Regularity of Free Boundaries in Obstacle-Type Problems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Obstacle Problem in a Plane Domain with Two Solutions
An obstacle problem in a plane domain with two solutions Giovany M. Figueiredo Universidade Federal do Par´a- UFPA Faculdade de Matem´atica CEP 66075-110, Bel´em, PA, Brasil E-mail: [email protected] Marcelo Furtado Universidade de Bras´ılia - UNB Departamento de Matem´atica CEP 70910-900, Bras´ıla, DF, Brasil E-mail: [email protected] and Marcelo Montenegro Universidade Estadual de Campinas, IMECC, Departamento de Matem´atica, Rua S´ergio Buarque de Holanda, 651 CEP 13083-859, Campinas, SP, Brasil E-mail: [email protected] Abstract We prove the existence of two nontrivial solutions for the variational inequality RΩ ∇u∇(v − u) ≥ RΩ f(u)(v − u) for every v belonging to some convex set, where Ω ⊂ R2. The function f has critical exponential growth, 2 in the sense that it behaves like exp(α0s ) as |s|→∞, for some α0 > 0. We use variational methods for lower semicontinuous functionals. Mathematics Subject Classification: 35J60, 35J65, 35J85, 49J40, 35R35, 47J20. Keywords: obstacle problem, exponential critical growth, Trudinger-Moser inequality. 1 Introduction The obstacle problem arises in many branches as for example in the elasticity theory, in control games, minimal surfaces, constrained heating and financial mathematics [6]. In a simple version, one is lead to minimize the functional (u)= u 2dx J |∇ | ZΩ 1 in the set = u H1(Ω) : u = h on ∂Ω and u ζ a.e. in Ω , K { ∈ ≥ } where Ω RN is an open bounded domain with smooth boundary, h is a smooth function⊂ defined on ∂Ω and the obstacle ζ is a smooth function defined in Ω such that ζ ∂Ω < h. -
Regularity for Obstacle Problems in Infinite Dimensional Hilbert
Advances in Mathematics 220 (2009) 964–983 www.elsevier.com/locate/aim Regularity for obstacle problems in infinite dimensional Hilbert spaces Andrzej Swi¸´ ech a,1, Eduardo V. Teixeira b,∗,2 a School of Mathematics, Georgia Institute of Technology, Atlantla, GA 30332, USA b Universidade Federal do Ceará, Departamento de Matemática, Fortaleza, CE, Brazil Received 9 March 2007; accepted 20 October 2008 Available online 13 November 2008 Communicated by L. Caffarelli Abstract In this paper we study fully nonlinear obstacle-type problems in Hilbert spaces. We introduce the notion of Q-elliptic equation and prove existence, uniqueness, and regularity of viscosity solutions of Q-elliptic obstacle problems. In particular we show that solutions of concave problems with semiconvex obstacles are 2,∞ in the space WQ . © 2008 Elsevier Inc. All rights reserved. MSC: primary 49L25, 35R15, 35R35 Keywords: Obstacle-type problems; Optimal regularity; Fully nonlinear equations in Hilbert spaces; Viscosity solutions 1. Introduction Given an elastic membrane u attached to a fixed boundary ∂D, a classical problem in math- ematical physics asks for the equilibrium position of the membrane when it is constrained to lie above a given obstacle ϕ. Mathematically this problem can be formulated as follows. Given a domain D, a function g : ∂D → R (the deformation of the fixed boundary) and ϕ : D → R * Corresponding author. E-mail addresses: [email protected] (A. Swi¸´ ech), [email protected] (E.V. Teixeira). 1 Supported by NSF grant DMS 0500270. 2 Has been partially supported by NSF grant DMS 0600930 and CNPq. 0001-8708/$ – see front matter © 2008 Elsevier Inc. -
Classics in Mathematics Richard Courant· Fritz John Introduction To
