Partial Differential Equations

Total Page:16

File Type:pdf, Size:1020Kb

Partial Differential Equations Rend. Lincei Mat. Appl. 20 (2009), 195–205 Partial Di¤erential Equations — A Calderon-Zygmund theory for infinite energy minima of some integral functionals,byLucio Boccardo, communicated on 8 May 2009. ‘‘. onore e lume vagliami ’l lungo studio e ’l grande amore che m’ha fatto cercar lo tuo volume.’’ (Inferno I, 82–84)1 Abstract. — A Calderon-Zygmund theory in Lebesgue and Marcinkiewicz spaces for infinite energy minima of some integral functionals is proved. Key words: Calderon-Zygmund theory; Infinite energy minima. AMS 2000 Mathematics Subject Classification: 49.10, 35J60. Acknowledgements This paper contains the unpublished part of the lecture held at the Conference ‘‘Recent Trends in Nonlinear Partial Di¤erential Equations (6.11.2008)’’. I would like to express my thanks to Accademia dei Lincei for the invitation to give a talk2 as a ‘‘tribute to Guido Stampacchia on the 30th anniversary of his death’’. 1. Introduction 1.1. Finite energy solutions. We recall the following regularity theorem by G. Stampacchia concerning solutions of linear Dirichlet problems in W, bounded subset of RN , N > 2, with right hand side a measurable function f ðxÞ. Consider a bounded elliptic matrix MðxÞ with ellipticity constant a > 0 and the related boundary value problem ÀdivðMðxÞDuÞ¼ f ðxÞ in W; ð1Þ u ¼ 0onqW: 1Always remembering (after 40 years) what I have learned from my teacher of ‘‘Istituzioni di Ana- lisi Superiore’’ and ‘‘Analisi Superiore’’ ([7] pg. 1, [8] pg. 1) 2... e piu´ d’onore ancora assai mi fenno, ch’e’ sı´ mi fecer de la loro schiera, sı´ ch’io fui sesto tra cotanto senno. (Inferno IV, 100–102) 196 l. boccardo In [20] (see also3 [21] and [16]), the following result is proved about the solution 1; 2 4 u a W0 ðWÞ (recall that the coe‰cients of MðxÞ are not smooth ) under the as- sumption that f belongs to the Marcinkiewicz space M mðWÞ5: if m > N=2; then u a LlðWÞ; ð2Þ Ãà if 2N=ðN þ 2Þ < m < N=2; then u a M m ðWÞ; Ãà à à mN where m ¼ðm Þ ¼ NÀ2m (see [14] for new contributions in this field). The fun- damental tool for the proofs of (2) by Stampacchia is the use of the test function ½u À TkðuÞ, where TkðuÞ is the truncation at the levels þk, Àk. Note that the proofs of (2) do not use the linearity of the di¤erential operator. Only the ellipticity is used, so that the results of (2) still hold for boundary value problems with nonlinear operators like Àdivðaðx; u; DuÞÞ ¼ f ðxÞ in W; ð3Þ u ¼ 0onqW; under the ellipticity assumption aðx; s; xÞx b ajxj2, a > 0. If the matrix M is symmetric, the solution u of (1) is the minimum of the functional Z Z 1 1; 2 JðvÞ¼ MðxÞDvDv À fv; v a W0 ðWÞ: 2 W W Thus the regularity theorem by Stampacchia can be stated in the following way: if f a M mðWÞ and m > N=2, the minimum u of J belongs to LlðWÞ;if 2N=ðN þ 2Þ < m < N=2, the minimum belongs to M m Ãà ðWÞ. Moreover, the proof of (2) can be easily adapted to the study