An EMP and TEM-AEM Study of Margarite, Muscovite

Total Page:16

File Type:pdf, Size:1020Kb

An EMP and TEM-AEM Study of Margarite, Muscovite JOURNAL OF PETROLOGY VOLUME 37 NUMBER 2 PAGES 201-233 1996 ANNE FEENSTRA* MINERALOGISCH-PETROGRAPHISCHES INSTITUT, UNIVERSITY OF BERNE, BALTZERSTRASSE 1, CH-J012 BERNE, SWITZERLAND An EMP and TEM-AEM Study of Margarite, Muscovite and Paragonite in Polymetamorphic Metabauxites of Naxos (Cyclades, Greece) and the Implications of Fine-scale Mica Interlayering and Multiple Mica Generations Coexisting white micas and plagioclase were studied by electron covite-paragonite solvus thermometry. Chemical data for Co— microprobe (EMP), and transmission and analytical electron Na micas from this study and literature data indicate that microscopy (TEM-AEM) in greenschist- to amphibolite- naturally coexisting margarite—paragonite pairs display con- grade metabauxites from Naxos. The TEM—AEM studies siderably less mutual solubility than suggested by experimental indicate that sub-micron scale (0-01-1-0 jim thick) semi- work. The variable and irregular Na partitioning between coherent intergrowths ofmargarite, paragonite and muscovite are margarite and muscovite as observed in many metamorphic common up to lower amphibolite conditions. If unrecognized, rocks could largely be related to opposing effects of pressure on such small-scale mica interlayering can easily lead to incorrect Na solubility in margarite and paragonite and/or non-equili- interpretation of EMP data. Muscovite and paragonite in M2 brium between micas. greenschist-grade Naxos rocks are mainly relics of an earlier high-pressure metamorphism (M.\). Owing to the medium- KEY WORDS: Ca—Na—K mica; margarite; mctabauxite; Naxos; sub- pressure M2 event, margarite occurs in middle greenschist-grade micron-scale mica interlayering metabauxites and gradually is replaced by plagioclase + cor- undum in amphibolite-grade metabauxites. The margarite dis- IV VI 3+ VI plays minor Al3 (Fe ,Al)SL3 O-i and considerable INTRODUCTION (Na,K) SiCa-iALj substitution, resulting in up to 44 mol% Since 1970, many new occurrences of the brittle paragonite and 6 mol % muscovite in solution. The composi- mica margarite, Ca2Al2(Al2Si2)Oio(OH)2, have tional variation of muscovite is mainly described by been reported from localities throughout the world. VI 2+ VI v VI 3+ (Fe ,Mg)Si Al-! AL, and (Fc AL,) exchanges, the Most are in metamorphosed marls and calcic pelites latter becoming dominant at amphibolite grade. Muscovite is but margarite is also found in metamorphosed significantly richer in Fe than margarite or paragonite. Ca—Na— basites, anorthosites, impure marbles and bauxites K partitioning data indicate that margarite commonly has a [see reviews by Frey et al. (1982) and Guidotti significantly higher Na/(Na + K + Ca) value than coexisting (1984)]. Till now relatively little attention has been muscovite or plagioclase. Exceptions are found in several given to the classical occurrence of margarite in greenschist-grade rocks, in which M/ formed muscovite may emery rocks (Smith, 1850, 1851), where the mineral have failed to equilibrate with M^ margarite. The sluggishness coexists with corundum and Fe(—Ti)-oxides. of K-rich micas to recrystallize and adjust compositionally to From the literature, two main occurrences of changing P—T conditions is also reflected in the results ofmus- margarite can be distinguished (see Frey et al., 1982; •Pre»ent address: Iiutitut fUr Petrologie, Geozentram UnivenitSt Wien, AJtharutrajse 14, A-1090 Wien, Austria. © Oxford University Press 1996 JOURNAL OF PETROLOGY VOLUME 37 NUMBER 2 APRIL 1996 Guidotti, 1984). The first type involves margarite as addresses the problems involved with electron a prograde rock-forming mineral in lower green- microprobe analysis of white micas interlayered on a schist to amphibolite facies rocks, either as a matrix submicron scale. The final part of the paper focuses mineral, or at higher grades, sometimes