<<

0-1

Magnetohydrodynamics of Laboratory and Astrophysical Plasmas

Hans Goedbloed FOM-Institute for ‘Rijnhuizen’ & Astronomical Institute, Utrecht University

Lectures at Centro Brasileiro de Pesquisas F´ısicas, Rio de Janeiro March – June 2006

Notes by J.P. Goedbloed and R. Keppens based on PRINCIPLES OF by J.P. Goedbloed & S. Poedts (Cambridge University Press, 2004) 0-2 Contents

1. Introduction [book: Chap. 1] plasma: definitions, occurrence, conditions 2. Elements of Plasma Physics [book: Chap. 2] charged particles, collective interactions, fluid description 3. MHD model [book: Chap. 4] laboratory and astrophysical plasmas from one point of view 4. Spectral Theory [book: Chaps. 5–7] waves and in inhomogeneous plasmas 5. Magnetic Structures [book: Chap. 8] , , planetary , stellar winds, 6. Flowing Plasmas [ future Volume 2 ] waves and instabilities of stationary plasmas, shocks 7. Toroidal Plasmas [ future Volume 2 ] equilibrium and stability of and accretion disks 0-3 Literature

Introductory plasma physics:

¯ F.C. Chen, Introduction to Plasma Physics and Controlled Fusion (1984).

¯ J.A. Bittencourt, Fundamentals of Plasma Physics (1986).

¯ R.J. Goldston and P.H. Rutherford, Introduction to Plasma Physics (1995). Magnetohydrodynamics:

¯ J.P. Freidberg, Ideal Magnetohydrodynamics (1987).

¯ D. Biskamp, Nonlinear Magnetohydrodynamics (1993).

¯ J.P. Goedbloed and S. Poedts, Principles of Magnetohydrodynamics (2004). http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521626072 www.rijnh.nl/users/goedbloed (ErrataPrMHD.pdf) Plasma :

¯ E.R. Priest, Solar Magnetohydrodynamics (1984).

¯ A.R. Choudhuri, The Physics of and Plasmas, intro for Astrophysicists (1998).

¯ R.M. Kulsrud, Plasma Physics for Astrophysics (2004). 0-4 Plasma physics on www

¯ Fusion energy www.fusie-energie.nl ( and ITER, in Dutch)

¯ dot.astro.uu.nl (Dutch Open Telescope) www.spaceweathercenter.org (space weather)

¯ Plasmas general www.plasmas.org (basics, applications of plasmas)

¯ These notes mesonpi.cat.cbpf.br/cbpfindex (downloadable pdf files) or www.rijnh.nl/users/goedbloed (downloadable pdf files) Introduction: Overview 1-1 Chapter 1: Introduction

Overview

¯ Motivation: plasma occurs nearly everywhere, magnetized plasma unifying theme for laboratory and physics; [ book: Sec. 1.1 ]

¯ : fusion reactions, conditions for fusion, magnetic confine- ment in tokamaks; [ book: Sec. 1.2 ]

¯ Astrophysical plasmas: the standard view of nature, why it fails, examples of astrophysical plasmas; [ book: Sec. 1.3 ]

¯ Definition of plasma: usual microscopic definition (collective interactions), macro- scopic definition (the magnetic field enters). [ book: Sec. 1.4 ] Introduction: Motivation 1-2

Plasma

¯ Most common (9¼± ) state of matter in the .

¯ On earth exceptional, but obtained in laboratory thermonuclear fusion experiments

8

at high temperatures (Ì  ½¼ Ã ).

¯ Crude definition: Plasma is a completely ionised gas, consisting of freely moving positively charged nuclei and negatively charged .

Applications

Æ

¯ Magnetic plasma confinement for (future) energy production by Controlled Ther- monuclear Reactions.

¯ Dynamics of astrophysical plasmas (solar corona, planetary magnetospheres, pul- sars, accretion disks, jets, etc.).

¯ Common ground: Plasma interacting with a magnetic field. Introduction: Nuclear fusion (1) 1-3

Reactions of hydrogen isotopes

Æ

n + n + n + n + n n + +

D T He n 3.5 MeV 14.1 MeV

Two products

Æ

¯ Charged « particles:

capture in plasma magnetic field µ « particle heating

¯ :

6 ¿

capture in Li blanket µ fusion energy · T breeding Introduction: Nuclear fusion (2) 1-4

Why plasma?

Æ

¯ To overcome electrostatic repulsion

of nuclei need k ½¼ eÎ 2 8 + n D µ Ì  ½¼ Ã (ionisation at ½4 eÎ ).