of minima u of more general inte- gral functionals like Z Z 1; 2 jðx; v; DvÞ fv; v a W0 ðWÞ: W W The first result concerning the summability (in Lebesgue spaces) of u, solution of (1), is again due to G. Stampacchia: u belongs to Lm Ãà ðWÞ if f a LmðWÞ, 2N=ðN þ 2Þ a m < N=2. The proof uses (2), linear interpolation theory and the Marcinkiewicz–Zygmund Theorem. However, a summability result for weak (finite energy) solutions is proved in [11], [12] by a direct method which uses as test function a suitable power of u. In [13] the regularity results for minima of functionals are extend to the Lebesgue framework. 3but for me see ‘‘Appunti del corso di Analisi Superiore—Universita` di Roma—a.a. 1969–70’’ 4(Calderon-Zygmund without derivatives) 5M mðWÞ, m > 0, is the space of measurable functions v on W such that bC b 0 : measfx a W : jvðxÞj b tg a CtÀm; Et > 0 a calderon-zygmund theory for minima of integral functionals 197 1.2. Infinite energy solutions. If the datum f belongs to larger spaces (LmðWÞ,1a m < 2N=ðN þ 2Þ or M mðWÞ,1< m < 2N=ðN þ 2Þ) the regularity of the distributional (infinite energy) solutions u of (3) and of Du (nonlinear Calderon–Zygmund Theory) is proved in [13] in the Lebesgue framework and in [6] in the Marcinkiewicz framework (see also [17]). If the datum f belongs to larger spaces as above, it is not possible to use the definition of minimum, because the associated functional is not well defined on 1; 2 the ‘‘energy space’’ W0 ðWÞ. A possible way to handle minimization problems is then the use of T-minima, introduced in [2]. Minimization problems for integral functionals with nonregular data are also studied in [3], [5], [4], [19] (in these papers the function j of (4) can also depend on u) and [18], where existence of minima is proved also for function- als with measure data, using the definition of ‘‘weak minimum’’ introduced by Iwaniec and Sbordone [15]. Of course, it is possible to work with the same proofs if the standard frame- 1; p 1; 2 work is W0 ðWÞ instead of W0 ðWÞ; that is: if the assumption of coercivity is ajxjp a jðx; xÞ a bjxjp,1< p a N, instead of (5) (see below). 1.3. Assumptions. Let jðx; xÞ be a function defined in W  RN .On jðx; xÞ we assume the standard hypotheses of the integrands in the Calculus ofZ Variations, 1; 2 Zwhich lead to existence and uniqueness of minima in W0 ðWÞ of jðx; DvÞ W f ðxÞvðxÞ,if f a L2ðWÞ, that is: W the function jðx; xÞ is measurable with respect to x ð4Þ and strictly convex with respect to x there exist a; b > 0 such that ð5Þ ajxj2 a jðx; xÞ a bjxj2; Ex a RN ; a:e: in W: Recalling the definition of truncation T : R 7! R ( k t; jtj a k; TkðtÞ¼ t k jtj ; jtj > k; we give the definition and the existence theorem for T-minima. Definition 1.1 ([2]). Let f a L1ðWÞ. A measurable function u is a T-minimum for the functional Z Z ð6Þ JðvÞ¼ jðx; DvÞ f ðxÞvðxÞ W W if 8 1; 2 >TiðuÞ a W ðWÞ; Ei > 0: <> Z 0 Z Z ð7Þ jðx; DuÞ f ðxÞTi½u À j a jðx; DjÞ; > u ai u ai :> fj Àjj g W fj Àjj g E 1; 2 B l