Magnetohydrodynamics of Laboratory and Astrophysical Plasmas

Magnetohydrodynamics of Laboratory and Astrophysical Plasmas

0-1 Magnetohydrodynamics of Laboratory and Astrophysical Plasmas Hans Goedbloed FOM-Institute for Plasma Physics ‘Rijnhuizen’ & Astronomical Institute, Utrecht University Lectures at Centro Brasileiro de Pesquisas F´ısicas, Rio de Janeiro March – June 2006 Notes by J.P. Goedbloed and R. Keppens based on PRINCIPLES OF MAGNETOHYDRODYNAMICS by J.P. Goedbloed & S. Poedts (Cambridge University Press, 2004) 0-2 Contents 1. Introduction [book: Chap. 1] plasma: definitions, occurrence, conditions 2. Elements of Plasma Physics [book: Chap. 2] charged particles, collective interactions, fluid description 3. MHD model [book: Chap. 4] laboratory and astrophysical plasmas from one point of view 4. Spectral Theory [book: Chaps. 5–7] waves and instabilities in inhomogeneous plasmas 5. Magnetic Structures [book: Chap. 8] tokamak, sun, planetary magnetospheres, stellar winds, pulsars 6. Flowing Plasmas [ future Volume 2 ] waves and instabilities of stationary plasmas, shocks 7. Toroidal Plasmas [ future Volume 2 ] equilibrium and stability of tokamaks and accretion disks 0-3 Literature Introductory plasma physics: ¯ F.C. Chen, Introduction to Plasma Physics and Controlled Fusion (1984). ¯ J.A. Bittencourt, Fundamentals of Plasma Physics (1986). ¯ R.J. Goldston and P.H. Rutherford, Introduction to Plasma Physics (1995). Magnetohydrodynamics: ¯ J.P. Freidberg, Ideal Magnetohydrodynamics (1987). ¯ D. Biskamp, Nonlinear Magnetohydrodynamics (1993). ¯ J.P. Goedbloed and S. Poedts, Principles of Magnetohydrodynamics (2004). http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521626072 www.rijnh.nl/users/goedbloed (ErrataPrMHD.pdf) Plasma astrophysics: ¯ E.R. Priest, Solar Magnetohydrodynamics (1984). ¯ A.R. Choudhuri, The Physics of Fluids and Plasmas, intro for Astrophysicists (1998). ¯ R.M. Kulsrud, Plasma Physics for Astrophysics (2004). 0-4 Plasma physics on www ¯ Fusion energy www.fusie-energie.nl (nuclear fusion and ITER, in Dutch) ¯ Solar physics dot.astro.uu.nl (Dutch Open Telescope) www.spaceweathercenter.org (space weather) ¯ Plasmas general www.plasmas.org (basics, applications of plasmas) ¯ These notes mesonpi.cat.cbpf.br/cbpfindex (downloadable pdf files) or www.rijnh.nl/users/goedbloed (downloadable pdf files) Introduction: Overview 1-1 Chapter 1: Introduction « ¨ ªOverview © ¯ Motivation: plasma occurs nearly everywhere, magnetized plasma unifying theme for laboratory and astrophysical plasma physics; [ book: Sec. 1.1 ] ¯ Thermonuclear fusion: fusion reactions, conditions for fusion, magnetic confine- ment in tokamaks; [ book: Sec. 1.2 ] ¯ Astrophysical plasmas: the standard view of nature, why it fails, examples of astrophysical plasmas; [ book: Sec. 1.3 ] ¯ Definition of plasma: usual microscopic definition (collective interactions), macro- scopic definition (the magnetic field enters). [ book: Sec. 1.4 ] Introduction: Motivation 1-2 « ¨ ªPlasma © ¯ Most common (9¼±) state of matter in the universe. ¯ On earth exceptional, but obtained in laboratory thermonuclear fusion experiments 8 at high temperatures (Ì ½¼ Ã). ¯ Crude definition: Plasma is a completely ionised gas, consisting of freely moving