with a por- on the somewhat puzzling phase relations among the phyroblastic habit. Best documented is the regional Ca-, Na- and K-micas and discusses the complica- distribution and petrologic significance of prograde tions of fine-scale mica interlayering and multiple margarite in metamarls and calcic metapelites from mica generations in polymetamorphic rocks. A the Swiss and Austrian Alps (e.g. Ackermand & second paper (A. Feenstra, in preparation) will deal Morteani, 1973; Hock, 1974; Frey & Orville, 1974; with the complete petrologic phase relations in calcic Frey, 1978; Hoinkes, 1978; Frey et al., 1982; Frank, metabauxites, including a model for the progressive 1983; Bucher et al., 1983). Prograde margarite regional metamorphism of such Al-excess rocks. occurrences have also been reported from several other parts of the world, e.g. from France (Sagon, 1967), Norway (Andreasson & Lagerblad, 1980), GEOLOGICAL SETTING AND NE Japan (Okuyama-Kusunose, 1985) and the METAMORPHIC PETROLOGY Rocky Mountains in Canada (Gal & Ghent, 1991). The island of Naxos is part of the Attic-Cycladic The second type, which has received much Metamorphic Complex (ACMC), which stretches attention in the literature, involves margarite from mainland Greece to SW Turkey (Fig. 1). The occurring as a pseudomorphic replacement of Al-rich ACMC is essentially a nappe pile of predominantly minerals. Margaritization of andalusite and kyanite Mesozoic sedimentary and volcanic rocks metamor- porphyroblasts is fairly common (e.g. Guidotti & phosed at various conditions. Petrologic and geo- Cheney, 1976; Guidotti et al., 1979; Cooper, 1980; chronologic studies (e.g. Andriessen et al., 1979; Van Enami, 1980; Baltatzis & Katagas, 1981; Morand, der Maar & Jansen, 1983; Feenstra, 1985; Diirr, 1988), but cases of replacement of sillimanite, cor- 1986; Wybrans & McDougall, 1986, 1988; Dixon et undum, chloritoid, staurolite, plagioclase, (clino)- al., 1987; Schliestedt et al., 1987; Okrusch & Brocker, zoisite and muscovite by margarite have also been 1990) indicate that the ACMC rocks have experi- described (e.g. Gibson, 1979; Teale, 1979: Frey et al., enced two main Alpine metamorphisms; an early 1982; Yardley & Baltatzis, 1985; Grew et al., 1986; Alpine high-pressure phase, M\, which ended at 40- Stahle et al., 1986). Textural evidence commonly 50 Ma and a medium-pressure Barrovian-type phase suggests that such margarite is not a peak meta- at 20-25 Ma (see Fig. 1). On virtually all Cycladic morphic mineral but developed during the waning islands, the Eocene M\ phase is expressed by blue- (retrograde) stages of the metamorphic cycle, and/or schist facies mineralogies (locally with eclogite-facies during polymetamorphism. The margarite probably assemblages), which are in varying degrees over- largely formed by means of local ion-exchange reac- printed by the M2 event. The high-P mineral tions between the Al-rich precursor and Ca-rich assemblages formed during the collision of micro- fluids. The fact that Al-silicates, chloritoid and plates with the Eurasian continent (e.g. Robertson & staurolite have high Al/Si ratios similar to those of Dixon, 1984: Diirr, 1986: Jacobshagen, 1994). margarite may facilitate margaritization of these During the M2 event, greenschist-grade rocks were minerals. formed on most islands, but metamorphic conditions In rocks high in Al and Ca, margarite thus forms locally reached upper amphibolite grade with asso- over a wide range of physico-chemical conditions, ciated migmatitization (e.g. on Naxos and Paros). during progressive regional metamorphism as well as Pre-Alpine basement is locally exposed as the lowest retrogressive and polymetamorphic events. Problems tectonic unit in windows on Ios, Sikinos and Naxos can thus arise regarding the petrogenetic significance (see Fig. 1). The basement consists of (leuco)gneisses of margarite in cases where it is unclear from tex- affected by Hercynian (~300 Ma) medium-pressure tural and chemical evidence