E j a W0 ðWÞ L ðWÞ; i > 0: 198 l. boccardo Proposition 1 ([2]). Under the assumptions (4) and (5) there exists a T- minimum u of the functional J defined in (6). Moreover the T-minimum u is unique and, in the case of di¤erentiability of jðx; xÞ with respect to x, the T-minimum is the entropy solution (see [1]) of the Euler-Lagrange equation for J. Remark 1; q E 1. In [2] it is also proved that u a W0 ðWÞ, q < N=ðN À 1Þ. 2. A Calderon-Zygmund theory in Lebesgue spaces for infinite energy minima of some integral functionals For Dirichlet problems with measure (or L1) data, existence of distributional so- lutions is proved in [9]; while in [10] it is proved that the assumption f a LmðWÞ, 1 < m < 2N=ðN þ 2Þ, yields more summability for the solutions and their gra- dients. We use the following definitions, for k a Rþ, Ak ¼fx a W : k a juðxÞjg; Bk ¼fx a W : k a juðxÞj < k þ 1g: Theorem 2.1 (Calderon-Zygmund theory for functionals 1). Under the as- sumptions (4) and (5),iff a LmðWÞ, 1 < m < 2N=ðN þ 2Þ, then there exists a pos- itive constant Cf such that the T-minimum u of the functional J of (6) satisfies the estimates jj ujj L m Ãà ðWÞ a Cf and jj Dujj L m à ðWÞ a Cf . Proof. Let k > 0 be fixed. In the definition of T-minimum we use as test func- tion j ¼ TkðuÞ and i ¼ 1. We then obtain Z Z Z jðx; DuÞ a jðx; DTkðuÞÞ þ f ðxÞT1½u À TkðuÞ; fjuÀTk ðuÞja1g fjuÀTk ðuÞja1g W which implies, since jðx; 0Þ¼0, Z Z Z Z 2 ð8Þ a jDuj a jðx; DuÞ a fT1½u À TkðuÞ a j f j Bk Bk W Ak m Ãà à 0 Ãà Define y ¼ 2 à , so that y2 ¼ð2y À 1Þm ¼ m . Then a consequence of (8) is that Z Z Z jDuj2 jDuj2 j f j 9 a a a a ; ð Þ 2ð1ÀyÞ 2ð1ÀyÞ 2ð1ÀyÞ Bk ð1 þjujÞ Bk ð1 þ kÞ Ak ð1 þ kÞ which implies, summing on k ranging from 0 to M À 1, Z Z k¼XMÀ1 2 k¼XMÀ1 jDuj j f j 10 a a ð Þ 2ð1ÀyÞ 2ð1ÀyÞ k¼0 Bk ð1 þjujÞ k¼0 Ak ð1 þ kÞ Z kX¼M j f j a : 2ð1ÀyÞ k¼0 Ak ð1 þ kÞ a calderon-zygmund theory for minima of integral functionals 199 S S h¼l k¼MÀ1 Observe that Ak ¼ h¼k Bh, and that fjuj a Mg¼ k¼0 Bk, so that a conse- quence of (10) is Z Z 2 XM hX¼l jDT ðuÞj j f j a M a : 2ð1ÀyÞ 2ð1ÀyÞ W ð1 þjTM ðuÞjÞ k¼0 h¼k Bh ð1 þ kÞ Exchanging the summation order in the right hand side, we obtain Z Z kX¼M hX¼l kX¼M hX¼l j f j 1 f 2ð1ÀyÞ ¼ 2ð1ÀyÞ j j B 1 k 1 k B k¼0 h¼k h ð þ Þ k¼0 ð þ Þ h¼k h Z Z hX¼l k¼XTM ðhÞ 1 hX¼l 1 ð11Þ f a f 1 T h 2yÀ1 ¼ j j 2ð1ÀyÞ j jð þ M ð ÞÞ Bh ð1 þ kÞ 2y À 1 Bh h¼0 Z k¼0 h¼0 1 2yÀ1 a j f j½1 þjTM ðuÞj ; 2y À 1 W since one has Z Z k¼XTM ðhÞ k¼XTM ðhÞ k T h 1 þ1 dx 1þ M ð Þ dx a ¼ 2ð1ÀyÞ x2ð1ÀyÞ x2ð1ÀyÞ k¼0 ð1 þ kÞ k¼0 k 0 ½1 þ T ðhÞ2yÀ1 ¼ M : 2y À 1 Thus we have Z Z jDT ðuÞj2 1 12 a M a f 1 T u 2yÀ1; ð Þ 2ð1ÀyÞ j j½ þj M ð Þj W ð1 þjTM ðuÞjÞ 2y À 1 W and (thanks to the Sobolev inequality), y y T u 2 à T u 2 à C jj ð 1 þj M ð ÞjÞ jj L ðWÞ a jj½ð1 þj M ð ÞjÞ À 1jjL ðWÞ þ W Z 1=2 2yÀ1 a C1 j f j½1 þjTM ðuÞj þ CW: W Using the Ho¨lder inequality, we then have Z Z 2 Ã=2m 0 y2 à 2 Ã=2 ð2yÀ1Þm 0 ð1 þjTM ðuÞjÞ a C2jj f jj L mðWÞ ½1 þjTM ðuÞj þ C2: W W 1 2N Note that 2 < y < 1 since 1 < m < Nþ2 .
