Research Opportunities in Plasma Astrophysics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2015 Annual Report
2015 AMERICAN PHYSICAL SOCIETY ANNUAL TM ADVANCING PHYSICS REPORT TM THE AMERICAN PHYSICAL SOCIETY STRIVES TO Be the leading voice for physics and an authoritative source of physics information for the advancement of physics and the benefit of humanity Collaborate with national scientific societies for the advancement of science, science education, and the science community Cooperate with international physics societies to promote physics, to support physicists worldwide, and to foster international collaboration Have an active, engaged, and diverse membership, and support the activities of its units and members © 2016 American Physical Society During 2015, APS worked to institute the governance objective: “the advancement and diffusion of the knowledge changes approved by the membership in late 2014. In of physics.” APS is fully committed to the principles of OA accordance with the new Constitution & Bylaws, in to the extent that we can continue to support the production February the Board appointed our first Chief Executive of high-quality peer-reviewed journals. For many years APS Officer—Kate Kirby, the former Executive Officer—to has supported “green” OA and we have been fully compliant head the APS. Kate’s major task has been to transition with the 2013 directive from the Office of Science and the management of APS to a CEO model with a Senior Technology Policy that the publications resulting from Management Team. She appointed Mark Doyle as Chief U.S. federally funded research be accessible to the public 12 Information Officer, James Taylor as Chief Operating months after publication. Since APS is a major international Officer, and Matthew Salter as the new Publisher. -
2005 Annual Report American Physical Society
1 2005 Annual Report American Physical Society APS 20052 APS OFFICERS 2006 APS OFFICERS PRESIDENT: PRESIDENT: Marvin L. Cohen John J. Hopfield University of California, Berkeley Princeton University PRESIDENT ELECT: PRESIDENT ELECT: John N. Bahcall Leo P. Kadanoff Institue for Advanced Study, Princeton University of Chicago VICE PRESIDENT: VICE PRESIDENT: John J. Hopfield Arthur Bienenstock Princeton University Stanford University PAST PRESIDENT: PAST PRESIDENT: Helen R. Quinn Marvin L. Cohen Stanford University, (SLAC) University of California, Berkeley EXECUTIVE OFFICER: EXECUTIVE OFFICER: Judy R. Franz Judy R. Franz University of Alabama, Huntsville University of Alabama, Huntsville TREASURER: TREASURER: Thomas McIlrath Thomas McIlrath University of Maryland (Emeritus) University of Maryland (Emeritus) EDITOR-IN-CHIEF: EDITOR-IN-CHIEF: Martin Blume Martin Blume Brookhaven National Laboratory (Emeritus) Brookhaven National Laboratory (Emeritus) PHOTO CREDITS: Cover (l-r): 1Diffraction patterns of a GaN quantum dot particle—UCLA; Spring-8/Riken, Japan; Stanford Synchrotron Radiation Lab, SLAC & UC Davis, Phys. Rev. Lett. 95 085503 (2005) 2TESLA 9-cell 1.3 GHz SRF cavities from ACCEL Corp. in Germany for ILC. (Courtesy Fermilab Visual Media Service 3G0 detector studying strange quarks in the proton—Jefferson Lab 4Sections of a resistive magnet (Florida-Bitter magnet) from NHMFL at Talahassee LETTER FROM THE PRESIDENT APS IN 2005 3 2005 was a very special year for the physics community and the American Physical Society. Declared the World Year of Physics by the United Nations, the year provided a unique opportunity for the international physics community to reach out to the general public while celebrating the centennial of Einstein’s “miraculous year.” The year started with an international Launching Conference in Paris, France that brought together more than 500 students from around the world to interact with leading physicists. -
Dermining the Photon Budget of Galaxies During Reionization with Numerical Simulations, and Studying the Impact of Dust Joseph Lewis