positively charged nuclei and negatively charged electrons. ¯ ¬ Applications Æ ­ ¯ Magnetic plasma confinement for (future) energy production by Controlled Ther- monuclear Reactions. ¯ Dynamics of astrophysical plasmas (solar corona, planetary magnetospheres, pul- sars, accretion disks, jets, etc.). ¯ Common ground: Plasma interacting with a magnetic field. Introduction: Nuclear fusion (1) 1-3 ¯ ¬ Reactions of hydrogen isotopes Æ ­ n + n + n + n + n n + + D T He n 3.5 MeV 14.1 MeV ¯ ¬ Two products Æ ­ ¯ Charged « particles: capture in plasma magnetic field µ « particle heating ¯ Neutrons: 6 ¿ capture in Li blanket µ fusion energy · T breeding Introduction: Nuclear fusion (2) 1-4 ¯ ¬ Why plasma? Æ ­ ¯ To overcome electrostatic repulsion of nuclei need ½¼ keÎ 2 8 + n D µ Ì ½¼ à (ionisation at ½4 eÎ ). µ Plasma completely ionised gas consisting of freely moving positively charged nuclei and negatively charged electrons. « ¨ ªHow to confine? © ¯ Magnetic fields: 1. charged particles gyrate around field lines; 2. fluid and magnetic field move together (“B frozen into the plasma”); ? 3. thermal conductivity: k . µ Need: Closed magnetic geometry. Introduction: Nuclear fusion (3) 1-5 « ¨ ªPower balance © e Power contributions (Ì in units of keÎ): ½ ¾ ¾ e ¯ È = h Ú iÒ E Ò f ´Ì µ ; E ¾¾:4 ÅeÎ ; thermonuclear output Ì Ì Ì 4 ¾ ½=¾ ¾9 ½=¾ ¿ ½ e ¯ È = «Ò Ì ; « ¿:8 ¢ ½¼ Â Ñ × ; Bremsstrahlung losses B e ¯ È = ¿ÒÌ = : heat transport losses Ä E (a) Original idea (Lawson): three power contributions externally available for conversion into electricity and back again into plasma heating with efficiency ¼:¿¿ , È · È = ´È · È · È µ B Ä Ì B Ä (1) µ ignition condition: e ¿Ì Ò = : E (2) ½=¾ e e ´ =´½ µµ f ´Ì µ « Ì (b) Present approach (more restrictive): ignition when power losses are balanced by « È -particle heating « , ¾ ¾ ½ e È · È = È = h Ú iÒ E Ò f ´Ì µ ; E ¿:5 ÅeÎ B Ä « « « (3) 4 µ formally condition (2) still applies, but now with new f and ¼:½¿5 : Introduction: Nuclear fusion (4) 1-6 ¯ ¬ Power balance (cont’d) Æ ­ ¯ Fusion power ¸ radiation · transport losses: (a) Lawson criterion: lower curve, (b) Modern approach: upper curve. e ¯ Upper curve at minimum ( Ì ¾¼ keÎ !): ¾¼ ¿ Ò ¿ ¢ ½¼ Ñ × ; E typically: ¾¼ ¿ Ò ½¼ Ñ ! ¿ × ! E µ Magnetic fields provide the only way to confine matter of such high temperatures during such long times. Introduction: Nuclear fusion (5) 1-7 ¯ ¬ Interaction of currents and magnetic fields Æ ­ B j B j ¯ Schematic history of fusion experiments: B z - pinch: θ - pinch: very unstable end-losses (remains so in a torus) (in torus: no equilibrium) Tokamak: delicate balance between equilibrium & stability Introduction: Nuclear fusion (6) 1-8 « ¨ ªTokamak © ¯ Magnetic confinement: poloidal coils producing toroidal magnetic field iron transformer core transformer winding (primary circuit) p p plasma current (secondary circuit) B pol : poloidal magnetic field B tor : toroidal magnetic field resultant plasma contained by magnetic field helical field Introduction: Nuclear fusion (7) 1-9 ¯ ¬ Tokamak (cont’d) Æ ­ ¯ Goal is electricity producing power plants: Introduction: Nuclear fusion (8) 1-10 ¯ ¬ Progress in fusion research Æ ­ ¯ Progress made in con- trolled fusion over the years shows the same impressive advance as other fields