Recommended publications
  • L' Addio a Un Grande Matematico
    CAPITOLO 1 L' ADDIO A UN GRANDE MATEMATICO Si riportano i discorsi pronunciati il 27 ottobre 1996 nel cortile della Scuola Normale Superiore di Pisa, in occasione del commiato accademico. Nello stesso giorno, presso la Chiesa di S. Frediano (Pisa) si `e tenuto il fu- nerale, officiato dal teologo Severino Dianich; il giorno dopo presso la Basilica di S. Croce (Lecce) il funerale `e stato officiato dall' Arcivescovo di Lecce, Cosmo Francesco Ruppi. 1.1 DISCORSO DI L. MODICA Intervento di Luciano Modica, allievo di De Giorgi e Rettore dell' Universita` di Pisa. Confesso che quando Franco Bassani e Luigi Radicati mi hanno chiesto di prendere la parola oggi durante questo triste e solenne commiato acca- demico da Ennio De Giorgi, la mia prima reazione `e stata quella di tirarmi indietro, temendo che l' empito della commozione e dei ricordi dell' allie- vo sopraffacessero la partecipazione, certo commossa, ma necessariamente composta, di chi qui `e chiamato da Rettore a rappresentare l' Ateneo pisa- no e la sua comunita` di studenti e docenti. Se poi ho accettato, non `e stato perch´e, sono sicuro di superare questo timore, ma perch´e spero che tutti voi familiari, allievi, amici di Ennio, saprete comprendere e scusare l' emotivita` da cui forse non riusciro` ad evitare che sia pervaso il tono delle mie parole. Perch´e la vostra presenza in questo cortile, le cui soavi linee architettoniche tanto Ennio ha amato e che rimangono per tanti dei presenti indissolubil- mente legate alla loro giovinezza, non ha nulla del dovere accademico, se 2 L' ADDIO A UN GRANDE MATEMATICO non i suoi aspetti spirituali piu` alti, mentre invece vuole manifestare la ri- conoscenza e l' affetto tutti umani verso una persona accanto a cui abbiamo avuto il privilegio di trascorrere un periodo piu` o meno lungo, ma sempre indimenticabile, della nostra vita.
    [Show full text]
  • The Bernstein Theorem in Higher Dimensions
    The Bernstein Theorem in Higher Dimensions Umberto Massari,∗ Mario Mirandayand Michele Miranda Jr ∗ Dedicated to the memory of Guido Stampacchia Abstract. { In this work we have reconsidered the famous paper of Bombieri, De Gior- gi and Giusti [4] and, thanks to the software Mathematicar we made it possible for anybody to control the difficult computations. 1. { Introduction On April 27th, 1978, Guido Stampacchia died in Paris. His coffin arrived to Pisa for the Adieu Ceremonial, in the Courtyard of Scuola Normale. That day I was there, and I could not meet Ennio De Giorgi. The apparent absence of him seemed impossible to me, considering the lasting and close friendship between Ennio and Guido. Many years later, Sergio Spagnolo told me that Ennio remained, the whole duration of the Ceremonial, hidden in a corner of the building. The modesty did not permit Ennio to show around his sorrow. Guido had been a putative father for Ennio; he protected a younger and precious man, as long as he could. In March 1961, De Giorgi was invited to Paris for giving two talks. Stampacchia wanted to join him in the trip. There exists a beautiful picture of the two friends, on the Rive Gauche with N^otreDame behind them. A French mathematician told me that Stampacchia in Paris seemed to be the Assistant Professor of De Giorgi. He was wrong. Stampacchia had never been an academic servant. He could be said a devotee of Mathematics. In 1955 Guido pushed Ennio into studying the XIX Hilbert's Problem [5]. And, in 1968 Guido pushed Enrico Bombieri to work with De Giorgi.
    [Show full text]
  • Curriculum Vitae
    Umberto Mosco WPI Harold J. Gay Professor of Mathematics May 18, 2021 Department of Mathematical Sciences Phone: (508) 831-5074, Worcester Polytechnic Institute Fax: (508) 831-5824, Worcester, MA 01609 Email: [email protected] Curriculum Vitae Current position: Harold J. Gay Professor of Mathematics, Worcester Polytechnic Institute, Worcester MA, U.S.A. Languages: English, French, German, Italian (mother language) Specialization: Applied Mathematics Research Interests:: Fractal and Partial Differential Equations, Homog- enization, Finite Elements Methods, Stochastic Optimal Control, Variational Inequalities, Potential Theory, Convex Analysis, Functional Convergence. Twelve Most Relevant Research Articles 1. Time, Space, Similarity. Chapter of the book "New Trends in Differential Equations, Control Theory and Optimization, pp. 261-276, WSPC-World Scientific Publishing Company, Hackenseck, NJ, 2016. 2. Layered fractal fibers and potentials (with M.A.Vivaldi). J. Math. Pures Appl. 103 (2015) pp. 1198-1227. (Received 10.21.2013, Available online 11.4.2014). 3. Vanishing viscosity for fractal sets (with M.A.Vivaldi). Discrete and Con- tinuous Dynamical Systems - Special Volume dedicated to Louis Niren- berg, 28, N. 3, (2010) pp. 1207-1235. 4. Fractal reinforcement of elastic membranes (with M.A.Vivaldi). Arch. Rational Mech. Anal. 194, (2009) pp. 49-74. 5. Gauged Sobolev Inequalities. Applicable Analysis, 86, no. 3 (2007), 367- 402. 6. Invariant field metrics and dynamic scaling on fractals. Phys. Rev. Let- ters, 79, no. 21, Nov. (1997), pp. 4067-4070. 7. Variational fractals. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997) No. 3-4, pp. 683-712. 8. A Saint-Venant type principle for Dirichlet forms on discontinuous media (with M.
