Idef3 Process Description Capture Method Report

Total Page:16

File Type:pdf, Size:1020Kb

Idef3 Process Description Capture Method Report AL-TR-1995-XXXX INFORMATION INTEGRATION FOR CONCURRENT ENGINEERING (IICE) IDEF3 PROCESS DESCRIPTION CAPTURE METHOD REPORT Richard J. Mayer, Ph.D. Christopher P. Menzel, Ph.D. Michael K. Painter Paula S. deWitte, Ph.D. Thomas Blinn Benjamin Perakath, Ph.D. KNOWLEDGE BASED SYSTEMS, INCORPORATED ONE KBSI PLACE 1500 UNIVERSITY DRIVE EAST COLLEGE STATION, TEXAS 77840-2335 HUMAN RESOURCES DIRECTORATE LOGISTICS RESEARCH DIVISION SEPTEMBER 1995 INTERIM TECHNICAL REPORT FOR PERIOD APRIL 1992 - SEPTEMBER 1995 Approved for public release; distribution is unlimited. September 1995 Interim - February 1991 to September 1995 IDEF3 Process Description Capture Method Report Richard J. Mayer, Ph.D. Michael K. Painter Christopher P. Menzel, Ph.D. Benjamin Perakath, Ph.D Paula S. deWitte, Ph.D. Thomas Blinn Knowledge Based Systems, Inc. One KBSI Place, 1500 University Drive East College Station, TX 77845 KBSI-IICE-90-STR-01-0592-02 Armstrong Laboratory Human Resources Directorate Logistics Research Division Wright-Patterson AFB, OH 45433 AL-TR-1995-XXXX Approved for Public Release; distribution is unlimited A This document provides a method overview, practice and use description, and language reference for the Integration Definition (IDEF) method for Process Description Capture (IDEF3). IDEF3 is designed to help document and analyze the processes of an existing or proposed system. Proven guidelines and a language for information capture help users capture and organize process information for multiple downstream uses. IDEF3 supports both process-centered and object-centered knowledge acquisition strategies enabling users to capture assertions about real-world processes and events in ways paralleling common forms of human expression. IDEF3 includes the ability to capture and structure descriptions of how a system works from multiple viewpoints. As an integral member of the IDEF family of methods, IDEF3 works well in independent application or in concert with other IDEF methods to document, analyze, and improve the vital processes of a business. process, IDEF, method, methodology, modeling, knowledge acquisition, requirements definition, information systems, information engineering, systems engineering, integration, reengineering Unclassified Unclassified Unclassified UL C F33615-90-C-0012 PE 63106F PR 2940 TA 01 WU08 140 i TABLE OF CONTENTS TABLE OF CONTENTS......................................................................................................................iii LIST OF FIGURES ............................................................................................................................... v PREFACE.............................................................................................................................................. ix FOREWORD ......................................................................................................................................... x METHOD ANATOMY ................................................................................................................................. x FAMILY OF METHODS .............................................................................................................................xii INTRODUCTION.................................................................................................................................. 1 MOTIVATION............................................................................................................................................. 1 Enhance the Productivity of Business Systems Analysis ..................................................................... 2 Facilitate Design Data Life-Cycle Management................................................................................. 2 Support the Project Management Process..........................................................................................2 Facilitate the System Requirements Definition Process...................................................................... 2 Support Coordinated Activity and Integration of Effort ..................................................................... 3 DESIGN FEATURES OF IDEF3 ................................................................................................................... 3 APPLICABILITY.......................................................................................................................................... 7 BENEFITS .................................................................................................................................................. 8 DOCUMENT ORGANIZATION.................................................................................................................... 10 SUMMARY .............................................................................................................................................. 11 IDEF3 OVERVIEW ............................................................................................................................ 11 SCENARIOS: THE ORGANIZING STRUCTURE FOR IDEF3 PROCESS DESCRIPTIONS ................................. 11 PROCESS-CENTERED VIEWS: THE PROCESS SCHEMATICS ..................................................................... 13 OBJECT-CENTERED VIEWS: THE OBJECT SCHEMATICS ......................................................................... 17 IDEF3 PROCESS DESCRIPTION LANGUAGE ............................................................................ 22 BASIC ELEMENTS OF IDEF3 PROCESS DESCRIPTIONS ............................................................................ 