Specific Refractory Gold Flotation and Bio-Oxidation Products

Total Page:16

File Type:pdf, Size:1020Kb

Specific Refractory Gold Flotation and Bio-Oxidation Products minerals Review Specific Refractory Gold Flotation and Bio-Oxidation Products: Research Overview Richmond K. Asamoah Minerals and Resource Engineering, Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; [email protected] Abstract: This paper presents a research overview, reconciling key and useful case study findings, towards uncovering major causes of gold refractoriness and maximising extraction performance of specific gold flotation and bio-oxidation products. Through systematic investigation of the ore mineralogical and gold deportment properties, leaching mechanisms, and kinetic behaviour and pulp rheology, it was observed that the predominant cause of the poor extraction efficacy of one bio-oxidised product is the presence of recalcitrant sulphate minerals (e.g., jarosite and gypsum) produced during the oxidation process. This was followed by carbonaceous matter and other gangue minerals such as muscovite, quartz, and rutile. The underpining leaching mechanism and kinetics coupled with the pulp rheology were influenced by the feed mineralogy/chemistry, time, agitation/shear rate, interfacial chemistry, pH modifier type, and mechano-chemical activation. For instance, surface exposure of otherwise unavailable gold particles by mechano-chemical activation enhanced the gold leaching rate and yield. This work reflect the remarkable impact of subtle deposit feature changes on extraction performance. Keywords: refractory gold ores; ore mineralogy; secondary minerals; rheology and leaching kinetics; mechano-chemical activation Citation: Asamoah, R.K. Specific Refractory Gold Flotation and 1. Introduction Bio-Oxidation Products: Research The economic significance of gold to the development of several nations (e.g., Aus- Overview. Minerals 2021, 11, 93. tralia, South Africa, USA, China, Canada, and Ghana), owing to its coveted qualities and https://doi.org/10.3390/min1101 unique applications, can be traced back to the dawn of civilization [1–6]. In a recent global 0093 gold mine reserve estimation [7], Australia hosts 16% of the world’s total 56,700 t gold (Figure1) worth AUD$ 542.48 billion, at gold price of AUD$ 1690/oz. With record high Received: 3 December 2020 gold prices in 2020 (AUD$ 2670/oz), the 16% gold deposit represents a higher value of Accepted: 13 January 2021 about AUD$ 857.05 billion. A number of developing countries (e.g., Ghana), blessed with Published: 19 January 2021 gold deposits, have substantially achieved poverty alleviation by exploiting their gold reserves in an eco-friendly manner. Gold extraction continue to represent a major livelihood Publisher’s Note: MDPI stays neutral and economic support in recent time. with regard to jurisdictional claims in Currently, a greater percentage of gold is extracted from low grade, refractory gold published maps and institutional affil- ores, following depletion of most high grade deposits [8]. Increasing complexity of these iations. refractory ores warrants improvement in our fundamental and applied knowledge under- pinning sustainable, cost-effective, commercial gold extraction process and commodity production. Despite numerous reported studies on improved gold extraction (by cyanide leaching) from complex low grade ores [9–16], there is still a lack of fundamental knowl- Copyright: © 2021 by the author. edge and understanding on the interplay between refractory ore-specific primary and Licensee MDPI, Basel, Switzerland. secondary mineral phases, solution chemistry, and the particle-solution interfacial species, This article is an open access article particle interactions, and chemical/electrochemical reactions which underpin the mech- distributed under the terms and anisms and kinetics of the leaching process. How these factors interact synergistically conditions of the Creative Commons to produce fast kinetics and high gold recovery or antagonistically (e.g., low leach rate, Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ passivation/encapsulation, poor gold recovery, and high reagent consumption) during 4.0/). alkaline cyanide leaching process is as yet not clearly established. Minerals 2021, 11, 93. https://doi.org/10.3390/min11010093 https://www.mdpi.com/journal/minerals Minerals 2021, 11, x FOR PEER REVIEW 2 of 13 Minerals 2021,, 11,, 93x FOR PEER REVIEW 2 of 1413 Figure 1. Global gold mine reserves in 2015. Total mine gold reserve was 56,700 metric tons whilst total monetary estimate was AUD$ 3380.06 billion [7]. Currently, a greater