    [Show full text]
  • Opere Complete E Selecta)
    OPERE DI GRANDI MATEMATICI Da circa 45 anni, l’UMI cura la pubblicazione di Opere dei Grandi Matematici Italiani (Opere complete e Selecta). La pubblicazione viene decisa da parte della Commissione Scientifica dell’UMI, sentito il parere di una commissione da essa all’uopo costituita. (Ai Soci UMI sconto 20%) CESARE ARZELÀ (1847-1912) Opere Complete – Volume I 1992, pp.XXXIX+348, brossura f.to 17 cm x 24 cm Opere Complete – Volume II 1992, pp. VII+357, brossura f.to 17 cm x 24 cm Prezzo dei 2 volumi indivisibili € 49,90 Sono state raccolte, in due volumi, tutte le opere scientifiche di Cesare Arzelà. La ristampa degli scritti è preceduta da un saggio, dovuto a G. Letta, P.L. Papini e L. Pepe su «Cesare Arzelà e l’Analisi reale in Italia». I volumi sono corredati, oltre che dall’elenco delle pubblicazioni scientifiche, anche da una bibliografia scientifica riferentesi ad Arzelà, da una notizia di scritti su Cesare Arzelà e da un breve elenco delle onoranze che gli furono dedicate. L’indice dei nomi contenuto nel secondo volume completa l’opera. LUIGI BIANCHI (1856-1928) Vol. I -Aritmetica, Algebra e Analisi. Parte prima 1952, ristampa 2001, pp. 616, brossura f.to 17 cm x 24 cm € 33,90 Vol. II -Aritmetica, Algebra e Analisi. Parte seconda 1953, pp. 276, brossura f.to 17 cm x 24 cm € 25,10 Vol. II -Applicabilità e problemi di deformazioni 1953, pp. 338, brossura f.to 17 cm x 24 cm € 25,10 Vol. III -Sistemi tripli ed n-upli ortogonali e loro trasformazioni 1955, pp.
    [Show full text]
  • Regularity Properties of Two-Phase Free Boundary Problems
    Regularity properties of two-phase free boundary problems ERIK LINDGREN Doctoral Thesis Stockholm, Sweden 2009 TRITA-MAT-09-MA-07 KTH ISSN 1401-2278 Institutionen för Matematik ISRN KTH/MAT/DA 09/05-SE 100 44 Stockholm ISBN 978-91-7415-288-3 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan fram- lägges till offentlig granskning för avläggande av teknologie doktorsexamen i matematik fredagen den 5 juni 2009 kl 14.00 i sal F3, Kungl Tekniska högskolan, Lindstedtsvägen 26, Stockholm. c Erik Lindgren, 2009 Tryck: Universitetsservice US AB iii Abstract This thesis consists of four papers which are all related to the regularity prop- erties of free boundary problems. The problems considered have in common that they have some sort of two-phase behaviour. In papers I-III we study the interior regularity of different two-phase free bound- ary problems. Paper I is mainly concerned with the regularity properties of the free boundary, while in papers II and III we devote our study to the regularity of the function, but as a by-product we obtain some partial regularity of the free boundary. The problem considered in paper IV has a somewhat different nature. Here we are interested in certain approximations of the obstacle problem. Two major differences are that we study regularity properties close to the fixed boundary and that the problem converges to a one-phase free boundary problem. iv Sammanfattning Denna avhandling består av fyra artiklar i vilka vi studerar problem relaterade till frirandsproblem med två faser. Gemensamt för alla artiklar är att den nivåyta som studeras utgör varken ett minimum eller ett maximum för funktionen i fråga.