Who reionized the Universe ? : dermining the photon budget of galaxies during reionization with numerical simulations, and studying the impact of dust Joseph Lewis To cite this version: Joseph Lewis. Who reionized the Universe ? : dermining the photon budget of galaxies during reioniza- tion with numerical simulations, and studying the impact of dust. Astrophysics [astro-ph]. Université de Strasbourg, 2020. English. NNT : 2020STRAE041. tel-03199136 HAL Id: tel-03199136 https://tel.archives-ouvertes.fr/tel-03199136 Submitted on 15 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE 182 UMR 7550, Observatoire astronomique de Strasbourg THÈSE présentée par : Joseph Lewis soutenue le : 25 septembre 2020 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/ Spécialité : Astrophysique Qui a réionisé l’Univers ? Détermination par la simulation numérique du budget de photons des galaxies pendant l’époque de la Réionisation, et étude de l’impact des poussières THÈSE dirigée par : M. AUBERT Dominique Professeur des universités, Université de Strasbourg RAPPORTEURS : M. GONZALES Mathias Maître de conférences, Université de Paris M. LANGER Mathieu Professeur des universités, Université Paris-Saclay AUTRES MEMBRES DU JURY : M. -
PANDORA a New Facility for Interdisciplinary In-Plasma Physics
EPJ manuscript No. (will be inserted by the editor) PANDORA a New Facility for Interdisciplinary In-Plasma Physics D. Mascali1, A. Musumarra1,2a, F. Leone1,2,4, F.P. Romano1,3, A. Galat´a5, S. Gammino1, and C. Massimi6,7 1 INFN-Laboratori Nazionali del Sud, I-95123 Catania, Italy 2 Department of Physics and Astronomy University of Catania, I-95123 Catania, Italy 3 CNR-IBAM, I-95124 Catania, Italy 4 INAF-OACT, I-95123 Catania, Italy 5 INFN-Laboratori Nazionali di Legnaro, Legnaro I-35020, Italy 6 Department of Physics and Astronomy University of Bologna, I-40126 Bologna, Italy 7 INFN-Bologna, I-40126 Bologna, Italy Received: date / Revised version: date Abstract. PANDORA, Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Ar- chaeometry, is planned as a groundbreaking new facility based on a state-of-the-art plasma trap confining extremely energetic plasma for performing interdisciplinary research in thefields of Nuclear Astrophysics, Astrophysics, Plasma Physics and Applications in Material Science and Archaeometry: the plasmas become the environment for measuring, for thefirst time, nuclear decays rates in stellar-like condition (such as 7Be decay and beta-decay involved in s-process nucleosynthesis), especially as a function of the ionization state of the plasma ions. These studies are of paramount importance for addressing several astrophysical issues in both stellar and primordial nucleosynthesis environment (e.g. determination of solar neutrino flux and 7Li Cosmological Problem), moreover the confined energetic plasma will be a unique light source for high performance stellar spectroscopy measurements in the visible, UV and X-ray domains, offering advancements in observational astronomy. -
A Case for Electron-Astrophysics
1. Core Proposing Team A Case for Electron-Astrophysics WHITE PAPER FOR THE VOYAGE 2050 LONG-TERM PLAN IN THE ESA SCIENCE PROGRAMME Contact Scientist: Daniel Verscharen Mullard Space Science Laboratory Department of Space and Climate Physics University College London Holmbury St Mary Dorking RH5 6NT United Kingdom E-Mail: [email protected] Telephone: +44 1483 20-4951 Voyage 2050 White Paper: A Case for Electron-Astrophysics 1 Core Proposing Team Contact Scientist: Daniel Verscharen (University College London, United Kingdom) Deputy: Robert T. Wicks (University College London, United Kingdom) Olga Alexandrova (Observatoire de Paris, France) Roberto Bruno (INAF, Italy) David Burgess (Queen Mary University of London, United Kingdom) Christopher H. K. Chen (Queen Mary University of London, United Kingdom) Raffaella D’Amicis (INAF, Italy) Johan De Keyser (BIRA-IASB, Belgium) Thierry Dudok de Wit (LPC2E, France) Luca Franci (Queen Mary University of London, United Kingdom) Jiansen He (Peking University, China) Pierre Henri (LPC2E, CNRS, France) Satoshi Kasahara (University of Tokyo, Japan) Yuri Khotyaintsev (Institutet för Rymdfysik, Sweden) Kristopher G. Klein (University of Arizona, United States) Benoit Lavraud (Institut de Recherche en Astrophysique et Planétologie, France) Bennett A. Maruca (University of Delaware, United States) Milan Maksimovic (Observatoire de Paris, France) Ferdinand Plaschke (Institute for Space Research, Austria) Stefaan Poedts (KU Leuven, Belgium) Christopher S. Reynolds (University of Cambridge, United Kingdom) Owen Roberts (Institute for Space Research, Austria) Fouad Sahraoui (Laboratoire de Physique des Plasmas, France) Shinji Saito (Nagoya University, Japan) Chadi S. Salem (Space Sciences Laboratory, UC Berkeley, United States) Joachim Saur (University of Cologne, Germany) Sergio Servidio (University of Calabria, Italy) Julia E. -