percentage of gold is extracted from low grade, refractory gold ores, following depletion of most high grade deposits [8]. Increasing complexity of these refractory ores warrants improvement in our fundamental and applied knowledge un- derpinning sustainable, cost-effective, commercial gold extraction process and commod- ity production. Despite numerous reported studies on improved gold extraction (by cya- nide leaching) from complex low grade ores [9–16], there is still a lack of fundamental knowledge and understanding on the interplay between refractory ore-specific primary and secondary mineral phases, solution chemistry, and the particle-solution interfacial species, particle interactions, and chemical/electrochemical reactions which underpin the mechanisms and kinetics of the leaching process. How these factors interact synergisti- cally to produce fast kinetics and high gold recovery or antagonistically (e.g., low leach Figure 1. Global gold mine reserves in 2015. Total mine gold reserve was 56,700 metric tons whilst total monetary estimate Figure 1. Global gold mine reservesrate, passivation/encapsulation, in 2015. Total mine gold reserve poor was gold 56,700 recovery, metric tonsand whilsthigh reagent total monetary consumption) estimate dur- was AUD$ 3380.06 billion [7]. was AUD$ 3380.06 billion [7].ing alkaline cyanide leaching process is as yet not clearly established. Of relevance to the present work is a technological conundrum associated with gold Currently,Of relevance a greater to the present percentage work of is gold a technological is extracted conundrum from low grade, associated refractory with gold ® ores,extractionextraction following fromfrom depletion twotwo biologicallybiologically of most oxidisedhighoxidised grade (BIOX(BIOX deposits®)) flotationflotation [8]. Increasing concentratesconcentrates complexity obtainedobtained of these fromfrom refractorythethe samesame lowores grade grade warrants (<1.5 (<1.5 improvementg/t) g/t) deposit deposit (Ghana in (Ghana). our). fundamentalAlthough Although the and thesame sameapplied process process knowledge route route and andcon-un- derpinningconditionsditions are are sustainable,deployed deployed for forcost-e gold goldffective, extraction, extraction, commercial on onee bio-oxidised bio-oxidised gold extraction product product process invariably and displayedcommod-displayed ~20ity~20 production. wt.%wt.% lower lower goldDespite gold recovery recovery numerous compared compared reported with with studies the the other other on (Figure improved (Figure2). Furthermore, 2). gold Furthermore, extraction the cyanide(by the cya-cya- nideleachingnide leaching)leaching process processfrom typically complex typically requires low requires grade low slurry oreslow slurry[9–16], solid loadingsolid there loading is (~35 still wt.%) a(~35 lack wt.%) to of facilitate fundamental to facilitate pulp knowledgehandleability.pulp handleability. and Nominally, understanding Nominally, 30–40 wt.% on30–40 the gold wt.%interpla is lostgoldy tobetween is tailings lost to refractory upontailings alkaline upon ore-specific cyanidealkaline leachingprimary cyanide andleaching simultaneoussecondary and simultaneous mineral gold adsorptionphases, gold solution adsorption by activated chemistry, by carbon.activated and In thecarbon. monetary particle-solution In monetary terms, the interfacialterms, gold lost the species,togold tailings lost particle to is tailings estimated interactions, is estimated to be AUD$and to chemical/e be 5.7 AUD$ million 5.7lectrochemical permillion annum per forannum reactions treating for which treating a low underpin grade a low ore grade the of 1mechanismsore g/t of at 1 ag/t 420 at and a t/d 420 kinetics plant t/d plant throughput. of throughput. the leaching In-plant In-p proclant studiesess. studies How based thesebased on factors extanton extant literatureinteract literature synergisti- review review to callyunderstandto understand to produce the the cause fast cause kinetics of of refractoriness refractoriness and high andgold and poor recovery poor pulp pulp or handleability handleability antagonistically were were (e.g., not not conclusive conclusivelow leach rate,duedue totopassivation/encapsulation, thethe complexitycomplexity ofof thethe oresores poor andand gold concentrates.concentrates. recovery, and high reagent consumption) dur- ing alkaline cyanide leaching process is as yet not clearly established. Of relevance to the present work is a technological conundrum associated with gold extraction from two biologically oxidised (BIOX®) flotation concentrates obtained from the same low grade (<1.5 g/t) deposit (Ghana). Although the same process route and con- ditions are deployed for gold extraction, one bio-oxidised product invariably displayed ~20 wt.% lower gold recovery compared with the other (Figure 2). Furthermore, the cya- nide leaching process typically requires low slurry solid loading (~35 wt.%) to facilitate pulp handleability. Nominally, 30–40 wt.% gold is lost
