaluation of the Chuar Group, and Downie (1969) published a brief discussion of microfossils from these rocks, an area of research that would become increasingly significant. Beginning with the late 1960s publications, paleontological work in the Precambrian of GRCA has focused on the microfossils of the Kwagunt and Galeros formations of the Chuar Group. Many advances and discoveries were published during the 1970s, including: the formal division of the Chuar Group (Ford and Breed 1973a); the redescription of Chuaria circularis (Ford and Breed 1973b, 1977); the first report of GRCA filamentous fossils (Schopf et al. 1973); and the initial description of vase-shaped microfossils (Bloeser et al. 1977). Since the 1970s, Precambrian research at GRCA has documented fossils including acritarchs and other organic-walled microfossils (Vidal and Ford 1985; Nagy et al. 2009; Porter and Riedman 2016), filaments (Horodyski and Bloeser 1983), vase-shaped microfossils (Bloeser 1985; Porter and Knoll 2000; Porter et al. 2003), and apparent puncture traces (Porter 2016a). Chemical biomarkers have also been studied (Summons et al. 1988; Brocks et al. 2016). In recent years there have also been re-assessments of the Nankoweap Formation (Dehler et al. 2017) and Sixtymile Formation (Karlstrom et al. 2018), finding both to be younger than originally thought. In the case of the Sixtymile Formation, it is now known to be 76 Cambrian in age, but it will be included briefly in this chapter due to the recency of its reassessment and long historical placement in the Proterozoic. Stratigraphic Distribution of Fossils The Precambrian rocks of GRCA include crystalline Paleoproterozoic basement rocks and a sequence of Mesoproterozoic and Neoproterozoic sedimentary rocks known as the Grand Canyon Supergroup. The Supergroup is divided into the Mesoproterozoic Unkar Group and the Neoproterozoic Chuar Group, which in turn are both divided into several formations. The Unkar Group includes, in ascending order (oldest first), the Bass Formation, Hakatai Shale, Shinumo Quartzite, Dox Formation, and Cardenas Basalt. The Chuar Group includes the Nankoweap, Galeros, and Kwagunt formations. As mentioned above, the Sixtymile Formation was previously thought to be a Precambrian formation, but is now known to be Cambrian in age. Although the crystalline rocks beneath the Grand Canyon Supergroup can be found near the western end of GRCA, the rocks of the Supergroup are exposed only in eastern GRCA, from roughly Nankoweap Canyon in the east to Deer Creek Falls in the west; all of their outcrops are limited to GRCA. The Unkar Group is more widely exposed, being found from a short distance below the Little Colorado River to Deer Creek Falls. The Chuar Group is limited to the stretch of the canyon between approximately Nankoweap Canyon and Unkar Creek, and except for outcrops of the Nankoweap Formation on the south/east side of the Colorado River within a few km or mi of the Tanner Trail, is only exposed west or north of the river (Figure 4-2). Outcrops are discontinuous, and it is not uncommon for rocks of the overlying Tonto Group to overlie the ancient crystalline rocks without the Supergroup between them, indicating erosion between the Paleoproterozoic and Cambrian. Fossils are confirmed from the Bass Formation, Dox Formation, Galeros Formation, and Kwagunt Formation. More controversial reports have come from the Hakatai Shale, Shinumo Quartzite, and Nankoweap Formation (Table 4-1). Figure 4-2. An aerial view showing several topographic features west of the Colorado River in eastern GRCA. The distant mesa is Nankoweap Mesa. Nankoweap Butte is to the left. Kwagunt Butte is near the center of the photo. Awatubi Crest is in the foreground (NPS). 77 Formations are discussed below in ascending order. See Table 4-1 for a brief summary. The following information is also included in tabular form in Appendix 4-A. Table 4-1. Summary of GRCA Precambrian stratigraphy, fossils, and depositional settings in descending order of age, from youngest to oldest; Sixtymile Formation included based on historical classification. Details and references can be found in the text Depositional Formation Age Fossils Within GRCA Environment Lacustrine, fluvial, and Sixtymile Formation early Cambrian Potential undetermined fragment shallow marine Stromatolites and other microbial features, acritarchs and colonial organic-walled microfossils, microbial Primarily