Supernova Remnant N103B, Radio Pulsar B1951+32, and the Rabbit
On Understanding the Lives of Dead Stars: Supernova Remnant N103B, Radio Pulsar B1951+32, and the Rabbit by Joshua Marc Migliazzo Bachelor of Science, Physics (2001) University of Texas at Austin Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Master of Science in Physics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2003 c Joshua Marc Migliazzo, MMIII. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. Author.............................................................. Department of Physics January 17, 2003 Certifiedby.......................................................... Claude R. Canizares Associate Provost and Bruno Rossi Professor of Physics Thesis Supervisor Accepted by . ..................................................... Thomas J. Greytak Chairman, Department Committee on Graduate Students 2 On Understanding the Lives of Dead Stars: Supernova Remnant N103B, Radio Pulsar B1951+32, and the Rabbit by Joshua Marc Migliazzo Submitted to the Department of Physics on January 17, 2003, in partial fulfillment of the requirements for the degree of Master of Science in Physics Abstract Using the Chandra High Energy Transmission Grating Spectrometer, we observed the young Supernova Remnant N103B in the Large Magellanic Cloud as part of the Guaranteed Time Observation program. N103B has a small overall extent and shows substructure on arcsecond spatial scales. The spectrum, based on 116 ks of data, reveals unambiguous Mg, Ne, and O emission lines. Due to the elemental abundances, we are able to tentatively reject suggestions that N103B arose from a Type Ia supernova, in favor of the massive progenitor, core-collapse hypothesis indicated by earlier radio and optical studies, and by some recent X-ray results. -
Turbulence and Magnetic Fields in Astrophysical Plasmas
Magnetohydrodynamics — Historical Evolution and Trends S. Molokov, R. Moreau and H. K. Moffatt, Eds. (Berlin: Springer 2007) pp. 85–115 [E-print: astro-ph/0507686] Turbulence and Magnetic Fields in Astrophysical Plasmas Alexander A Schekochihin1 and Steven C Cowley2 1 DAMTP, University of Cambridge, Cambridge CB3 0WA and Department of Physics, Imperial College, London SW7 2BW, United Kingdom ([email protected]) 2 Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547, USA and Department of Physics, Imperial College, London SW7 2BW, United Kingdom ([email protected]) 1 Introduction Magnetic fields permeate the Universe. They are found in planets, stars, accre- tion discs, galaxies, clusters of galaxies, and the intergalactic medium. While there is often a component of the field that is spatially coherent at the scale of the astrophysical object, the field lines are tangled chaotically and there are magnetic fluctuations at scales that range over orders of magnitude. The cause of this disorder is the turbulent state of the plasma in these systems. This plasma is, as a rule, highly conducting, so the magnetic field lines are en- trained by (frozen into) the fluid motion. As the fields are stretched and bent by the turbulence, they can resist deformation by exerting the Lorentz force on the plasma. The turbulent advection of the magnetic field and the field’s back reaction together give rise to the statistically steady state of fully devel- oped MHD turbulence. In this state, energy and momentum injected at large (object-size) scales are transfered to smaller scales and eventually dissipated. -
Astrophysical Plasma Modeling of the Hot Universe : Advances and Challenges in High-Resolution X-Ray Spectroscopy Date: 2018-06-07 Summary