Recommended publications
  • Rubies and Sapphires from Snezhnoe, Tajikistan
    FEATURE ARTICLES RUBIES AND SAPPHIRES FROM SNEZHNOE , T AJIKISTAN Elena S. Sorokina, Andrey K. Litvinenko, Wolfgang Hofmeister, Tobias Häger, Dorrit E. Jacob, and Zamoniddin Z. Nasriddinov Discovered during the late 1970s, the Snezhnoe ruby and sapphire deposit in Tajikistan was active until the collapse of the former Soviet Union in the early 1990s and the outbreak of regional conflicts. This marble-hosted occurrence has seen renewed interest, as it is a large and potentially productive deposit that has not been sufficiently studied. Testing of samples identified solid inclusions of margarite enriched with Na and Li (calcic ephesite or soda margarite). These are believed to be previously unreported for gem corundum. Allanite, muscovite, and fuchsite (chromium-bearing muscovite) were identified for the first time in ruby and sapphire from Snezhnoe. These and other inclusions such as zircon, rutile, K- feldspar, and Ca-Na-plagioclase could serve to distinguish them from stones mined elsewhere. Con - centrations of trace elements were typical for ruby and sapphire of the same formation type. The highest Cr concentrations were observed within the bright red marble-hosted rubies, and these values were very similar to those of the famous Burmese rubies from Mogok. orundum— -Al O —is a common, though net, scapolite, lazurite, and variscite (Litvinenko α 2 3 minor, component of many metamorphic and Barnov, 2010). The occurrence of ruby in the Crocks. Gem-quality varieties of ruby and sap - Pamirs was first suggested by the Soviet mineralo - phire occur in only a few primary metamorphic and magmatic rock types depleted in silica and enriched Figure 1.
    [Show full text]
  • Contact Zone Mineralogy and Geochemistry of the Mt. Mica Pegmatite, Oxford County, Maine
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Spring 5-16-2014 Contact Zone Mineralogy and Geochemistry of the Mt. Mica Pegmatite, Oxford County, Maine Kimberly T. Clark University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Geochemistry Commons, and the Geology Commons Recommended Citation Clark, Kimberly T., "Contact Zone Mineralogy and Geochemistry of the Mt. Mica Pegmatite, Oxford County, Maine" (2014). University of New Orleans Theses and Dissertations. 1786. https://scholarworks.uno.edu/td/1786 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Contact Zone Mineralogy and Geochemistry of the Mt. Mica Pegmatite, Oxford County, Maine A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science In Earth and Environmental Science By Kimberly T. Clark B.S.
    [Show full text]
  • An In-Vitro Evaluation of the Capacity of Local Tanzanian Crude Clay and Ash Based Materials in Binding Aflatoxins in Solution
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 November 2018 doi:10.20944/preprints201811.0021.v1 Peer-reviewed version available at Toxins 2018, 10, 510; doi:10.3390/toxins10120510 An in-vitro evaluation of the capacity of local Tanzanian crude clay and ash based materials in binding aflatoxins in solution 1,3Ayo E. M; 2G. H. Laswai; 1A. Matemu; 1M. E. Kimanya* 1 The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha. Tanzania E-mails: [email protected]; [email protected]: kimanya.martin@nm-aist 2 Sokoine University of Agriculture, P.O. Box 3004, Morogoro. Tanzania, E-mail: [email protected] 3 Institute of Rural Development Planning, P.O. Box 138, Dodoma, Tanzania, E-mail: [email protected] *The corresponding author, email: kimanya.martin@nm-aist Corresponding author: Prof Martin E. Kimanya (Associate Professor of Food safety and Nutrition Sciences) P.O. Box 447, Arusha. Tanzania; e-mail: [email protected] Abstract Aflatoxins in feeds cause great health hazards to animals and in advance, to human. Potential of crude clays designated AC, KC, CC and MC and ashes VA and RA were evaluated for their capacity to adsorb aflatoxins B1 (AFB1), B2 (AFB2), G1 (AFG1) and G2 (AFG2) relative to a commercial binder MycobinderR (Evonik Industries AG) using in-vitro technique. On average, CC, VA, KC, MC, AC, RA and MycobindR adsorbed 39.9%, 51.3%, 61.5%, 62.0%, 72.6%, 84.7% and 98.1% of the total aflatoxins in buffered solution, respectively.