    [Show full text]
  • International School of Mathematics «Guido Stampacchia
    «ETTORE MAJORANA» FOUNDATION AND CENTRE FOR SCIENTIFIC CULTURE TO PAY A PERMANENT TRIBUTE TO GALILEO GALILEI, FOUNDER OF MODERN SCIENCE AND TO ENRICO FERMI, THE “ITALIAN NAVIGATOR”, FATHER OF THE WEAK FORCES INTERNATIONAL SCHOOL OF MATHEMATICS «GUIDO STAMPACCHIA» 61st Workshop: MULTIVARIATE APPROXIMATION AND INTERPOLATION WITH APPLICATIONS ERICE-SICILY: 25 – 30 SEPTEMBER 2013 Sponsored by the: • Italian Ministry of Education, University, and Research • Sicilian Regional Government • University of Milano-Bicocca (Dip. Matematica e Applicazioni) • University of Palermo (Dip. Ingegneria Chimica, Gestionale, Informatica, Meccanica) • University of Messina (Dip. Matematica e Informatica) • Istituto Nazionale di Alta Matematica • Italian Society for Applied and Industrial Mathematics • Selex, Sistemi Integrati, Finmeccanica PROGRAMME AND LECTURERS Modelling Geometric beyond NURBS Linear and Non-Linear Subdivision Schemes • K. JETTER, University of Hohenheim, Stuttgart, DE Numerical Methods on Manifolds • E. KNOBLOCH, Technische Universität Berlin, DE Multivariate Approximation and Interpolation • T. LYCHE, University of Oslo, NO Indo-Arab Numbering System • D. LEVIN, Tel-Aviv University, IL Numbers, numerals and numeral systems on computations • J.-L. MERRIEN, INSA, Rennes, FR • C. MANNI, University of Rome “Tor Vergata”, IT • N. AHMED, Université de Skikda, DZ • K. MØRKEN, University of Oslo, NO • R. BEATSON, University of Canterbury, NZ • Z. NASHED, University of Central Florida, Orlando, FL, US • C. BETTINI, Ministry of Defense, IT • P. OSWALD, Jacobs University Bremen, DE • L. BOS, University of Verona, IT • J.M. PEÑA, University of Zaragoza, Spain • M. BOZZINI, University of Milano-Bicocca, IT • F. PITOLLI, University of Rome “La Sapienza”, IT • J. CARNICER, University of Zaragoza, ES • C. RABUT, INSA, Toulouse, FR • C. CONTI, University of Florence, IT • C.S.
    [Show full text]
  • Arxiv:1907.02372V2 [Math.AP]
    OPTIMAL REGULARITY OF SOLUTIONS TO NO-SIGN OBSTACLE-TYPE PROBLEMS FOR THE SUB-LAPLACIAN VALENTINO MAGNANI AND ANDREAS MINNE 1,1 Abstract. We establish the optimal CH interior regularity of solutions to ∆H u = fχ{u6=0}, where ∆H denotes the sub-Laplacian operator in a stratified group. We assume the 1,1 weakest regularity condition on f, namely the group convolution f Γ is CH , where Γ is 1,1 ∗ the fundamental solution of ∆H . The CH regularity is understood in the sense of Folland and Stein. In the classical Euclidean setting, the first seeds of the above problem are already present in the 1991 paper of Sakai and are also related to quadrature domains. As a special instance of our results, when u is nonnegative and satisfies the above equation 1,1 we recover the CH regularity of solutions to the obstacle problem in stratified groups, that was previously established by Danielli, Garofalo and Salsa. Our regularity result is sharp: it can be seen as the subelliptic counterpart of the C1,1 regularity result due to Andersson, Lindgren and Shahgholian. 1. Introduction The main question we consider in this paper is the optimal interior regularity of distri- butional solutions to the no-sign obstacle-type problem (1.1) ∆H u = fχ{u6=0} on some domain of a stratified group G, see Section 2 for notation and terminology. In the Euclidean setting, the obstacle problem is among the most studied topics in the arXiv:1907.02372v2 [math.AP] 27 Jun 2021 field of Free Boundary Problems, see for instance the monographs by Rodrigues [Rod87], Friedman [Fri88], and Petrosyan et al.