subtidal to middle Neoproterozoic filaments, vase-shaped microfossils, Kwagunt Formation intertidal with active (late Tonian) various unspecified microfossils, tectonism “vampire traces” on microfossils, chemical evidence for possible sponges, possible meiofaunal traces Stromatolites and other microbial Primarily subtidal to features, acritarchs and colonial middle Neoproterozoic supratidal, Galeros Formation organic-walled microfossils, microbial (late Tonian) intermittently restricted filaments, various unspecified with active tectonism microfossils, “vampire traces” Primarily marine middle Neoproterozoic None to date, unless Brooksella Nankoweap Formation shoreface with active (late Tonian) canyonensis is
Recommended publications
  • Cambrian Phytoplankton of the Brunovistulicum – Taxonomy and Biostratigraphy
    MONIKA JACHOWICZ-ZDANOWSKA Cambrian phytoplankton of the Brunovistulicum – taxonomy and biostratigraphy Polish Geological Institute Special Papers,28 WARSZAWA 2013 CONTENTS Introduction...........................................................6 Geological setting and lithostratigraphy.............................................8 Summary of Cambrian chronostratigraphy and acritarch biostratigraphy ...........................13 Review of previous palynological studies ...........................................17 Applied techniques and material studied............................................18 Biostratigraphy ........................................................23 BAMA I – Pulvinosphaeridium antiquum–Pseudotasmanites Assemblage Zone ....................25 BAMA II – Asteridium tornatum–Comasphaeridium velvetum Assemblage Zone ...................27 BAMA III – Ichnosphaera flexuosa–Comasphaeridium molliculum Assemblage Zone – Acme Zone .........30 BAMA IV – Skiagia–Eklundia campanula Assemblage Zone ..............................39 BAMA V – Skiagia–Eklundia varia Assemblage Zone .................................39 BAMA VI – Volkovia dentifera–Liepaina plana Assemblage Zone (Moczyd³owska, 1991) ..............40 BAMA VII – Ammonidium bellulum–Ammonidium notatum Assemblage Zone ....................40 BAMA VIII – Turrisphaeridium semireticulatum Assemblage Zone – Acme Zone...................41 BAMA IX – Adara alea–Multiplicisphaeridium llynense Assemblage Zone – Acme Zone...............42 Regional significance of the biostratigraphic
    [Show full text]
  • Protozoan Fauna of Freshwater Habitats in South Dum Dum Municipality, North 24 Parganas, West Bengal
    Journal of Academia and Industrial Research (JAIR) Volume 3, Issue 3 August 2014 139 ISSN: 2278-5213 RESEARCH ARTICLE Protozoan Fauna of Freshwater Habitats in South Dum Dum Municipality, North 24 Parganas, West Bengal J. Chitra Protozoology Section, Lower Invertebrate Division, M Block, New Alipore, Kolkata-700053, India [email protected]; +91 98315 47265 ______________________________________________________________________________________________ Abstract Wetlands of South Dum Dum Municipality were focused to reveal the status of the planktonic protozoan fauna in detail. A total of 37 different sites were selected and plankton samples from these sites were collected. About 16 sp. of protozoa were identified from few localities from the present investigation. Eight species of rhizopoda belonged to 4 genera, 4 family (Pelomyxidae, Arcellidae, Centropyxidae and Difflugiidae) and 2 order (Pelobintida and Arcellinida), Four species of flagellate belongs to 2 genera, 1 family (Euglinidae) and 1 order (Euglenida), 4 species of ciliate belongs to 4 genera, 4 family (Colepidae, Vorticellidae, Euplotidae and Paramaeciidae), 2 order (Prorodontida and Peritrichida) and 2 suborder (Sporadotrichinia and Peniculina). Among 37 localities, protozoans were observed only in L2, L3, L8, L9, L12, L13, L15, L17, L18, L19, L21, L24, L26, L32, L33, L34 and L36 localities. Protozoan diversity and their abundance were noticed higher in L12, L18, L21, L26, L33 and L34 localities. Euglena viridis, E. acus, E. oxyuris and Phacus acumininata, Pelomyxa palustris, Vorticella companula were found to be higher in abundance and distribution. Keywords: South Dum Dum municipality, planktonic protozoan, Euglena viridis, abundance, distribution. Introduction Dumdum Park, Amarpalli, Telipukur, Nager Bazar, Protozoa are highly abundant in all aquatic habitats and Patipukur and Dum Dum were selected and the plankton greatly involved in food chain (Finlay, 1997).