    [Show full text]
  • Clay Minerals
    American Minetralogist, Volume 65, pages 1-7, 1980 Summary of recommendations of AIPEA nomenclature committee on clay minerals S. W. BAILEY, CHAIRMAN1 Department of Geology and Geophysics University of Wisconsin-Madison Madi~on, Wisconsin 53706 Introduction This summary of the recommendations made to Because of their small particle sizes and v~riable date by the international nomenclature committees degrees of crystal perfection, it is not surprisi4g that has been prepared in order to achieve wider dissemi- clay minerals proved extremely difficult to character- nation of the decisions reached and to aid clay scien- ize adequately prior to the development of ~odem tists in the correct usage of clay nomenclature. Some analytical techniques. Problems in charactetization of the material in the present summary has been led quite naturally to problems in nomenclatute, un- taken from an earlier summary by Bailey et al. doubtedly more so than for the macroscopic~ more (1971a). crystalline minerals. The popular adoption ~ the early 1950s of the X-ray powder diffractometer for Classification . clay studies helped to solve some of the probl ms of Agreement was reached early in the international identification. Improvements in electron micro copy, discussions that a sound nomenclatur~ is necessarily electron diffraction and oblique texture electr ;n dif- based on a satisfactory classification scheme. For this fraction, infrared and DT A equipment, the de elop- reason, the earliest and most extensive efforts of the ment of nuclear and isotope technology, of high- several national nomenclature committees have been speed electronic computers, of Mossbauer spec rome- expended on classification schemes. Existing schemes ters, and most recently of the electron micr probe were collated and discussed (see Brown, 1955, Mac- and scanning electron microscope all have ai ed in kenzie, 1959, and Pedro, 1967, for examples), sym- the accumulation of factual information on clays.
    [Show full text]
  • Mineral Deposit Models for Northeast Asia
    Mineral Deposit Models for Northeast Asia By Alexander A. Obolenskiy1, Sergei M. Rodionov2, Sodov Ariunbileg3, Gunchin Dejidmaa4, Elimir G. Distanov1, Dangindorjiin Dorjgotov5, Ochir Gerel6, Duk Hwan Hwang7, Fengyue Sun8, Ayurzana Gotovsuren9, Sergei N. Letunov10, Xujun Li8, Warren J Nokleberg11, Masatsugu Ogasawara12, Zhan V. Seminsky13, Akexander P. Smelov14, Vitaly I. Sotnikov1, Alexander A. Spiridonov10, Lydia V. Zorina10, and Hongquan Yan8 1 Russian Academy of Sciences, Novosibirsk 2 Russian Academy of Sciences, Khabarovsk 3 Mongolian Academy of Sciences, Ulaanbaatar 4 Mineral Resources Authority of Mongolia, Ulaanbaatar 5 Mongolian National University, Ulaanbaatar 6 Mongolian University of Science and Technology, Ulaanbaatar 7 Korea Institute of Geology, Mining, and Materials, Taejon 8 Jilin University, Changchun, China 9 Mongolia Ministry of Industry and Commerce, Ulaanbaatar 10 Russian Academy of Sciences, Irkutsk 11 U.S. Geological Survey, Menlo Park 12 Geological Survey of Japan/AIST, Tsukuba 13 Irkutsk State Technical University, Irkutsk 14 Russian Academy of Sciences, Yakutsk This article is prepared by a large group of Russian, Chinese, Mongolian, South Korean, Introduction and Companion Japanese, Studies and USA geologists who are members of the joint Metalliferous and selected non-metalliferous lode international project on Major Mineral Deposits, and placer deposits for Northeast Asia are classified Metallogenesis, and Tectonics of the Northeast Asia. into various models or types described below. The This project is being conducted by the Russian mineral deposit types used in this report are based on Academy of Sciences, the Mongolian Academy of both descriptive and genetic information that is Sciences, Mongolian National University, Mongolian systematically arranged to describe the essential Technical University, the Mineral Resources Authority properties of a class of mineral deposits.