22 PROCESS SCHEMATICS............................................................................................................................ 24 Units of Behavior .............................................................................................................................. 24 Links.................................................................................................................................................. 25 Junctions ........................................................................................................................................... 31 UOB Decompositions........................................................................................................................ 43 UOB Reference Numbering Scheme ................................................................................................. 45 Partial Descriptions.......................................................................................................................... 47 Referents ........................................................................................................................................... 48 OBJECT SCHEMATICS.............................................................................................................................. 52 Objects and Object States ................................................................................................................. 52 Transition Schematics....................................................................................................................... 53 Conditions......................................................................................................................................... 55 Using Referents in IDEF3 Object Schematics .................................................................................. 57 Transition Junctions.......................................................................................................................... 66 Hiding Object State Information....................................................................................................... 70 Enhanced Transition Schematics ...................................................................................................... 72 ELABORATIONS....................................................................................................................................... 89 Some Examples of the Elaboration Language .................................................................................. 90 NOTES .................................................................................................................................................... 93 iii REPRESENTING STOCHASTIC PROCESSES................................................................................................ 95 DEVELOPING IDEF3 DESCRIPTIONS.......................................................................................... 96 THE IDEF3 DESCRIPTION EVOLUTION CYCLE........................................................................................ 97 IDEF3 DESCRIPTION CAPTURE ACTIVITIES ............................................................................................ 98 Define the Project ............................................................................................................................. 98 Define the Purpose............................................................................................................................ 99 Establish the Context ...................................................................................................................... 100 ORGANIZE FOR DATA COLLECTION....................................................................................................... 100 COLLECT AND ANALYZE DATA............................................................................................................
Recommended publications
  • Modelling, Analysis and Design of Computer Integrated Manueactur1ng Systems
    MODELLING, ANALYSIS AND DESIGN OF COMPUTER INTEGRATED MANUEACTUR1NG SYSTEMS Volume I of II ABDULRAHMAN MUSLLABAB ABDULLAH AL-AILMARJ October-1998 A thesis submitted for the DEGREE OP DOCTOR OF.PHILOSOPHY MECHANICAL ENGINEERING DEPARTMENT, THE UNIVERSITY OF SHEFFIELD 3n ti]S 5íamc of Allai]. ¿Hoot (gractouo. iHHoßt ¿Merciful. ACKNOWLEDGEMENTS I would like to express my appreciation and thanks to my supervisor Professor Keith Ridgway for devoting freely of his time to read, discuss, and guide this research, and for his assistance in selecting the research topic, obtaining special reference materials, and contacting industrial collaborations. His advice has been much appreciated and I am very grateful. I would like to thank Mr Bruce Lake at Brook Hansen Motors who has patiently answered my questions during the case study. Finally, I would like to thank my family for their constant understanding, support and patience. l To my parents, my wife and my son. ABSTRACT In the present climate of global competition, manufacturing organisations consider and seek strategies, means and tools to assist them to stay competitive. Computer Integrated Manufacturing (CIM) offers a number of potential opportunities for improving manufacturing systems. However, a number of researchers have reported the difficulties which arise during the analysis, design and implementation of CIM due to a lack of effective modelling methodologies and techniques and the complexity of the systems. The work reported in this thesis is related to the development of an integrated modelling method to support the analysis and design of advanced manufacturing systems. A survey of various modelling methods and techniques is carried out. The methods SSADM, IDEFO, IDEF1X, IDEF3, IDEF4, OOM, SADT, GRAI, PN, 10A MERISE, GIM and SIMULATION are reviewed.