at which stage of the P- metamorphism and pre-Hercynian intrusive rocks T—t history of a rock the mineral formed. (Van der Maar etal., 1981; Van der Maar & Jansen, 1983; Andriessen et al., 1987). On Naxos, prograde margarite is an important constituent of emery deposits ranging in meta- Isoclinally folded sequences of metasediments morphic grade from middle greenschist (~450°C) to (pelitic and psammitic schists and gneisses, quart- middle amphibolite facies (~620°C). This paper zites, calcitic and dolomitic marbles) and meta- deals with the mineralogical aspects of margarite volcanics (amphibolites, basic schists) are the and associated muscovite, paragonite and plagioclase dominant lithologies of the ACMC. Metacarbonate in the Naxos metabauxites, discusses the Ca-Na-K units are widespread and contain in certain strati- partitioning among these minerals, and also graphic horizons metabauxite lenses (up to ~8 m 202 FEENSTRA Ca-Na-K MICAS IN METABAUXITES OF NAXOS ANDROSW250 KEA MYKONOS © Cret HIM 2a 37°. 39° 22 Fig. 1. Metamorphic map of the Cyclades and dUtribution of metabauxites and karstbauxites in the Aegean region (Feenjtra, 1985). dia, diaipore-bearing metabauxites; cor, corundum-bearing metabauxites; Cret, Cretaceous kantbauxita; Jur, Jurasiic karstbauxites; Jur + Cret, Jurassic and Cretaceoui karstbauxites; Mei, Meiozoic karstbauxites of which the exact age ii unknown; PK, Parnasjos- Kiona zone; AC, Attic-Cydadic Metamorphic Complex; B, pre-Alpine basement; 1, M, glaucophane schist facia metamorphiim; 2a, A/2 greenschist fades metamorphism; 2b, M2 amphibolite fades metamorphism; 2c, M% migmatite; 3a, M3 granodiorite; 3b, M5 contact metamorphism; V, Pliocene volcanism. thick), which are of karstic origin.
Recommended publications
  • PARAGONITE PSEUDOMORPHS AFTER KYANITE from TURKEY HEAVEN MOUNTAIN, CLEBURNE COUNTY, ALABAMA1 Tnonnron L. Noarnnnu, Geological Su
    THE AMERICAN MINERALOGIST, VOL, 50, MAY_JIJ'}IE, 1965 PARAGONITE PSEUDOMORPHS AFTER KYANITE FROM TURKEY HEAVEN MOUNTAIN, CLEBURNE COUNTY, ALABAMA1 TnonNroN L. Noarnnnu, GeologicalSuraey of Alabama, Uniaersity, Alabama. ABSTRACT Paragonite pseudomorphs after kyanite have been found in the Turkey Heaven Moun- tain kyanite prospects. The pseudomorphs range in size from microscopic grains to mega- scopic prisms, which resemble andalusite crystals Optical, o-ray and petrographic studies indicate direct hysterogenic paragonite alteration of the kyanite. INrnolucrroN An investigationof kyanite prospectsin Sections22 and29,T.17 5., R. 11 E., at Turkey Heaven Mountain, Cleburne County, Alabama, discloseda unique mineral occurrence.The mineral assemblageincludes hysterogenicparagonite pseudomorphsafter kyanite, which resemble andalusite.The geneticphysicochemical parameters are consideredas a function of retrogrademetamorphism within a restrictive water environ- ment. GBor-ocrc SB:rrrNc The Turkey Heaven Mountain areais underlain by two metamorphic rock units: 1) the WedoweeFormation, a highly resistantgraphite-mica schist,and 2) a unit of the Ashland Mica Schist,an extensivelyweathered garnet-muscovite schist. Fresh rock exposuresindicate a retrograde metamorphic cycle from an almandine-amphibolite facies to a green- schist facies. At the crest of Turkey Heaven Mountain, the Wedowee Formation over-liesthe Ashland Mica Schist.The resistantgraphite-mica schist of the WedoweeFormation and associatedquartz veins contribute to the physiographic configuration of the area. The generalregional strike in the Alabama crystalline belt is about N. 45o E., and the dip is generally southeast.The crystalline area has undergoneprimary deformationfrom the stressesapplied generallyfrom the southeast,which producedisoclinal folding and thrust faulting to the northwest. Geologic studies at Turkey Heaven Mountain indicate a secondperiod of deformation in which the stressdirection can be ex- pressedaS a northeast shear couple that formed nonplanar, non-cylin- drical left lateral drag folds.