    [Show full text]
  • Progressive Low-Grade Metamorphism of a Black Shale Formation, Central Swiss Alps, with Special Reference to Pyrophyllite and Margarite Bearing Assemblages*
    Progressive Low-Grade Metamorphism of a Black Shale Formation, Central Swiss Alps, with Special Reference to Pyrophyllite and Margarite Bearing Assemblages* ^MARTIN FREYf Mineralogisch-petrographisches Institut der Universitdt Bern, Sahlistrasse 6, CH-3012 Bern, Switzerland (Received 23 July 1976, in revised form 21 February 1977) ABSTRACT The unmetamorphosed equivalents of the regionally metamorphosed clays and marls that make up the Alpine Liassic black shale formation consist of illite, irregular mixed-layer illite/montmoril- lonite, chlorite, kaolinite, quartz, calcite, and dolomite, with accessory feldspars and organic material. At higher grade, in the anchizonal slates, pyrophyllite is present and is thought to have formed at the expense of kaolinite; paragonite and a mixed-layer paragonite/muscovite presumably formed from the mixed-layer illite/montmorillonite. Anchimetamorphic illite is poorer in Fe and Mg than at the diagenetic stage, having lost these elements during the formation of chlorite. Detrital feldspar has disappeared. In epimetamorphic phyllites, chloritoid and margarite appear by the reactions pyrophyllite + chlorite = chloritoid + quartz + H2O and pyrophyllite + calcite ± paragonite = margarite + quartz + H2O + CO2, respectively. At the epi—mesozone transition, paragonite and chloritoid seem to become incompatible in the presence of carbonates and yield the following breakdown products: plagioclase, margarite, clinozoisite (and minor zoisite), and biotite. The maximum distribution of margarite is at the epizone-mesozone boundary; at higher metamorphic grade margarite is consumed by a continuous reaction producing plagioclase. Most of the observed assemblages in the anchi- and epizone can be treated in the two subsystems MgO (or FeO)-Na2O-CaO-Al2O3-<KAl3O5-Si02-H2O-CO2). Chemographic analyses show that the variance of assemblages decreases with increasing metamorphic grade.
    [Show full text]
  • Occurrence and Mineralogy of the Margarite- and Muscovite-Bearing Pseudomorphs After Topaz in the Juurakko Pegmatite, Orivesi, Southern Finland
    OCCURRENCE AND MINERALOGY OF THE MARGARITE- AND MUSCOVITE-BEARING PSEUDOMORPHS AFTER TOPAZ IN THE JUURAKKO PEGMATITE, ORIVESI, SOUTHERN FINLAND SEPPO I. LAHTI LAHTI, SEPPO I., 1988: Occurrence and mineralogy of the margarite- and muscovite-bearing pseudomorphs after topaz in the Juurakko pegmatite, Orivesi, southern Finland. Bull. Geol. Soc. Finland 60, Pari 1, 27—43. Margarite- and muscovite-bearing pseudomorphs after topaz are described from the Juurakko pegmatite dyke, Orivesi, southern Finland. A supercritical vapour phase rich in calcium and alkalies caused alteration of topaz and some other sili- cates during final phase of crystallization of the dyke. The original columnar form of topaz crystals is characteristic in the pseudo- morphs, although roundish or irregular mica aggregates are also common. The pseu- domorphs are composed of fine-scaled, light-brown muscovite, but they may have a topaz-margarite or margarite core. Coarse-scaled pink, lilac or yellow muscovite forms a rim around the pseudomorphs. The muscovites are nearly ideal dioctahedral. The amount of paragonite and phengite substitution is minute. The pink muscovite is slightly enriched in Mn, but the mica is poor in Fe. Margarite is fibrous or massive, fine-scaled and white in colour. The fibre axis is either a crystallographic a or b axis. Microprobe analyses show that the composition of margarite varies largely from one crystal to the other. The mineral has appreciable paragonite and ephesite as solid solution. Fine-scaled muscovite is also a main mineral in the pseudomorphs after schorl and garnet. The pseudomorphs after topaz and tourmaline may be similar. The pris- matic form and the hexagonal cross-section is, however, often well-preserved in the pseudomorphs after tourmaline and the muscovite is richer in Fe, Mg, Mn, and Ti.