Cover Page The handle http://hdl.handle.net/1887/62735 holds various files of this Leiden University dissertation Author: Mao, Junjie Title: Astrophysical plasma modeling of the hot Universe : advances and challenges in high-resolution X-ray spectroscopy Date: 2018-06-07 Summary Hot astrophysical plasma is ubiquitous in the Universe, from comets in our Solar system to the largest scale structures – the cosmic web filaments. These hot plas- mas, with temperatures of a few million of degrees, are often observed in the X-ray wavelength range. Spectroscopic diagnostics enable us to probe physical prop- erties like temperature, density, abundance, microscopic turbulence, line of sight velocity, etc. High spectral resolving power is essential to overcome the confu- sion caused by unresolved spectral features. Thanks to the grating spectrometers aboard XMM-Newton and Chandra, our knowledge of the hot and energetic Uni- verse is advanced. On the other hand, high quality spectra from current and future generations of X-ray spectrometers also challenge plasma models that are widely used in the community. Plasma model To interpret the spectra in a self-consistent way, we need plasma models built on an extensive atomic database. Different plasma models suitable for different astro- physical scenarios are required. For instance, plasmas exposed to a strong external radiation field (e.g. circumnuclear media of active galactic nuclei) require a plasma model in photoionization equilibrium, while low-density high-temperature thermal plasmas (e.g. intracluster media of relaxed galaxy clusters) require a plasma model in collisional ionization equilibrium. In this thesis, we use the SPEX package. SPEX is a software package optimized for the analysis and interpretation of high-resolution cosmic X-ray spectra. -
Dmitri Ryutov Is a Theoretical Plasma Physicist. Graduate of the Moscow Institute of Physics and Technology (1962), He Received His Doctorate in Plasma Theory in 1966
Dmitri Ryutov is a theoretical plasma physicist. Graduate of the Moscow Institute of Physics and Technology (1962), he received his doctorate in plasma theory in 1966. From 1968 to 1997, he was at the Budker Institute for Nuclear Physics in Novosibirsk, where he expanded the fusion research program from 1979 and was promoted from deputy director to chief scientist in 1994. From 1994, he was a senior visiting scientist at the Lawrence Livermore National Laboratory (LLNL), where he became a Distinguished Member of the Technical Staff in 2012 (retired in 2016). Ryutov is a full member of the Russian Academy of Sciences since 1992, a Fellow of the APS (1998) and the IoP (2004), an Edward Teller Fellow of the LLNL (2007). He is a recipient of the James Clerk Maxwell Prize for Plasma Physics and the John Dawson Award for Excellence in Plasma Physics Research. Bruno Coppi is a full professor at MIT since 1968 with numerous contributions to theoretical plasma physics, fusion, and space physics. He is widely recognized for the development of the Alcator program at MIT and the Frascati Torus Program in Italy. Prof. Coppi is a member of the American Academy for Arts and Sciences (1976) and was knighted Great Officer of the Order of Merit of the Republic by the President of Italy. He received both the APS Maxwell Prize and the Award for Excellence in Plasma Physics. He is a fellow of the AAAS and of the APS, and served as chairman of the APS Committee on the International Freedom of Scientists. Kristel Crombé is an experimental plasma physicist, professor at the University of Gent, a researcher at Laboratory for Plasma Physics, Royal Military Academy, Belgium, and an active collaborator on the ITER project. -
Outstanding Problems in Astrophysical Plasmas and Magnetic Fields on All Scales