    [Show full text]
  • Microstructures and Interlayering in Pyrophyllite from the Coastal Range of Central Chile: Evidence of a Disequilibrium Assemblage
    Clay Minerals (2004) 39,439–452 Microstructures and interlayering in pyrophyllite from the Coastal Range of central Chile: evidence of a disequilibrium assemblage 1, 2 3 2 2 M. D. RUIZ C RUZ *,D. M ORATA ,E. P UGA ,L. A GUIRRE AND M. VERGARA 1 Departamento de Quı´mica Inorga´nica, Cristalografı´a y Mineralogı´a, Facultad de Ciencias, Universidad de Ma´laga, 29071 Ma´laga, Spain, 2 Departamento de Geologı´a, Universidad de Chile, Plaza Ercilla, 803, Santiago, Chile, and 3 Instituto Andaluz de Ciencias de la Tierra (C.S.I.C.-U.G.R.), Avda. Fuentenueva s/n, 18002 Granada, Spain (Received 5 December 2003; revised 19 April 2004) ABSTRACT: Pyrophyllite from a Triassic sedimentary formation from the Coastal Range of Chile has been investigated by transmission/analytical electron microscopy (TEM/AEM). The mineral assemblage includes pyrophyllite,muscovite,paragonite,a kaolin mineral,boehmite,rutile and hematite. The textures indicate that the protolith was a volcanoclastic rock. Petrographic evidence, chemistry,and the mineral assemblage suggest the intense leaching of the parent rock by a weathering process,before the metamorphic episode,to create the protolith for the pyrophyllite. Pyrophyllite always grows from the kaolin mineral,and both phases show close orientation relationships. The presence of parallel intergrowths of pyrophyllite and muscovite indicate that muscovite also grew from the kaolin mineral. Nevertheless,the composition of muscovite suggests that this phase must also form from another precursor,probably Al smectite. The AEM data and textural relationships between pyrophyllite and muscovite reveal the presence of two generations of muscovite and suggest that Na-rich muscovite recrystallized into a Na-free muscovite and paragonite.
    [Show full text]
  • NOTE Synthesis of a Regularly Interstratified 2:1 Margarite And
    Clay Minerals (1998) 33, 363–367 NOTE Synthesis of a regularly interstratified 2:1 margarite and beidellite (34 A˚ phase) Regularly interstratified mica-smectites and The conditions of composition and temperature chlorite-smectites have been synthesized by Ueda under which the 34 A˚ phase formed as a single & Sudo (1966), Frank-Kamenetskij et al. (1972), phase were fairly limited. The compositions ranged Matsuda & Henmi (1973, 1974)and by Eberl from margarite to margarite and beidellite in a ratio (1978). Only a few studies have been carried out, of 2:1. The temperatures were 400À5008C, and run however, on regularly interstratified minerals whose durations were >2 weeks. The 25 A˚ phase often spacings exceed 30 A˚ (Lazarenko & Korolev, 1970; formed during short runs despite the optimal Sato & Kizaki, 1972). compositions for formation of the 34 A˚ phase. Regularly interstratified minerals with basal Experimental results at 4508C are shown in a ˚ ˚ spacings of 25 A and 30 A have been synthesized triangular diagram of CaOÀAl2O3ÀSiO2 with from kaolinite by means of hydrothermal treatments starting compositions (Fig. 1). As a Ca starting ˚ and by the addition of various oxides or carbonates material, CaCO3 formed the 34 A phase within a (Matsuda & Henmi, 1974, 1983). In these studies a shorter time than did CaO. Compositions richer in phase with a basal spacing of 33À34 A˚ was Ca and Al than ideal margarite led to margarite accompanied by a 25 A˚ mineral after hydrothermal formation at 400À5008C, and to the formation of treatment of kaolinite plus calcium carbonate. The the 25 A˚ phase and boehmite at lower temperatures.