recognized as world leaders. (from: CRPP Annual Report 2000) Introduction: Astrophysical plasmas (1) 1-11 « ¨ ªThe Standard View of Nature © Nuclear forces · quarks / leptons ½5 nuclei (·) / electrons ( ) ½¼ Ñ Electrostatic forces · 9 atoms / molecules ½¼ Ñ (ordinary matter: electrically neutral) . Gravity · 9 ½¿ stars / solar system ½¼ =½¼ Ñ ¾¼ ¾¿ galaxies / clusters ½¼ =½¼ Ñ ¾6 universe ½¼ Ñ However, ... Introduction: Astrophysical plasmas (2) 1-12 ¯ ¬ The universe does not consist of ordinary matter Æ ­ ¯ > 9¼± is plasma: electrically neutral, where the nuclei and electrons are not tied in atoms but freely move as fluids. ¯ The large scale result is Magnetic fields (example: interaction solar wind – magnetosphere). ¯ ¬ Geometry Æ ­ ¯ Spherical symmetry of atomic physics and gravity (central forces) not present on the plasma scale: Ö ¡ B = ¼ is not compatible with spherical symmetry (example: solar flares). Introduction: Astrophysical plasmas (3) 1-13 ¯ ¬ Example: The Sun Æ ­ a magnetized plasma! (sunatallwavelengths.mpeg) Introduction: Astrophysical plasmas (4) 1-14 ¯ ¬ Example: Coronal loops Æ ­ [ from Priest, Solar Magnetohydrodynamics (1982)] Introduction: Astrophysical plasmas (5) 1-15 ¯ ¬ Example: Coronal loops (cont’d) Æ ­ [ from recent observations with TRACE spacecraft ] Introduction: Astrophysical plasmas (6) 1-16 ¯ ¬ Example: Stellar wind outflow (simulation) Æ ­ ¯ Axisymmetric magnetized wind with a ‘wind’ and a ‘dead’ zone [ Keppens & Goedbloed, Ap. J. 530, 1036 (2000)] Introduction: Astrophysical plasmas (7) 1-17 ¯ ¬ Example: Magnetosphere Æ ­ Introduction: Astrophysical plasmas (8) 1-18 ¯ ¬ Example: Polar lights Æ ­ Beauty of the polar lights (a1smallweb.mov) Solar wind powering auroral displays (fuvmovie.mpeg) Introduction: Astrophysical plasmas (9) 1-19 ¯ ¬ Example: Accretion disk and jets (YSO) Æ ­ Young stellar object Å ½Å ( £ ¬ ): accretion disk ‘seen’ edge-on as dark strip, jets colored red. Introduction: Astrophysical plasmas (10) 1-20 ¯ ¬ Example: Accretion disk and jets (AGN) Æ ­ 8 Å ½¼ Å Active galactic nucleus ( £ ¬ ): optical emission (blue) centered on disk, radio emission (red) shows the jets. Introduction: Astrophysical plasmas (11) 1-21 ¯ ¬ Example: Accretion disk and jets (simulation) Æ ­ Stationary end state from the simulation of a Magnetized Accretion Ejection Structure: disk density surfaces (brown), jet magnetic surface (grey), helical field lines (yellow), accretion-ejection particle trajectory (red). [ Casse & Keppens, Ap. J. 601, 90 (2004)] Introduction: Definitions of plasma (1) 1-22 « ¨ ªCrude definition: © Plasma is an ionized gas. ¿=¾ ¿=¾ Ò ¾ Ñ k Ì Í =k Ì i e i Rate of ionization: = e (Saha equation) ¾ Ò Ò Ò i h ½¾¾ ¾5 ¿ Ì = ¿¼¼ Ã Ò = ¿ ¢ ½¼ Ñ Í = ½4:5 eÎ µ Ò =Ò ¾ ¢ ½¼ – air: , Ò , i i Ò (!) ½¿ 8 ¾¼ ¿ Ì = ½¼ Ã Ò = ½¼ Ñ Í = ½¿:6 eÎ µ Ò =Ò ¾:4 ¢ ½¼ – tokamak: , i , i i Ò ¯ ¬ Microscopic definition: Æ ­ Plasma is a quasi-neutralgas of charged and neutral particles which exhibits collective behaviour (Chen). (a) Long-range collective interactions dominate over binary collisions with neutrals Ò Z Ò (b) Length scales large enough that quasi-neutrality ( e i ) holds (c)

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    28 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us