    [Show full text]
  • Algal Stromatolites in the Willow River Member of the Lower Ordovician Shakopee Formation Near Chatfield, Minnesota, USA
    The Compass: Earth Science Journal of Sigma Gamma Epsilon Volume 84 Issue 1 Article 6 1-6-2012 Algal Stromatolites in the Willow River Member of the Lower Ordovician Shakopee Formation near Chatfield, Minnesota, USA Sophia L. May College of St. Benedict / St. John's University, [email protected] Larry E. Davis College of St. Benedict / St. John's University, [email protected] David G. Brown College of St. Benedict / St. John's University, [email protected] Follow this and additional works at: https://digitalcommons.csbsju.edu/compass Part of the Paleontology Commons Recommended Citation May, Sophia L.; Davis, Larry E.; and Brown, David G. (2012) "Algal Stromatolites in the Willow River Member of the Lower Ordovician Shakopee Formation near Chatfield, Minnesota, USA," The Compass: Earth Science Journal of Sigma Gamma Epsilon: Vol. 84: Iss. 1, Article 6. Available at: https://digitalcommons.csbsju.edu/compass/vol84/iss1/6 This Article is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for inclusion in The Compass: Earth Science Journal of Sigma Gamma Epsilon by an authorized editor of DigitalCommons@CSB/SJU. For more information, please contact [email protected]. ON THE OUTCROP Algal Stromatolites in the Willow River Member of the Lower Ordovician Shakopee Formation near Chatfield, Minnesota, USA Sophia L. May, Larry E. Davis, and David G. Brown Department of Biology College of Saint Benedict/Saint John’s University Collegeville, Minnesota, 56321 USA [email protected] LOCATION From the intersection of (Olmsted) Co. Hwy 2 and U.S. 52 Rochester I-90 (Main Street) in Chatfield, MN drive N south-southeast on U.S.
    [Show full text]
  • Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland
    Sedimentary Geology 294 (2013) 219–232 Contents lists available at SciVerse ScienceDirect Sedimentary Geology journal homepage: www.elsevier.com/locate/sedgeo Invited review Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland Zheng-Xiang Li a,b,⁎, David A.D. Evans b, Galen P. Halverson c,d a ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and The Institute for Geoscience Research (TIGeR), Department of Applied Geology, Curtin University, GPO Box U1987, Perth, WA 6845, Australia b Department of Geology and Geophysics, Yale University, New Haven, CT 06520-8109, USA c Earth & Planetary Sciences/GEOTOP, McGill University, 3450 University St., Montreal, Quebec H3A0E8, Canada d Tectonics, Resources and Exploration (TRaX), School of Earth and Environmental Sciences, University of Adelaide, SA 5005, Australia article info abstract Article history: This review paper presents a set of revised global palaeogeographic maps for the 825–540 Ma interval using Received 6 January 2013 the latest palaeomagnetic data, along with lithological information for Neoproterozoic sedimentary basins. Received in revised form 24 May 2013 These maps form the basis for an examination of the relationships between known glacial deposits, Accepted 28 May 2013 palaeolatitude, positions of continental rifting, relative sea-level changes, and major global tectonic events Available online 5 June 2013 such as supercontinent assembly, breakup and superplume events. This analysis reveals several fundamental ’ Editor: J. Knight palaeogeographic features that will help inform and constrain models for Earth s climatic and geodynamic evolution during the Neoproterozoic. First, glacial deposits at or near sea level appear to extend from high Keywords: latitudes into the deep tropics for all three Neoproterozoic ice ages (Sturtian, Marinoan and Gaskiers), al- Neoproterozoic though the Gaskiers interval remains very poorly constrained in both palaeomagnetic data and global Rodinia lithostratigraphic correlations.