µ Plasma  completely ionised gas consisting of freely moving positively charged nuclei and negatively charged electrons.

How to confine?

¯ Magnetic fields: 1. charged particles gyrate around field lines;

2. fluid and magnetic field move together (“B frozen into the plasma”);

  

? 3. thermal conductivity: k .

µ Need: Closed magnetic geometry. Introduction: Nuclear fusion (3) 1-5

Power balance

e

Power contributions (Ì in units of k eÎ ):

½

¾ ¾

e

¯ È = h  Ú i Ò E  Ò f ´ Ì µ ; E  ¾¾ : 4 ÅeÎ ;

thermonuclear output Ì Ì Ì

4

¾ ½ = ¾ ¾9 ½ = ¾ ¿ ½

e

¯ È = Ò « Ì ; «  ¿ : 8 ¢ ½¼ Â Ñ × ;

Bremsstrahlung losses B

e

¯ È = ¿ = Ò Ì :

heat transport losses Ä E

(a) Original idea (Lawson): three power contributions externally available for conversion

into electricity and back again into plasma heating with efficiency   ¼ : ¿¿ ,

È · È =  ´ È · È · È µ

B Ä Ì B Ä (1)

µ ignition condition:

e

¿ Ì

Ò = :

E (2)

½ = ¾

e e

= ´  ´½  µµ f ´ Ì µ « Ì (b) Present approach (more restrictive): ignition when power losses are balanced by

« È

-particle heating « ,

¾ ¾

½

e

È · È = È = Ú h  i Ò E  Ò f ´ Ì µ ; E  ¿ : 5 ÅeÎ

B Ä « « « (3)

4

µ formally condition (2) still applies, but now with new f and   ¼ : ½¿5 : Introduction: Nuclear fusion (4) 1-6

Power balance (cont’d)

Æ

¯ ¸ · transport losses: (a) : lower curve, (b) Modern approach: upper curve.

e

¯ Upper curve at minimum ( Ì k  ¾¼ ! eÎ ):

¾¼ ¿

Ò  ¿ ¢ ½¼ Ñ ; ×

E typically:

¾¼ ¿

Ò  ½¼ Ñ !  !  × ¿

E

µ Magnetic fields provide the only way to confine matter of such high temperatures during such long times. Introduction: Nuclear fusion (5) 1-7

Interaction of currents and magnetic fields

Æ

B

j B j

¯ Schematic history of fusion experiments: B z - pinch: θ - pinch: very unstable end-losses (remains so in a torus) (in torus: no equilibrium)

Tokamak: delicate balance between equilibrium & stability Introduction: Nuclear fusion (6) 1-8

Tokamak

¯ Magnetic confinement:

poloidal coils producing toroidal iron transformer core

transformer winding (primary circuit)

p p plasma current (secondary circuit) B pol : poloidal magnetic field

B tor : toroidal magnetic field resultant plasma contained by magnetic field helical field Introduction: Nuclear fusion (7) 1-9

Tokamak (cont’d)

Æ

¯ Goal is electricity producing power plants: Introduction: Nuclear fusion (8) 1-10

Progress in fusion research

Æ

¯ Progress made in con- trolled fusion over the years shows the same impressive advance as other fields recognized as world leaders. (from: CRPP Annual Report 2000) Introduction: Astrophysical plasmas (1) 1-11

The Standard View of Nature

Nuclear forces

· quarks / leptons

½5

nuclei (· ) / electrons ( ) ½¼ Ñ

Electrostatic forces

·

9

atoms / molecules ½¼ Ñ (ordinary matter: electrically neutral) . . . . .

Gravity

·

9 ½¿

/ ½¼ = ½¼ Ñ

¾¼ ¾¿

galaxies / clusters ½¼ = ½¼ Ñ

¾6

universe ½¼ Ñ However, ... Introduction: Astrophysical plasmas (2) 1-12

The universe does not consist of ordinary matter

Æ

¯ > 9¼± is plasma: electrically neutral, where the nuclei and electrons are not tied in atoms but freely move as fluids.

¯ The large scale result is Magnetic fields (example: interaction ).