    [Show full text]
  • An EMP and TEM-AEM Study of Margarite, Muscovite
    JOURNAL OF PETROLOGY VOLUME 37 NUMBER 2 PAGES 201-233 1996 ANNE FEENSTRA* MINERALOGISCH-PETROGRAPHISCHES INSTITUT, UNIVERSITY OF BERNE, BALTZERSTRASSE 1, CH-J012 BERNE, SWITZERLAND An EMP and TEM-AEM Study of Margarite, Muscovite and Paragonite in Polymetamorphic Metabauxites of Naxos (Cyclades, Greece) and the Implications of Fine-scale Mica Interlayering and Multiple Mica Generations Coexisting white micas and plagioclase were studied by electron covite-paragonite solvus thermometry. Chemical data for Co— microprobe (EMP), and transmission and analytical electron Na micas from this study and literature data indicate that microscopy (TEM-AEM) in greenschist- to amphibolite- naturally coexisting margarite—paragonite pairs display con- grade metabauxites from Naxos. The TEM—AEM studies siderably less mutual solubility than suggested by experimental indicate that sub-micron scale (0-01-1-0 jim thick) semi- work. The variable and irregular Na partitioning between coherent intergrowths ofmargarite, paragonite and muscovite are margarite and muscovite as observed in many metamorphic common up to lower amphibolite conditions. If unrecognized, rocks could largely be related to opposing effects of pressure on such small-scale mica interlayering can easily lead to incorrect Na solubility in margarite and paragonite and/or non-equili- interpretation of EMP data. Muscovite and paragonite in M2 brium between micas. greenschist-grade Naxos rocks are mainly relics of an earlier high-pressure metamorphism (M.\). Owing to the medium- KEY WORDS: Ca—Na—K mica; margarite; mctabauxite; Naxos; sub- pressure M2 event, margarite occurs in middle greenschist-grade micron-scale mica interlayering metabauxites and gradually is replaced by plagioclase + cor- undum in amphibolite-grade metabauxites. The margarite dis- IV VI 3+ VI plays minor Al3 (Fe ,Al)SL3 O-i and considerable INTRODUCTION (Na,K) SiCa-iALj substitution, resulting in up to 44 mol% Since 1970, many new occurrences of the brittle paragonite and 6 mol % muscovite in solution.