    [Show full text]
  • Cation Ordering and Pseudosymmetry in Layer Silicates'
    I A merican M ineralogist, Volume60. pages175-187, 1975 Cation Ordering and Pseudosymmetryin Layer Silicates' S. W. BerI-nv Departmentof Geologyand Geophysics,Uniuersity of Wisconsin-Madison Madison, Wisconsin5 3706 Abstract The particular sequenceof sheetsand layers present in the structure of a layer silicate createsan ideal symmetry that is usually basedon the assumptionsof trioctahedralcompositions, no significantdistor- tion, and no cation ordering.Ordering oftetrahedral cations,asjudged by mean l-O bond lengths,has been found within the constraints of the ideal spacegroup for specimensof muscovite-3I, phengile-2M2, la-4 Cr-chlorite, and vermiculite of the 2-layer s type. Many ideal spacegroups do not allow ordering of tetrahedralcations because all tetrahedramust be equivalentby symmetry.This includesthe common lM micasand chlorites.Ordering oftetrahedral cations within subgroupsymmetries has not beensought very often, but has been reported for anandite-2Or, llb-2prochlorite, and Ia-2 donbassite. Ordering ofoctahedral cations within the ideal spacegroups is more common and has been found for muscovite-37, lepidolite-2M", clintonite-lM, fluoropolylithionite-lM,la-4 Cr-chlorite, lb-odd ripidolite, and vermiculite. Ordering in subgroup symmetries has been reported l-oranandite-2or, IIb-2 prochlorite, and llb-4 corundophilite. Ordering in local out-of-step domains has been documented by study of diffuse non-Bragg scattering for the octahedral catlons in polylithionite according to a two-dimensional pattern and for the interlayer cations in vermiculite over a three-cellsuperlattice. All dioctahedral layer silicates have ordered vacant octahedral sites, and the locations of the vacancies change the symmetry from that of the ideal spacegroup in kaolinite, dickite, nacrite, and la-2 donbassite Four new structural determinations are reported for margarite-2M,, amesile-2Hr,cronstedtite-2H", and a two-layercookeite.
    [Show full text]
  • Nanoidentation Behavior of Clay Minerals and Clay-Based Nonstructured Multilayers" (2009)
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2009 Nanoidentation behavior of clay minerals and clay- based nonstructured multilayers Zhongxin Wei Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Civil and Environmental Engineering Commons Recommended Citation Wei, Zhongxin, "Nanoidentation behavior of clay minerals and clay-based nonstructured multilayers" (2009). LSU Doctoral Dissertations. 3033. https://digitalcommons.lsu.edu/gradschool_dissertations/3033 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. NANOINDENTATION BEHAVIOR OF CLAY MINERALS AND CLAY-BASED NANOSTRUCTURED MULTILAYERS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy In The Department of Civil and Environmental Engineering by Zhongxin Wei B.S., Tsinghua University, China, 1989 M.S., Tsinghua University, China, 1994 December, 2009 DEDICATION To my parents and my wife ii ACKNOWLEDGEMENTS I would like to express my sincere thanks to Dr. Guoping Zhang, my advisor, who provided me the opportunity and guided me to pursue my Ph.D degree in the academic area of geotechnical engineering. I have learned a lot from his outstanding knowledge and professional attitude, and I am grateful of his patient guidance and multiaspect supports which attribute to the accomplishment of this dissertation.
    [Show full text]
  • List of Abbreviations
    List of Abbreviations Ab albite Cbz chabazite Fa fayalite Acm acmite Cc chalcocite Fac ferroactinolite Act actinolite Ccl chrysocolla Fcp ferrocarpholite Adr andradite Ccn cancrinite Fed ferroedenite Agt aegirine-augite Ccp chalcopyrite Flt fluorite Ak akermanite Cel celadonite Fo forsterite Alm almandine Cen clinoenstatite Fpa ferropargasite Aln allanite Cfs clinoferrosilite Fs ferrosilite ( ortho) Als aluminosilicate Chl chlorite Fst fassite Am amphibole Chn chondrodite Fts ferrotscher- An anorthite Chr chromite makite And andalusite Chu clinohumite Gbs gibbsite Anh anhydrite Cld chloritoid Ged gedrite Ank ankerite Cls celestite Gh gehlenite Anl analcite Cp carpholite Gln glaucophane Ann annite Cpx Ca clinopyroxene Glt glauconite Ant anatase Crd cordierite Gn galena Ap apatite ern carnegieite Gp gypsum Apo apophyllite Crn corundum Gr graphite Apy arsenopyrite Crs cristroballite Grs grossular Arf arfvedsonite Cs coesite Grt garnet Arg aragonite Cst cassiterite Gru grunerite Atg antigorite Ctl chrysotile Gt goethite Ath anthophyllite Cum cummingtonite Hbl hornblende Aug augite Cv covellite He hercynite Ax axinite Czo clinozoisite Hd hedenbergite Bhm boehmite Dg diginite Hem hematite Bn bornite Di diopside Hl halite Brc brucite Dia diamond Hs hastingsite Brk brookite Dol dolomite Hu humite Brl beryl Drv dravite Hul heulandite Brt barite Dsp diaspore Hyn haiiyne Bst bustamite Eck eckermannite Ill illite Bt biotite Ed edenite Ilm ilmenite Cal calcite Elb elbaite Jd jadeite Cam Ca clinoamphi- En enstatite ( ortho) Jh johannsenite bole Ep epidote