    [Show full text]
  • Integrative and Comparative Biology Integrative and Comparative Biology, Volume 58, Number 4, Pp
    Integrative and Comparative Biology Integrative and Comparative Biology, volume 58, number 4, pp. 605–622 doi:10.1093/icb/icy088 Society for Integrative and Comparative Biology SYMPOSIUM INTRODUCTION The Temporal and Environmental Context of Early Animal Evolution: Considering All the Ingredients of an “Explosion” Downloaded from https://academic.oup.com/icb/article-abstract/58/4/605/5056706 by Stanford Medical Center user on 15 October 2018 Erik A. Sperling1 and Richard G. Stockey Department of Geological Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, CA 94305, USA From the symposium “From Small and Squishy to Big and Armored: Genomic, Ecological and Paleontological Insights into the Early Evolution of Animals” presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3–7, 2018 at San Francisco, California. 1E-mail: [email protected] Synopsis Animals originated and evolved during a unique time in Earth history—the Neoproterozoic Era. This paper aims to discuss (1) when landmark events in early animal evolution occurred, and (2) the environmental context of these evolutionary milestones, and how such factors may have affected ecosystems and body plans. With respect to timing, molecular clock studies—utilizing a diversity of methodologies—agree that animal multicellularity had arisen by 800 million years ago (Ma) (Tonian period), the bilaterian body plan by 650 Ma (Cryogenian), and divergences between sister phyla occurred 560–540 Ma (late Ediacaran). Most purported Tonian and Cryogenian animal body fossils are unlikely to be correctly identified, but independent support for the presence of pre-Ediacaran animals is recorded by organic geochemical biomarkers produced by demosponges.
    [Show full text]
  • Rinded, Iron-Oxide Concretions in Navajo Sandstone Along the Trail to Upper Calf Creek Falls, Garfield County
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 2019 Rinded, Iron-Oxide Concretions in Navajo Sandstone Along the Trail to Upper Calf Creek Falls, Garfield County David Loope Richard Kettler Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. M. Milligan, R.F. Biek, P. Inkenbrandt, and P. Nielsen, editors 2019 Utah Geological Association Publication 48 Rinded, Iron-Oxide Concretions in Navajo Sandstone Along the Trail to Upper Calf Creek Falls, Garfield County David B. Loope and Richard M. Kettler Earth & Atmospheric Sciences, University of Nebraska Lincoln, NE 68588-0340 [email protected] Utah Geosites 2019 Utah Geological Association Publication 48 M. Milligan, R.F. Biek, P. Inkenbrandt, and P. Nielsen, editors Cover Image: View of a concretion along a trail in Upper Calf Creek Falls. M. Milligan, R.F. Biek, P. Inkenbrandt, and P. Nielsen, editors 2019 Utah Geological Association Publication 48 Presidents Message I have had the pleasure of working with many diff erent geologists from all around the world. As I have traveled around Utah for work and pleasure, many times I have observed vehicles parked alongside the road with many people climbing around an outcrop or walking up a trail in a canyon.
    [Show full text]
  • Geology of the Devonian Marcellus Shale—Valley and Ridge Province
    Geology of the Devonian Marcellus Shale—Valley and Ridge Province, Virginia and West Virginia— A Field Trip Guidebook for the American Association of Petroleum Geologists Eastern Section Meeting, September 28–29, 2011 Open-File Report 2012–1194 U.S. Department of the Interior U.S. Geological Survey Geology of the Devonian Marcellus Shale—Valley and Ridge Province, Virginia and West Virginia— A Field Trip Guidebook for the American Association of Petroleum Geologists Eastern Section Meeting, September 28–29, 2011 By Catherine B. Enomoto1, James L. Coleman, Jr.1, John T. Haynes2, Steven J. Whitmeyer2, Ronald R. McDowell3, J. Eric Lewis3, Tyler P. Spear3, and Christopher S. Swezey1 1U.S. Geological Survey, Reston, VA 20192 2 James Madison University, Harrisonburg, VA 22807 3 West Virginia Geological and Economic Survey, Morgantown, WV 26508 Open-File Report 2012–1194 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Ken Salazar, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.