    [Show full text]
  • Nomenclature of the Micas
    Mineralogical Magazine, April 1999, Vol. 63(2), pp. 267-279 Nomenclature of the micas M. RIEDER (CHAIRMAN) Department of Geochemistry, Mineralogy and Mineral Resources, Charles University, Albertov 6, 12843 Praha 2, Czech Republic G. CAVAZZINI Dipartimento di Mineralogia e Petrologia, Universith di Padova, Corso Garibaldi, 37, 1-35122 Padova, Italy Yu. S. D'YAKONOV VSEGEI, Srednii pr., 74, 199 026 Sankt-Peterburg, Russia W. m. FRANK-KAMENETSKII* G. GOTTARDIt S. GUGGENHEIM Department of Geological Sciences, University of Illinois at Chicago, 845 West Taylor St., Chicago, IL 60607-7059, USA P. V. KOVAL' Institut geokhimii SO AN Rossii, ul. Favorskogo la, Irkutsk - 33, Russia 664 033 G. MOLLER Institut fiir Mineralogie und Mineralische Rohstoffe, Technische Universit/it Clausthal, Postfach 1253, D-38670 Clausthal-Zellerfeld, Germany A. M, R. NEIVA Departamento de Ci6ncias da Terra, Universidade de Coimbra, Apartado 3014, 3049 Coimbra CODEX, Portugal E. W. RADOSLOVICH$ J.-L. ROBERT Centre de Recherche sur la Synth6se et la Chimie des Min6raux, C.N.R.S., 1A, Rue de la F6rollerie, 45071 Od6ans CEDEX 2, France F. P. SASSI Dipartimento di Mineralogia e Petrologia, Universit~t di Padova, Corso Garibaldi, 37, 1-35122 Padova, Italy H. TAKEDA Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino City, Chiba 275, Japan Z. WEISS Central Analytical Laboratory, Technical University of Mining and Metallurgy, T/'. 17.1istopadu, 708 33 Ostrava- Poruba, Czech Republic AND D. R. WONESw * Russia; died 1994 t Italy; died 1988 * Australia; resigned 1986 wUSA; died 1984 1999 The Mineralogical Society M. RIEDER ETAL. ABSTRACT I I End-members and species defined with permissible ranges of composition are presented for the true micas, the brittle micas, and the interlayer-deficient micas.
    [Show full text]
  • Crystal Chemistry of Trioctahedral Micas-2M1 from Bunyaruguru Kamafugite (Southwest Uganda)
    American Mineralogist, Volume 97, pages 430–439, 2012 Crystal chemistry of trioctahedral micas-2M1 from Bunyaruguru kamafugite (southwest Uganda) FERNANDO SCORDARI,* EMANUELA SCHINGARO, MARIA LACALAMITA, AND ERNESTO MESTO Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari, via E. Orabona 4, I-70125 Bari, Italy ABSTRACT The crystal chemistry of 2M1 micas from Bunyaruguru kamafugite (southwest Uganda) was studied by electron probe microanalysis, single-crystal X-ray diffraction, Mössbauer and Fourier transform infrared spectroscopy. Chemical analyses showed that the studied crystals are Ti-rich, F-poor phlogo- pites with an annitic component, Fetot/(Fetot + Mg), ranging from 0.15 to 0.22. Unit-cell parameters from single-crystal X-ray data are in the range: 5.3252(1) ≤ a ≤ 5.3307(1), 9.2231(3) ≤ b ≤ 9.2315(3), 20.1550(6) ≤ c ≤ 20.1964(8) Å, and 94.994(2) ≤ β ≤ 95.131(2)°. Anisotropic structure refinements, in the space group C2/c, converged to 2.77 ≤ R1 ≤ 3.52% and VI 2+ 2.91 ≤ wR2 ≤ 4.02%. Mössbauer spectroscopy showed that the studied sample has: Fe = 60(1)%, VIFe3+ = 24(1)%, and IVFe3+ = 16(1)%. FTIR investigations pointed to the occurrence of Fe3+-oxy sub- stitutions and ruled out the presence of vacancy mechanisms. The overall crystal-chemical features are consistent with the following substitutions: tetraferriphlogopite [IVFe3+ ↔ IVAl]; Ti-oxy [VIM2+ + − VI 4+ 2– 3+ VI 2+ − VI 3+ 2– 2 (OH) ↔ Ti + 2 (O ) + H2↑] and Al, Fe , Cr-oxy [ M + (OH) ↔ M + O + ½ (H2)↑]; Al, Fe3+-Tschermak [VIM2+ + IVSi4+ ↔ VIM3+ + IVAl]; kinoshitalite [XIIK + IVSi4+ ↔ XIIBa2+ + IVAl] and [XIIK+ + IVAl3+ ↔ IVSi4+ + XII].