    [Show full text]
  • What We Know About Subduction Zones from the Metamorphic Rock Record
    What we know about subduction zones from the metamorphic rock record Sarah Penniston-Dorland University of Maryland Subduction zones are complex We can learn a lot about processes occurring within active subduction zones by analysis of metamorphic rocks exhumed from ancient subduction zones Accreonary prism • Rocks are exhumed from a wide range of different parts of subduction zones. • Exhumed rocks from fossil subduction zones tell us about materials, conditions and processes within subduction zones • They provide complementary information to observations from active subduction systems Tatsumi, 2005 The subduction interface is more complex than we usually draw Mélange (Bebout, and Penniston-Dorland, 2015) Information from exhumed metamorphic rocks 1. Thermal structure The minerals in exhumed rocks of the subducted slab provide information about the thermal structure of subduction zones. 2. Fluids Metamorphism generates fluids. Fossil subduction zones preserve records of fluid-related processes. 3. Rheology and deformation Rocks from fossil subduction zones record deformation histories and provide information about the nature of the interface and the physical properties of rocks at the interface. 4. Geochemical cycling Metamorphism of the subducting slab plays a key role in the cycling of various elements through subduction zones. Thermal structure Equilibrium Thermodynamics provides the basis for estimating P-T conditions using mineral assemblages and compositions Systems act to minimize Gibbs Free Energy (chemical potential energy) Metamorphic facies and tectonic environment SubduconSubducon zone metamorphism zone metamorphism Regional metamorphism during collision Mid-ocean ridge metamorphism Contact metamorphism around plutons Determining P-T conditions from metamorphic rocks Assumption of chemical equilibrium Classic thermobarometry Based on equilibrium reactions for minerals in rocks, uses the compositions of those minerals and their thermodynamic properties e.g.
    [Show full text]
  • Rubies and Sapphires from Snezhnoe, Tajikistan
    FEATURE ARTICLES RUBIES AND SAPPHIRES FROM SNEZHNOE , T AJIKISTAN Elena S. Sorokina, Andrey K. Litvinenko, Wolfgang Hofmeister, Tobias Häger, Dorrit E. Jacob, and Zamoniddin Z. Nasriddinov Discovered during the late 1970s, the Snezhnoe ruby and sapphire deposit in Tajikistan was active until the collapse of the former Soviet Union in the early 1990s and the outbreak of regional conflicts. This marble-hosted occurrence has seen renewed interest, as it is a large and potentially productive deposit that has not been sufficiently studied. Testing of samples identified solid inclusions of margarite enriched with Na and Li (calcic ephesite or soda margarite). These are believed to be previously unreported for gem corundum. Allanite, muscovite, and fuchsite (chromium-bearing muscovite) were identified for the first time in ruby and sapphire from Snezhnoe. These and other inclusions such as zircon, rutile, K- feldspar, and Ca-Na-plagioclase could serve to distinguish them from stones mined elsewhere. Con - centrations of trace elements were typical for ruby and sapphire of the same formation type. The highest Cr concentrations were observed within the bright red marble-hosted rubies, and these values were very similar to those of the famous Burmese rubies from Mogok. orundum— -Al O —is a common, though net, scapolite, lazurite, and variscite (Litvinenko α 2 3 minor, component of many metamorphic and Barnov, 2010). The occurrence of ruby in the Crocks. Gem-quality varieties of ruby and sap - Pamirs was first suggested by the Soviet mineralo - phire occur in only a few primary metamorphic and magmatic rock types depleted in silica and enriched Figure 1.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Contact Zone Mineralogy and Geochemistry of the Mt. Mica Pegmatite, Oxford County, Maine
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Spring 5-16-2014 Contact Zone Mineralogy and Geochemistry of the Mt. Mica Pegmatite, Oxford County, Maine Kimberly T. Clark University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Geochemistry Commons, and the Geology Commons Recommended Citation Clark, Kimberly T., "Contact Zone Mineralogy and Geochemistry of the Mt. Mica Pegmatite, Oxford County, Maine" (2014). University of New Orleans Theses and Dissertations. 1786. https://scholarworks.uno.edu/td/1786 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Contact Zone Mineralogy and Geochemistry of the Mt. Mica Pegmatite, Oxford County, Maine A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science In Earth and Environmental Science By Kimberly T. Clark B.S.