    [Show full text]
  • H)EF3 Technical Report Version 1.0 Chard J. Mayer Christopher P
    L. H)EF3 Technical Report Version 1.0 _| i L, _chard J. Mayer Christopher P. Menzel : i_:_pa_la S.D. Mayer Know!edge Based Systems Laboratory L Depar tment- 0 fin-dustrial Engineering Texas A&M University College Station TX 77843 Reviewed by Michad-K, Painter, Capt, USAF Armstrong Laboratory Logistics Research Division Wright-Patterson =Air Force Base, Ohio 45433-6503 :_ _=_January 1991 i _: ?_ | - , i (NASA-CR-I90279) {RESEARCH ACCOMPLISHED AT N92-26587 THE KNOWLEDGE BASED SYSTEMS LAB: IDEF3, VERSION 1.0] (Texas A&M Univ.) 56 p Unclag G]/_I 0086873 L == ; IDEF3 Technical Report Version 1.0 Richard J. Mayer Christopher P. Menzel Paula S.D. Mayer Knowledge Based Systems Laboratory Department of Industrial Engineering Texas A&M University College Station TX 77843 Reviewed by Michael K. Painter, Capt, USAF Armstrong Laboratory Logistics Research Division Wright-Patterson Air Force Base, Ohio 45433-6503 January 1991 umd w _- :7. m w Preface This paper describes the research accomplished at the Knowledge Based Systems Laboratory of the Department of Industrial Engineering at Texas A&M University. Funding for the Laboratory's research in Integrated Information System Development Methods and Tools has been provided by the Air Force Armstrong Laboratory, Logistics Research Division, AFWAL/LRL, Wright-Patterson Air Force Base, Ohio 45433, under the technical direction of USAF Captain Michael K. Painter, under subcontract through the NASA RICIS Program at the University of Houston. The authors and the design team wish to acknowledge the technical insights and ideas provided by Captain Painter in the performance of this research as well as his assistance in the preparation of this report.
    [Show full text]
  • The IDEF Family of Languages
    CHAPTER 10 The IDEF Family of Languages Christopher Menzel, Richard J. Mayer The purpose of this contribution is to serve as a clear introduction to the modeling languages of the three most widely used IDEF methods: IDEFO, IDEFIX, and IDEF3. Each language is presented in turn, beginning with a discussion of the underlying "ontology" the language purports to describe, followed by presentations of the syntax of the language - particularly the notion of a model for the language - and the semantical rules that determine how models are to be interpreted. The level of detail should be sufficient to enable the reader both to understand the intended areas of application of the languages and to read and construct simple models of each of the three types. 1 Introduction A modeling method comprises a specialized modeling language for represent­ ing a certain class of information, and a modeling methodology for collecting, maintaining, and using the information so represented. The focus of this paper will be on the languages of the three most widely used IDEF methods: The IDEFO business function modeling method, the IDEFIX data modeling method, and the IDEF3 process modeling method. Any usable modeling language has both a syntax and a semantics: a set of rules (often implicit) that determines the legitimate syntactic constructs of the language, and a set of rules (often implicit) the determines the meanings of those constructs. It is not the purpose of this paper is to serve as an exhaus­ tive reference manual for the three IDEF languages at issue. Nor will it dis­ cuss the methodologies that underlie the applications of the languages.
    [Show full text]
  • Product Realization Process Modeling
    NAT’L INST. OF STAND & .TECH R I.C III! Ill" I" 'I mill mill II ml II II AlllDM NISTIR 5745 Product Realization Process Modeling: A study of requirements, methods and and research issues Kevin W. Lyons U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Gaithersburg, MD 20899 Michael R. Duffey Richard C. Anderson George Washington University QC 100 NIST .056 NO. 5745 1995 Product Realization Process Modeling: A study of requirements, methods and and research issues Kevin W. Lyons U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Gaithersburg, MD 20899 Michael R. Duffey Richard C. Anderson George Washington University June 1995 c U.S. DEPARTMENT OF COMMERCE Ronald H. Brown, Secretary TECHNOLOGY ADMINISTRATION Mary L. Good, Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Arati Prabhakar, Director . r•^ - . 'it'/ ' ' ' ' - ' ' -•*'1 X' . r • ^.,' v./f/v ’• '^^,. • T,?. - ^ •' V.y' ’ ' :AIa ' / ><- l> r / PRP Modeling: Page 2 1. Introduction 7 2. Definition of a PRP Model 8 3. Overview of PRP Methods and Modeling Issues in Manufacturing Industries 9 3.1 PERT-based Models 9 3.2 IDEF-based Models 10 3.3 Traditional PRP Modeling Practices 12 3.4 Emerging PRP Model Applications in Industry 14 3.5 Industry Requirements for PRP Models 14 4. Modeling Issues for Advanced PRP Computer Tools 16 4. 1 Activity Network Representations 17 4.2 Representing Design Iteration and Activity "Overlapping" 18 4.3 Uncertainty Modeling of a PRP 20 4.3.1 Some Simulation Considerations 20 4.3.2 Activity Duration Uncertainty 21 4.3.3 Concurrent Activities and Stochastic Modeling 22 4.3.4 Alternative Representations of Uncertainty 23 4.4 Representing Economic Information 24 4.5 Data Collection and Validation Issues for PRP Models 27 4.6 Knowledge-Based Representations in PRP Models 28 5.