    [Show full text]
  • B-2 a Preliminary Report on the Corundum Deposits of Georgia
    PLATE I. FRONTISPIECE, LAUREL CREEK CORUNUUM MINES, RABUN COUNTY, GEORGIA. • -~- ....... --- GEOLOGICAL SURVEY OF GEORGIA W. S. YEATES, State Geologist BULLETIN No,· 2 A PRELIMINARY REPORT ON THE Corundum Deposits OF -~---~GEORGIA ""·'1,; BY FRANCIS P. KING Assistant Geologist 1894 ATLANTA, GA. TR:E FRANKLIN PRINTING AND PUBLISHING 00. G:EO. W. HARRISON State Printer, Manager THE ADVISORY BOARD Of the Geological Surv~y of Georgia. (E.x-Ofticio). His Excellency, W. J. NORTHEN, Governor of Georgia, PRESIDENT OF THE BoARD. BoN. R. T. NESBITT, . Commissioner of Agriculture. HaN. S. D. BRAD\tVELL, ... Commissioner of Public Schools~ HaN. R. U. HAR;DEMAN, . State Treasurer.· HoN. W. A. WRIGHT, . Comptroller-General. HoN. J. M. TERRELL, . Attorney-General. CONTENTS. Page. LETTER OF TRANSMITTAL . 5 PREFACE •..•. · ..•....•.. 7 CHAPTER I. HISTORY OF CORUNDUM .. 9 EARLY HISTORY . • . • • . • . • . • . 9 HISTORY OF CORUNDUM IN THE EASTERN HEMISPHERE •• II HISTORY OF CORUNDUM IN AMERICA . I3 NOMENCLATURE OF CORUNDUM .. 2I CHAPTER II. VARIETIES OF CORUNDUM • 23 INTRODUCTORY REMARKS 23 SAPPHIRE . 24 CoRUNDUM ...••.••... 26 EMERY ..•.••....... 28 PHYSICAL PROPERTIES . • . • . • . 29 ARTIFICIAL PRODUCTION OF CORUNDUM • 34 CHAPTER III. ALTERATIONS AND ASSOCIATE MINERALS OF CORUN- DUM. • . • . 36 GENERAL OBSERVATIONS . 36 OXIDES OF SILICON • . 3 7 HYDROUS OXIDES OF ALUMINUM . 37 ANHYDROUS OXIDES OF OTHER METALS 4I ANHYDR.OUS SILICATES 42 HYDROUS SILICATES . 49 I. Micas . 49 II. Clintonites . 52 III. Chlorites . 52 IV. Vermiculites . 53 V. Serpentine and Talc 56 PHOSPHATES . • . • . 57 CHAPTER IV. GEOLOGY OF THE CRYSTALLINE BELT • INTRODUCTION • • • • . • . MAP OF GEORGIA. • • • • • . • CONTEN'J.1S. Page. TOPOGRAPHY OF THE CRYSTALLINE BELT • • • . • • . • • 6o STRUCTURE AND PHYSIOGRAPHY OF THE CRYSTALLINE BELT, AND ITS EVOLUTION . • . 6r AGE OF THE CRYSTALLINE BELT.
    [Show full text]
  • Download the Scanned
    PROCEEDINGS OF THE THIRTY-SECOND ANNUAL MEETING OF THE MINERALOGICAL SOCIETY OF AMERICA AT DETROIT, MICHIGAN C. S. Hunr,nur, Jn., SecretarY. The thirty-second annual meeting of the Society was held on November 8-10, 1951' at the Hotel Statler, Detroit, Michigan. scientific sessionswere held on each afternoon and on the moming of November 10th, at which forty-nine papers were presented. In addition, on the morning of November 9th the Society, in collaboration with the Geological Society of America, sponsored a symposium on Distribution of Igneous Rocks in Space ond T'ime. The annual luncheon of the Society on November 8th was attended by 150 fellows' members, and guests. Following the luncheon the first presentation ol t}Ie Mineralogical Society oJ America Autard. was made to O. F. Tuttle. The Society was then addressed by the Retiring President, A. Pabst, on Mineralogical Notes. The increase in membership and fellowship in the Society has brought about correspond- ing increase in the time required by the Council to transact the business of tl1e Society. The Council met for over ten hours during November 7th and Sth, and debated twenty- six items of business. The iollowing are of particular interest to the general membership: l. Speci,al Publ,ication Series. The Council voted that the Society sponsor a Special Publication Series comprised of papers of mineralogical interest that are too long to be printed in The American Mineral,ogist. The series is to be guided by an Editorial Board composed of the following: F. A. Bannister E. F. Osborn A. F.
    [Show full text]