    [Show full text]
  • New Record of a Primitive Brachiopod Benthic Fauna from the North- East Coast of India
    ISSN: 2347-3215 Volume 2 Number 3 (March-2014) pp. 70-73 www.ijcrar.com New record of a primitive brachiopod benthic fauna from the North- East coast of India S.Samanta1*, A.Choudhury2 and S.K.Chakraborty3 1Department of Zoology,Vidyasagar University Midnapore-721102, West Bengal, India 2S.D.Marine Biological Research Institute, Sagar Island, Sundarban, 24 Parganas(S)- 743373.West Bengal, India 3Faculty of Science, Department of Zoology, Vidyasagar University, Midnapore-721102, West Bengal, India *Corresponding author KEYWORDS A B S T R A C T The intertidal belt at the confluence of Subarnarekha estuary, a transboundary Brachiopoda; with Bay of Bengal is an example of physically stressed heterogeneous Lingula anatina; habitats possessing a number of mudflats and sand flats that support the lives Living fossil; of an assemblage of diversified macrobenthic fauna. The Brachiopods West Bengal; (Lampshells) make up a major macrobenthic faunal group in this area which Subarnarekha estuary. includes several morphotypes of Lingula anatina distributed in some restricted areas of the world. The morpho-anatomic study of Lingula anatina- a Precambrian living fossil as a new record from the eastern part of West Bengal has been undertaken in the present study. Introduction The intertidal belt of Midnapore coast, shelled marine animal. About 30000 especially the studied area supports species and 120 genera under the phylum diversified forms of macrobenthic fauna of brachiopoda have been described in a which include good number of fossil record which extends into the lower brachiopodans which has not been reported Cambrian period of which 300 or so earlier from West Bengal coast-Talsari species of brachiopods remain.
    [Show full text]
  • Palaeobiology of the Early Ediacaran Shuurgat Formation, Zavkhan Terrane, South-Western Mongolia
    Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: http://www.tandfonline.com/loi/tjsp20 Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia Ross P. Anderson, Sean McMahon, Uyanga Bold, Francis A. Macdonald & Derek E. G. Briggs To cite this article: Ross P. Anderson, Sean McMahon, Uyanga Bold, Francis A. Macdonald & Derek E. G. Briggs (2016): Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia, Journal of Systematic Palaeontology, DOI: 10.1080/14772019.2016.1259272 To link to this article: http://dx.doi.org/10.1080/14772019.2016.1259272 Published online: 20 Dec 2016. Submit your article to this journal Article views: 48 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Download by: [Harvard Library] Date: 31 January 2017, At: 11:48 Journal of Systematic Palaeontology, 2016 http://dx.doi.org/10.1080/14772019.2016.1259272 Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia Ross P. Anderson a*,SeanMcMahona,UyangaBoldb, Francis A. Macdonaldc and Derek E. G. Briggsa,d aDepartment of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, Connecticut, 06511, USA; bDepartment of Earth Science and Astronomy, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan; cDepartment of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts, 02138, USA; dPeabody Museum of Natural History, Yale University, 170 Whitney Avenue, New Haven, Connecticut, 06511, USA (Received 4 June 2016; accepted 27 September 2016) Early diagenetic chert nodules and small phosphatic clasts in carbonates from the early Ediacaran Shuurgat Formation on the Zavkhan Terrane of south-western Mongolia preserve diverse microfossil communities.