    [Show full text]
  • Multi-Level Modeling of Complex Socio-Technical Systems Report No
    Multi-Level Modeling of Complex Socio-Technical Systems Report No. CCSE-2013-01 Dr. William B. Rouse, Stevens Institute of Technology Dr. Douglas A. Bodner, Georgia Institute of Technology Report No. CCSE-2013-01 June 11, 2013 Copyright © 2013 Stevens Institute of Technology, Systems Engineering Research Center This material is baseD upon work supporteD, in whole or in part, by the U.S. Department of Defense through the Systems Engineering Research Center (SERC) unDer Contract H98230-08-D-0171. SERC is a feDerally funDeD University AffiliateD Research Center manageD by Stevens Institute of Technology The authors gratefully acknowledge the helpful comments anD suggestions of John Casti anD HarolD Sorenson Any opinions, finDings anD conclusions or recommenDations expresseD in this material are those of the author(s) anD Do not necessarily reflect the views of the UniteD States Department of Defense. NO WARRANTY THIS STEVENS INSTITUTE OF TECHNOLOGY AND SYSTEMS ENGINEERING RESEARCH CENTER MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. STEVENS INSTITUTE OF TECHNOLOGY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. STEVENS INSTITUTE OF TECHNOLOGY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. Center for Complex Systems & Enterprises Report No. CCSE-2013-01 June 11, 2013 2 ABSTRACT This report presents a conceptual framework for multi-level moDeling of complex socio- technical systems, proviDes linkages to the historical roots anD technical unDerpinnings of this framework, anD outlines a catalog of component moDels for populating multi-level moDels.
    [Show full text]
  • IDEF Methods for BPR to Support CALS
    IDEF Methods for BPR to Support CALS Comprehensive Solutions for a Complex World IDEF and CALS • CALS technologies enable paperless environments or the electronic flow of information. •The implementation of CALS technologies require a re-engineering of enterprises. IDEF and BPR • Business Process Reengineering (BPR) assists in re-engineering the enterprises and the successful implementation of CALS. • IDEF Methods support BPR activities (e.g., knowledge acquisition, As-Is analysis, To -Be design, project planning, and implementation). What are Methods? Methods: A structured approach to capturing knowledge that maximizes accuracy but is also flexible enough to capture the real-world characteristics of that knowledge. What are IDEF Methods? Integration DEFinition methods Knowledge Acquisition, Analysis, and Design tools Languages that include both graphics (diagrams) and text Formal procedures for constructing models or ditifdescriptions of a parti tilcular aspect tf of an organization Why IDEF? IDEF: The IDEF Family of Methods was co- developed by industry and government. Their pppurpose is to provide a com prehensive yet flexible framework for describing, analyzing, and evaluatinggp business practices. The y are not proprietary and are supported by international standards. Characteristics of an IDEF Method Designed to address specific aspects of a problem, or provide different perspectives of the same problem Provide an explicit mechanism for integrating the results of the application of one IDEF with another Embody the knowledge
    [Show full text]
  • Structured Models and Dynamic Systems Analysis: the Integration of the Idef0/Idef3 Modeling Methods and Discrete Event Simulation