    [Show full text]
  • Archivio Mauro Picone
    ARCHIVIO MAURO PICONE INVENTARIO a cura di Paola Cagiano de Azevedo Roma 2016 Mauro Picone (Palermo, 2 maggio 1885 –Roma, 11 aprile 1977) è stato un matematico italiano, fondatore e direttore dell’Istituto per le Applicazioni del Calcolo (IAC). Originario della Sicilia lasciò con la famiglia l’Isola nel 1889, per trasferirsi prima ad Arezzo e successivamente a Parma. Nel 1903 fu ammesso alla Scuola Normale Superiore di Pisa dove frequenta le lezioni di Ulisse Dini e Luigi Bianchi e e dove conobbe Eugenio Lia Levi. Si laureò nel 1907 e nel 1913 si trasferì al Politecnico di Torino come assistente di Meccanica razionale e di Analisi con Guido Fubini. Restò a Torino fino alla prima guerra. Dopo l'impegno bellico, nel 1919 viene chiamato quale professore incaricato di Analisi a Catania, dove ritorna nel 1921 come titolare (dopo una breve parentesi a Cagliari). Successivamente, dopo una breve permanenza a Pisa nel 1924-25, passa prima a Napoli e quindi nel 1932 a Roma, dove resterà fino al collocamento a riposo nel 1960. L’esperienza bellica fu molto importante per Mauro Picone; per le sue conoscenze matematiche, fu infatti incaricato dal comandante Federico Baistrocchi, di calcolare le tavole di tiro per l'utilizzo delle artiglierie pesanti nelle zone montane. Prima di allora, le uniche tavole di tiro disponibili, quelle per zone pianeggianti, erano del tutto inadeguate alle nuove alture e causavano anche gravi danni (si pensi al “fuoco amico Picone ottenne i risultati richiesti adeguando le vecchie tavole di Francesco Siacci (1839-1907) alle complesse condizioni geografiche del Trentino. Per questi meriti nel 1917 fu promosso capitano d’artiglieria e nel 1918 gli fu conferita la Croce di guerra, seguita dalla Croix de guerre francese.
    [Show full text]
  • Regularity of Free Boundaries in Obstacle-Type Problems
    Regularity of Free Boundaries in Obstacle-Type Problems Arshak Petrosyan Henrik Shahgholian Nina Uraltseva Graduate Studies in Mathematics Volume 136 American Mathematical Society Regularity of Free Boundaries in Obstacle-Type Problems http://dx.doi.org/10.1090/gsm/136 Regularity of Free Boundaries in Obstacle-Type Problems Arshak Petrosyan Henrik Shahgholian Nina Uraltseva Graduate Studies in Mathematics Volume 136 American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE David Cox (Chair) Daniel S. Freed Rafe Mazzeo Gigliola Staffilani 2010 Mathematics Subject Classification. Primary 35R35. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-136 Library of Congress Cataloging-in-Publication Data Petrosyan, Arshak, 1975– Regularity of free boundaries in obstacle-type problems / Arshak Petrosyan, Henrik Shahgho- lian, Nina Uraltseva. p. cm. — (Graduate studies in mathematics ; v. 136) Includes bibliographical references and index. ISBN 978-0-8218-8794-3 (alk. paper) 1. Boundaqry value problems. I. Shahgholian, Henrik, 1960– II. Uraltseva, N. N. (Nina Nikolaevna) III. Title. QA379.P486 2012 515.353—dc23 2012010200 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA.
    [Show full text]
  • GUIDO STAMPACCHIA Silvia Mazzone
    1 GUIDO STAMPACCHIA Silvia Mazzone 1. Formazione scientifica e prima attività di ricerca alla Scuola Normale Superiore di Pisa e all’Università di Napoli. Guido Stampacchia nasce a Napoli, nel quartiere Chiaia, il 26 marzo 1922 da Emanuele e Giulia Campagnano. Giulia, di religione ebraica,1 apparteneva ad una famiglia di origini fiorentine che aveva un laboratorio di biancheria ricamata a mano; gli Stampacchia, invece, erano una famiglia di origine leccese ed osservavano la religione valdese. Il papà, Emanuele, gestiva una fabbrica di ferramenta che sarà costretto a vendere al tempo della guerra in Etiopia, come conseguenza del suo rifiuto a prendere la tessera del partito fascista. Il giovane Guido riceve una educazione essenzialmente laica anche se, da bambino, insieme alle due sorelle frequenta la chiesa valdese. Egli consegue la maturità classica a 18 anni, nel 1940, al Liceo-Ginnasio Gian Battista Vico di Napoli riportando come unico voto di eccellenza 9 in matematica e fisica. Nonostante gli studi classici, aveva chiara l'intenzione di dedicarsi alla matematica e perciò aveva approfondito per suo conto la preparazione di matematica e di fisica studiando “i capisaldi del programma di Liceo Scientifico, cercando … di intravederne il processo logico”2. Nell’autunno del 1940 è ammesso come alunno interno alla Scuola Normale Superiore di Pisa, classe di Scienze, corso di laurea in matematica pura, essendo riuscito quinto al concorso3 e, nei tre anni successivi, supera brillantemente tutti gli esami previsti dal piano di studio assolvendo agli obblighi cui sono tenuti i normalisti. In particolare all’università ha come docenti Francesco Cecioni e Salvatore Cherubino per gli insegnamenti del primo biennio mentre il terzo anno frequenta il corso di Analisi superiore di Leonida Tonelli e quello di Teoria delle funzioni di Lamberto Cesari.