Outstanding Problems in Astrophysical Plasmas and Magnetic Fields on all Scales 21#September#2015# Plasma#Fest# The baryonic universe consists almost entirely of plasmas ! ! stellar (solar) atmospheres ! supernova remnants ! stellar interiors ! intergalactic medium ! pre-recombination universe ! pulsar wind nebulae (< 380,000 years ABB) ! ! post-reionization universe astrophysical jets ! ! HII regions cosmic rays ! ! stellar (solar) winds coronal gas ! ! accretion disks around synchrotron nebulae compact objects ! relativistic shocks The baryonic universe consists almost entirely of plasmas ! ! stellar (solar) atmospheres ! supernova remnants ! stellar interiors ! intergalactic medium ! pre-recombination universe ! pulsar wind nebulae (< 380,000 years ABB) ! astrophysical jets ! post-reionization universe ! cosmic rays ! HII regions ! coronal gas ! stellar (solar) winds ! synchrotron nebulae ! accretion disks around compact objects ! relativistic shocks " Even neutral gas clouds have a plasma description because of residual ionization and the coupling between ions and neutrals Research on astrophysical plasmas very closely coupled to research on magnetic felds • jets, fares, loops, flaments " all organized or generated by magnetic felds • magnetosphere-wind and magnetosphere-accretion- fow interactions • disk evolution " magnetic feld fosters angular momentum transport via magnetic tension and MHD instabilities that generate turbulent viscosity. • modern star formation theories all include magnetic braking mechanisms to facilitate accretion. -
Magnetohydrodynamics of Laboratory and Astrophysical Plasmas
0-1 Magnetohydrodynamics of Laboratory and Astrophysical Plasmas Hans Goedbloed FOM-Institute for Plasma Physics ‘Rijnhuizen’ & Astronomical Institute, Utrecht University Lectures at Centro Brasileiro de Pesquisas F´ısicas, Rio de Janeiro March – June 2006 Notes by J.P. Goedbloed and R. Keppens based on PRINCIPLES OF MAGNETOHYDRODYNAMICS by J.P. Goedbloed & S. Poedts (Cambridge University Press, 2004) 0-2 Contents 1. Introduction [book: Chap. 1] plasma: definitions, occurrence, conditions 2. Elements of Plasma Physics [book: Chap. 2] charged particles, collective interactions, fluid description 3. MHD model [book: Chap. 4] laboratory and astrophysical plasmas from one point of view 4. Spectral Theory [book: Chaps. 5–7] waves and instabilities in inhomogeneous plasmas 5. Magnetic Structures [book: Chap. 8] tokamak, sun, planetary magnetospheres, stellar winds, pulsars 6. Flowing Plasmas [ future Volume 2 ] waves and instabilities of stationary plasmas, shocks 7. Toroidal Plasmas [ future Volume 2 ] equilibrium and stability of tokamaks and accretion disks 0-3 Literature Introductory plasma physics: ¯ F.C. Chen, Introduction to Plasma Physics and Controlled Fusion (1984). ¯ J.A. Bittencourt, Fundamentals of Plasma Physics (1986). ¯ R.J. Goldston and P.H. Rutherford, Introduction to Plasma Physics (1995). Magnetohydrodynamics: ¯ J.P. Freidberg, Ideal Magnetohydrodynamics (1987). ¯ D. Biskamp, Nonlinear Magnetohydrodynamics (1993). ¯ J.P. Goedbloed and S. Poedts, Principles of Magnetohydrodynamics (2004). http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521626072 -
A Fusion Pioneer Talks About Fusion and How to Get There
INTERVIEW: RICHARD F. POST A Fusion Pioneer Talks About Fusion and How to Get There Dr. Post was interviewed by Managing Editor Marjorie Mazel magnetic bearing, and your flywheel idea—and anything else Hecht on June 12, 2009. you’d like to talk about. Well, fire away. Question: I’m honored to interview you Dr. Post. Reading over all your accomplishments, I think we might we need two inter- Question: We also work with a Youth Movement, and I want to views in order to ask you all the questions I have! have the youth get acquainted with some of these technolo- Our magazine, as you know, is the successor to Fusion mag- gies that have been your mission in your career. I’d like to start azine, and we have promoted fusion and advanced technolo- with fusion, and have you talk about your idea for the ATM, gies for many years now, so what I would like to cover in the the Axisymmetric Tandem Mirror fusion reactor. You’ve been interview is the fusion question, the Inductrack maglev, the working on this for a long time. How do we bring this into be- ing? In the first place, I would not call it my idea. I did come up with a way of doing it, but there are many ways to skin a cat. The basic concept, that is not what I came up with. I’d been looking at a way of making an ATM, based on theory by [Dmitri] Ryutov but as we learned, there are also many other ways to sta- bilize the MHD [magnetohy- drodynamic] instability mode of an Axisymmetric Tandem Mirror.