    STRUCTURED MODELS AND DYNAMIC SYSTEMS ANALYSIS: THE INTEGRATION OF THE IDEF0/IDEF3 MODELING METHODS AND DISCRETE EVENT SIMULATION Larry Whitman Adrien Presley Brian Huff Automation & Robotics Research Institute Division of Business and Accountancy The University of Texas at Arlington Truman State University 7300 Jack Newell Boulevard South 100 East Normal Fort Worth, Texas 76118, U.S.A. Kirksville, Missouri 63501, U.S.A. · To analyze and design the enterprise and its ABSTRACT processes prior to implementation · To help reduce complexity The role of modeling and simulation is receiving much · To communicate a common understanding of the press of late. However, the lack of practice in employing system a link between the two is alarming. A static model is · To gain stakeholder buy-in used to understand an enterprise or a system, and · To act as a documentation tool for ISO 9000, TQM, simulation is used for dynamic analysis. Generally, most Concurrent Engineering, and other efforts. models are considered static, whereas simulation is really A primary thrust of this research is to determine the a dynamic model. Static models are useful in achieving feasibility of using a single master static model of the understanding of the enterprise. Simulations are useful in enterprise for multiple purposes. Previous research has analyzing the behavior of the enterprise. presented a single suite perspective (Lingineni, Caraway Most enterprises develop and even maintain multiple et al. 1996) and uses custom developed software (Harrell types of models for different purposes. If a single model and Field 1996). This research uses commercial products can be used to drive other modeling purposes, then exclusively.
    [Show full text]
  • Improved Product, Process and Rationale Representation and Information Organisation to Support Design Learning
    INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED’07 28 - 31 AUGUST 2007, CITE DES SCIENCES ET DE L'INDUSTRIE, PARIS, FRANCE IMPROVED PRODUCT, PROCESS AND RATIONALE REPRESENTATION AND INFORMATION ORGANISATION TO SUPPORT DESIGN LEARNING M D Giess 1, Y M Goh 1, L Ding 1 and C A McMahon 1 1University of Bath, UK ABSTRACT Many companies are moving from a product provision business model to a product-service model, where the producing company retains ownership of the product and supports it through life. In such a scenario it becomes possible to obtain a greater richness of information relating to product performance. However, in order for this information to be usefully deployed in improving design and manufacturing practices it is necessary to reconsider the means by which the design record is represented and organised such that linkages between the design record and the emergent outcomes as seen in service are explicit. In this manner, design episodes which continually lead to suboptimal or undesirable performance in service may be identified and remedial action taken. Current representation practices focus upon a generally topological or geometric depiction of product, structured according to the Bill of Materials, which is supported by primarily textual depictions of the process followed and rationale employed. Although an engineer may be able to retrieve and assimilate information contained within these representations, it is difficult to provide a unified view of a specific episode as distinct elements within these representations
    [Show full text]
  • Information to Users
    Group data modeling support for business process reengineering. Item Type text; Dissertation-Reproduction (electronic) Authors Lee, James David. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 07:23:08 Link to Item http://hdl.handle.net/10150/187368 INFORMATION TO USERS This manuscript,has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete mannscript and there are missing pages, these will be noted Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manusaipt have been reproduced xerograpbically in this copy.