    [Show full text]
  • On an Equation from the Theory of Field Dislocation Mechanics Amit
    On an equation from the theory of field dislocation mechanics Amit ACHARYA & Luc TARTAR∗ to the memory of Professor Giovanni PRODI Abstract. Global existence and uniqueness results for a quasilinear system of partial differential equations in one space dimension and time representing the transport of dislocation density are obtained. Stationary solutions of the system are also studied, and an infinite dimensional class of equilibria is derived. These time (in)dependent solutions include both periodic and aperiodic spatial distributions of smooth fronts of plastic distortion representing dislocation twist boundary microstructure. Dominated by hyperbolic transport-like features and at the same time containing a large class of equilibria, our system differs qualitatively from regularized systems of hyperbolic conservation laws and neither does it fit into a gradient flow structure. Introduction. Since this article is written for a special issue of the Bolletino dell'Unione Matematica Italiana, in memory of Giovanni PRODI, the introduction is written in the first person, by the second author. During my second year as a graduate student, in Paris in 1968{1969, my advisor, Jacques-Louis LIONS, gave a course on nonlinear partial differential equations, and he wrote a book in this way [Li]. After a secretary had typed his handwritten notes, he asked me to proof-read one chapter at a time, and it was then that I first encountered the name of Giovanni PRODI, who was quoted for questions about Navier{Stokes equation. I had already taken the habit of reading very little, and I could not have read an article in Italian at the time, but I did not even try to read the joint work of Giovanni PRODI and my advisor, a note to the Comptes Rendus de l'Acad´emiedes Sciences, written in French, of course.
    [Show full text]
  • GUIDO STAMPACCHIA» 72Nd Workshop
    «ETTORE MAJORANA» FOUNDATION AND CENTRE FOR SCIENTIFIC CULTURE TO PAY A PERMANENT TRIBUTE TO ARCHIMEDES AND GALILEO GALILEI, FOUNDERS OF MODERN SCIENCE AND TO ENRICO FERMI, THE "ITALIAN NAVIGATOR", FATHER OF THE WEAK FORCES INTERNATIONAL SCHOOL OF MATHEMATICS «GUIDO STAMPACCHIA» 72nd Workshop: NEW TRENDS IN PROPAGATION OF LINEAR AND NONLINEAR WAVE PHENOMENA ERICE-SICILY: 2 – 7 SEPTEMBER 2019 Sponsored by the: Italian Ministry of Education, University and Scientific Research • Sicilian Regional Government • • ANR-16-CE40-0013 • ANR-18-CE40-0020-01 • I.U.F. • ERC 2014 669689 - HADE • University of Pisa • Istituto Nazionale di Alta Matematica (GNAMPA) PROGRAMME AND LECTURERS Dispersive Partial Differential Equations • L. FANELLI, Università di Roma “Sapienza”, IT Hamiltonian Partial Differential Equations with Random Data • R. FEOLA, Université de Nantes, FR Birkhoff Normal Forms and Kolmogorov-Arnold-Moser Theory • V. GEORGIEV, Università di Pisa, IT Invariant and Quasi Invariant Measures • F. IANDOLI, Université de Nice, FR Water Waves • A. MAIOCCHI, Università di Padova, IT • R. MONTALTO, Università di Milano, IT • R. ADAMI, Politecnico di Torino, IT • G. PONCE, University of California Santa Barbara, CA, US • V. BANICA, Université Paris VI, FR • M. PROCESI, Università di Roma III, IT • D. BAMBUSI, Università di Milano, IT • R. TRISTAN, University of Edinburgh, UK • P. D’ANCONA, Università di Roma “Sapienza”, IT • F. ROUSSET, Université d’Orsay, FR • J.-M. DELORT, Université Paris XIII, FR • C. SAFFIRIO, University of Zürich, CH • F. DE LA HOZ, Universidad del Pais Vasco, ES • C. SUN, Université de Cergy-Pontoise, FR • S. DOVETTA, Politecnico di Torino, IT • M. TARULLI, Technical University of Sofia, BG • F.
    [Show full text]