    [Show full text]
  • An In-Vitro Evaluation of the Capacity of Local Tanzanian Crude Clay and Ash Based Materials in Binding Aflatoxins in Solution
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 November 2018 doi:10.20944/preprints201811.0021.v1 Peer-reviewed version available at Toxins 2018, 10, 510; doi:10.3390/toxins10120510 An in-vitro evaluation of the capacity of local Tanzanian crude clay and ash based materials in binding aflatoxins in solution 1,3Ayo E. M; 2G. H. Laswai; 1A. Matemu; 1M. E. Kimanya* 1 The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha. Tanzania E-mails: [email protected]; [email protected]: kimanya.martin@nm-aist 2 Sokoine University of Agriculture, P.O. Box 3004, Morogoro. Tanzania, E-mail: [email protected] 3 Institute of Rural Development Planning, P.O. Box 138, Dodoma, Tanzania, E-mail: [email protected] *The corresponding author, email: kimanya.martin@nm-aist Corresponding author: Prof Martin E. Kimanya (Associate Professor of Food safety and Nutrition Sciences) P.O. Box 447, Arusha. Tanzania; e-mail: [email protected] Abstract Aflatoxins in feeds cause great health hazards to animals and in advance, to human. Potential of crude clays designated AC, KC, CC and MC and ashes VA and RA were evaluated for their capacity to adsorb aflatoxins B1 (AFB1), B2 (AFB2), G1 (AFG1) and G2 (AFG2) relative to a commercial binder MycobinderR (Evonik Industries AG) using in-vitro technique. On average, CC, VA, KC, MC, AC, RA and MycobindR adsorbed 39.9%, 51.3%, 61.5%, 62.0%, 72.6%, 84.7% and 98.1% of the total aflatoxins in buffered solution, respectively.
    [Show full text]
  • Clay Minerals
    American Minetralogist, Volume 65, pages 1-7, 1980 Summary of recommendations of AIPEA nomenclature committee on clay minerals S. W. BAILEY, CHAIRMAN1 Department of Geology and Geophysics University of Wisconsin-Madison Madi~on, Wisconsin 53706 Introduction This summary of the recommendations made to Because of their small particle sizes and v~riable date by the international nomenclature committees degrees of crystal perfection, it is not surprisi4g that has been prepared in order to achieve wider dissemi- clay minerals proved extremely difficult to character- nation of the decisions reached and to aid clay scien- ize adequately prior to the development of ~odem tists in the correct usage of clay nomenclature. Some analytical techniques. Problems in charactetization of the material in the present summary has been led quite naturally to problems in nomenclatute, un- taken from an earlier summary by Bailey et al. doubtedly more so than for the macroscopic~ more (1971a). crystalline minerals. The popular adoption ~ the early 1950s of the X-ray powder diffractometer for Classification . clay studies helped to solve some of the probl ms of Agreement was reached early in the international identification. Improvements in electron micro copy, discussions that a sound nomenclatur~ is necessarily electron diffraction and oblique texture electr ;n dif- based on a satisfactory classification scheme. For this fraction, infrared and DT A equipment, the de elop- reason, the earliest and most extensive efforts of the ment of nuclear and isotope technology, of high- several national nomenclature committees have been speed electronic computers, of Mossbauer spec rome- expended on classification schemes. Existing schemes ters, and most recently of the electron micr probe were collated and discussed (see Brown, 1955, Mac- and scanning electron microscope all have ai ed in kenzie, 1959, and Pedro, 1967, for examples), sym- the accumulation of factual information on clays.
    [Show full text]