    [Show full text]
  • 993314 02.Pdf (5.272Mb)
    COGNITIVE SKILLS IN MODELING AND SIMULATION Volume II A Dissertation by RICHARD J. MAYER Submitted to the Graduate College of Texas A&M University partial fulfillment of the requirement for the degree DOCTOR OF PHILOSOPHY December 1988 Major Subject: Industrial Engineering RICHARD J. MAYER ALL RIGHTS RESERVED COGNITIVE SKILLS IN MODELING AND SIMULATION Volume II A Dissertation by RICHARD J. MAYER Approved as to style and content by: Don T. Phillips (Chair of Committee) Leland T. Blank Peter J. Sharpe (Member) (Member) •i. 7 c* . " u '.1 v-v Donald K. Friesen Guy H. Bailey7 (Member) (Member) G. Kemblef^ennett (Head of Department) December 1988 Ill TABLE OF CONTENTS Page Volume I 1 INTRODUCTION AND RESEARCH OBJECTIVES 1 1.1 Research Goals 1 1.2 Research Objectives 2 1.3 Background 2 1.3.1 New Paradigms for Simulation 5 1.3.2 Summary of Previous Research 8 1.4 Statement of Major Hypotheses 13 1.4.1 Methodological (Conceptual) Contributions to AI Foundations 16 1.4.2 AI Hypothesis Testing 16 1.5 Approach and Products 17 1.5.1 Research Products 18 1.6 Organization of the Dissertation 20 1.6.1 Summary of Section Contents 20 2 CHARACTERIZATION OF COGNITIVE PROCESSES 22 2.1 Overview of the Process 22 2.2 Perception of Systems 25 2.2.1 Formulating System Descriptions 25 2.2.2 Planning and Understanding 32 2.2.2.1 Goal Detection 34 2.2.2.2 Plan Proposing 35 2.2.2.3 Plan Projection 36 2.2.3 Reasoning With Common Sense Theories of System Dynamics 37 2.3 Identification of Symptoms and Concerns 39 IV TABLE OF CONTENTS (Continued) Page 2.4 Performing Problem Analysis 40 2.5 Problem Solving 42 2.5.1 Characteristic Driven Design 43 2.5.2 External Constraint Driven Design 43 2.5.3 Element Driven Design 44 2.5.4 Formulation of Analysis Goals and Model Require¬ ments ...
    [Show full text]
  • Introduction to IDEF0/3 for Business Process Modelling. Contents Tables & Figures
    Introduction to IDEF0/3 for Business Process Modelling. Contents Introduction ............................................................................................................................................ 2 Introduction to IDEF0 and IDEF3: ....................................................................................................... 2 Parent and Child Maps ........................................................................................................................ 2 Tunnelling ........................................................................................................................................ 3 Construction of IDEF Maps ................................................................................................................. 3 Branches and Joins .......................................................................................................................... 3 Starting an IDEF0 Map ............................................................................................................................ 4 Root definition .................................................................................................................................... 4 The IDEF0 Numbering Convention ...................................................................................................... 5 Creating a model ..................................................................................................................................... 5 Decomposition ...............................................................................................................................
    [Show full text]
  • Appendices MISQ Archivist for Business Process Change: a Study of Methodologies, Techniques and Tools
    Appendices MISQ Archivist for Business Process Change: A Study of Methodologies, Techniques and Tools By William J. Kettinger James T.C. Teng Subashish Guha A total of eight appendices (Appendix 1 through Appendix 8) and an associated reference for these appendices have been placed here. In addition, there is currently a search engine located at http://theweb.badm.sc.edu/bpr/ to assist users in identifying BPR techniques and tools. 1 Appendices 1-8 Contained in MISQ Archivist Appendix 1: Detailed Description of the Research Methodology Appendix 2: Sources of Research Data Appendix 3: Mapping and Reliability of Stages to BPR Methodologies Appendix 4: BPR Techniques Description and Mapping Appendix 5: BPR Tools Description & Mapping Appendix 6: Hierarchical Mapping of BPR Techniques and Tools to the Stage-Activity Framework Appendix 7: IT/Process Analysis Appendix 8: Categories of BPR Techniques Appendix References 2 Appendix 1: Detailed Description of the Research Methodology Referring to Table 1, the researchers conducted the following research steps: Steps 1&2: Literature Review and Market Assessment The authors conducted a literature search on the current state of BPR MTTs using secondary research sources which include scholarly and trade literature, CD- ROM product data bases, on-line market intelligence services such as Computer Select, ABI/Inform, and reports from market research firms such as IDC, Seybold's and Gartner Group, product announcements, public bulletin boards, as well as recently published books and periodicals (e.g., Spurr, Layzell, Jennison & Richards, 1994; Hansen, 1994). This effort produced a list of initial sources of research data as shown in Appendix 2, which classifies these sources into two groups: 1) BPR Market Researchers and Consultants, and 2) BPR Tools and Technology Vendors.
    [Show full text]