Geometry

Æ

¯ Spherical symmetry of atomic physics and gravity (central forces) not present on the plasma scale:

Ö ¡ B = ¼ is not compatible with spherical symmetry (example: solar flares). Introduction: Astrophysical plasmas (3) 1-13

Example: The Sun

Æ

a magnetized plasma! (sunatallwavelengths.mpeg) Introduction: Astrophysical plasmas (4) 1-14

Example: Coronal loops

Æ

[ from Priest, Solar Magnetohydrodynamics (1982)] Introduction: Astrophysical plasmas (5) 1-15

Example: Coronal loops (cont’d)

Æ

[ from recent observations with TRACE spacecraft ] Introduction: Astrophysical plasmas (6) 1-16

Example: Stellar wind outflow (simulation)

Æ

¯ Axisymmetric magnetized wind with a ‘wind’ and a ‘dead’ zone [ Keppens & Goedbloed, Ap. J. 530, 1036 (2000)] Introduction: Astrophysical plasmas (7) 1-17

Example: Magnetosphere

Æ Introduction: Astrophysical plasmas (8) 1-18

Example: Polar lights

Æ

Beauty of the polar lights (a1smallweb.mov)

Solar wind powering auroral displays (fuvmovie.mpeg) Introduction: Astrophysical plasmas (9) 1-19

Example: and jets (YSO)

Æ

Young stellar object

Å  ½ Å

( £ ¬ ): accretion disk ‘seen’ edge-on as dark strip, jets colored red. Introduction: Astrophysical plasmas (10) 1-20

Example: Accretion disk and jets (AGN)

Æ

8

Å  ½¼ Å

Active galactic nucleus ( £ ¬ ): optical emission (blue) centered on disk, radio emission (red) shows the jets. Introduction: Astrophysical plasmas (11) 1-21

Example: Accretion disk and jets (simulation)

Æ

Stationary end state from the simulation of a Magnetized Accretion Ejection Structure: disk surfaces (brown), jet magnetic surface (grey), helical field lines (yellow), accretion-ejection particle trajectory (red). [ Casse & Keppens, Ap. J. 601, 90 (2004)] Introduction: Definitions of plasma (1) 1-22

Crude definition:

Plasma is an ionized gas.

 

¿ = ¾

¿ = ¾

Ò ¾  Ñ k

Ì

Í =k Ì

i e

i

Rate of : = e (Saha equation)

¾

Ò Ò

Ò i

h

½¾¾

¾5 ¿

Ì Ã = ¿¼¼ Ò = ¿ ¢ ½¼ Ñ Í = ½4 eÎ : 5 µ Ò =Ò  ¾ ¢ ½¼

– air: , Ò , i i Ò (!)

½¿

8 ¾¼ ¿

Ì = ½¼ Ã Ò = ½¼ Ñ Í = ½¿ : 6 eÎ µ Ò =Ò  ¾ : 4 ¢ ½¼

– tokamak: , i , i i Ò

Microscopic definition:

Æ Plasma is a quasi-neutralgas of charged and neutral particles which exhibits collective behaviour (Chen).

(a) Long-range collective interactions dominate over binary collisions with neutrals

Ò  Z Ò

(b) Length scales large enough that quasi-neutrality ( e i ) holds (c) Sufficiently many particles in a Debye sphere (statistics) Introduction: Definitions of plasma (2) 1-23

Collective behavior

Conditions: n

N D = 1

½ 1032

    core sun

(a) Ò

Ò Ú  - 8 Ò Øh λD = 10 m

6

tokamak:   ¾ : 4 ¢ ½¼ × 8 N D = 10 τn = 1 s 24

¾¼ 10

corona:   ¾ ¢ ½¼ ; ×

λD = 10- 4 m

Ö tokamaktokamak

¯ Ì k

¼

   

(b) D ¾ 16 τ 17 e Ò 10 n = 6 x 10 s

5 λ

 = 7 ¢ ½¼ Ñ D = 1 m

tokamak: D corona sun

 ; = Ñ ¼ : ¼7

corona: D 16 N D = 10 108

¿ 4

Æ    Ò  ½

(c) D

D

¿

8

Æ = ½ : 4 ¢ ½¼

tokamak: D 1 T

9 2 4 6 8 10 10 10 10 Æ = ½ : 4 ¢ ½¼ : 10 10

corona: D air Introduction: Definitions of plasma (3) 1-24

So far, only the electric field appeared. (LOCAL)

Macroscopic definition:

Æ For a valid macroscopic model of magnetized plasma dynamical configurations, size, duration, density, and magnetic field strength should be large enough to establish fluid behavior and to average out the microscopic phenomena (i.e. collective plasma oscillations and cyclotron motions of electrons and ).

Now,themagneticfieldenters: (GLOBAL!)

½ ½

(a)   ª  B (time scale longer than inverse cyclotron frequency);

i

½

  Ê  B

(b) i (length scale larger than cyclotron radius).

µ MHD  magnetohydrodynamics

Æ