    [Show full text]
  • Sell-1536, Field Trip Notes, , MILS
    CONTACT INFORMATION Mining Records Curator Arizona Geological Survey 416 W. Congress St., Suite 100 Tucson, Arizona 85701 520-770-3500 http://www.azgs.az.gov [email protected] The following file is part of the James Doyle Sell Mining Collection ACCESS STATEMENT These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue. CONSTRAINTS STATEMENT The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of “fair use.” The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works. QUALITY STATEMENT The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.
    [Show full text]
  • A Revised Classification of Naked Lobose Amoebae (Amoebozoa
    Protist, Vol. 162, 545–570, October 2011 http://www.elsevier.de/protis Published online date 28 July 2011 PROTIST NEWS A Revised Classification of Naked Lobose Amoebae (Amoebozoa: Lobosa) Introduction together constitute the amoebozoan subphy- lum Lobosa, which never have cilia or flagella, Molecular evidence and an associated reevaluation whereas Variosea (as here revised) together with of morphology have recently considerably revised Mycetozoa and Archamoebea are now grouped our views on relationships among the higher-level as the subphylum Conosa, whose constituent groups of amoebae. First of all, establishing the lineages either have cilia or flagella or have lost phylum Amoebozoa grouped all lobose amoe- them secondarily (Cavalier-Smith 1998, 2009). boid protists, whether naked or testate, aerobic Figure 1 is a schematic tree showing amoebozoan or anaerobic, with the Mycetozoa and Archamoe- relationships deduced from both morphology and bea (Cavalier-Smith 1998), and separated them DNA sequences. from both the heterolobosean amoebae (Page and The first attempt to construct a congruent molec- Blanton 1985), now belonging in the phylum Per- ular and morphological system of Amoebozoa by colozoa - Cavalier-Smith and Nikolaev (2008), and Cavalier-Smith et al. (2004) was limited by the the filose amoebae that belong in other phyla lack of molecular data for many amoeboid taxa, (notably Cercozoa: Bass et al. 2009a; Howe et al. which were therefore classified solely on morpho- 2011). logical evidence. Smirnov et al. (2005) suggested The phylum Amoebozoa consists of naked and another system for naked lobose amoebae only; testate lobose amoebae (e.g. Amoeba, Vannella, this left taxa with no molecular data incertae sedis, Hartmannella, Acanthamoeba, Arcella, Difflugia), which limited its utility.
    [Show full text]
  • Michael Kenney Paleozoic Stratigraphy of the Grand Canyon
    Michael Kenney Paleozoic Stratigraphy of the Grand Canyon The Paleozoic Era spans about 250 Myrs of Earth History from 541 Ma to 254 Ma (Figure 1). Within Grand Canyon National Park, there is a fragmented record of this time, which has undergone little to no deformation. These still relatively flat-lying, stratified layers, have been the focus of over 100 years of geologic studies. Much of what we know today began with the work of famed naturalist and geologist, Edwin Mckee (Beus and Middleton, 2003). His work, in addition to those before and after, have led to a greater understanding of sedimentation processes, fossil preservation, the evolution of life, and the drastic changes to Earth’s climate during the Paleozoic. This paper seeks to summarize, generally, the Paleozoic strata, the environments in which they were deposited, and the sources from which the sediments were derived. Tapeats Sandstone (~525 Ma – 515 Ma) The Tapeats Sandstone is a buff colored, quartz-rich sandstone and conglomerate, deposited unconformably on the Grand Canyon Supergroup and Vishnu metamorphic basement (Middleton and Elliott, 2003). Thickness varies from ~100 m to ~350 m depending on the paleotopography of the basement rocks upon which the sandstone was deposited. The base of the unit contains the highest abundance of conglomerates. Cobbles and pebbles sourced from the underlying basement rocks are common in the basal unit. Grain size and bed thickness thins upwards (Middleton and Elliott, 2003). Common sedimentary structures include planar and trough cross-bedding, which both decrease in thickness up-sequence. Fossils are rare but within the upper part of the sequence, body fossils date to the early Cambrian (Middleton and Elliott, 2003).
    [Show full text]