Classics in Mathematics Richard Courant· Fritz John Introduction to Calculus and Analysis Volume I Springer-V erlag Berlin Heidelberg GmbH Richard Courant • Fritz John Introd uction to Calculus and Analysis Volume I Reprint of the 1989 Edition Springer Originally published in 1965 by Interscience Publishers, a division of John Wiley and Sons, Inc. Reprinted in 1989 by Springer-Verlag New York, Inc. Mathematics Subject Classification (1991): 26-XX, 26-01 Cataloging in Publication Data applied for Die Deutsche Bibliothek - CIP-Einheitsaufnahme Courant, Richard: Introduction to calcu1us and analysis / Richard Courant; Fritz John.- Reprint of the 1989 ed.- Berlin; Heidelberg; New York; Barcelona; Hong Kong; London; Milan; Paris; Singapore; Tokyo: Springer (Classics in mathematics) VoL 1 (1999) ISBN 978-3-540-65058-4 ISBN 978-3-642-58604-0 (eBook) DOI 10.1007/978-3-642-58604-0 Photograph of Richard Courant from: C. Reid, Courant in Gottingen and New York. The Story of an Improbable Mathematician, Springer New York, 1976 Photograph of Fritz John by kind permission of The Courant Institute of Mathematical Sciences, New York ISSN 1431-0821 This work is subject to copyright. All rights are reserved. whether the whole or part of the material is concemed. specifically the rights of trans1ation. reprinting. reuse of illustrations. recitation. broadcasting. reproduction on microfilm or in any other way. and storage in data banks. Duplication of this publication or parts thereof is permitted onlyunder the provisions of the German Copyright Law of September 9.1965. in its current version. and permission for use must always be obtained from Springer-Verlag. Violations are Iiable for prosecution under the German Copyright Law. -
Arxiv:1707.00992V1 [Math.AP] 4 Jul 2017
OBSTACLE PROBLEMS AND FREE BOUNDARIES: AN OVERVIEW XAVIER ROS-OTON Abstract. Free boundary problems are those described by PDEs that exhibit a priori unknown (free) interfaces or boundaries. These problems appear in Physics, Probability, Biology, Finance, or Industry, and the study of solutions and free boundaries uses methods from PDEs, Calculus of Variations, Geometric Measure Theory, and Harmonic Analysis. The most important mathematical challenge in this context is to understand the structure and regularity of free boundaries. In this paper we provide an invitation to this area of research by presenting, in a completely non-technical manner, some classical results as well as some recent results of the author. 1. Introduction Many problems in Physics, Industry, Finance, Biology, and other areas can be described by PDEs that exhibit apriori unknown (free) interfaces or boundaries. These are called Free Boundary Problems. A classical example is the Stefan problem, which dates back to the 19th century [54, 35]. It describes the melting of a block of ice submerged in liquid water. In the simplest case (the one-phase problem), there is a region where the temperature is positive (liquid water) and a region where the temperature is zero (the ice). In the former region the temperature function θ(t; x) solves the heat equation (i.e., θt = ∆θ in f(t; x): θ(t; x) > 0g), while in the other region the temperature θ is just zero. The position of the free boundary that separates the two regions is part of the problem, and is determined by an extra boundary condition on such interface 2 (namely, jrxθj = θt on @fθ > 0g). -
Partial Differential Equations
Rend. Lincei Mat. Appl. 20 (2009), 195–205 Partial Di¤erential Equations — A Calderon-Zygmund theory for infinite energy minima of some integral functionals,byLucio Boccardo, communicated on 8 May 2009. ‘‘. onore e lume vagliami ’l lungo studio e ’l grande amore che m’ha fatto cercar lo tuo volume.’’ (Inferno I, 82–84)1 Abstract. — A Calderon-Zygmund theory in Lebesgue and Marcinkiewicz spaces for infinite energy minima of some integral functionals is proved. Key words: Calderon-Zygmund theory; Infinite energy minima. AMS 2000 Mathematics Subject Classification: 49.10, 35J60. Acknowledgements This paper contains the unpublished part of the lecture held at the Conference ‘‘Recent Trends in Nonlinear Partial Di¤erential Equations (6.11.2008)’’. I would like to express my thanks to Accademia dei Lincei for the invitation to give a talk2 as a ‘‘tribute to Guido Stampacchia on the 30th anniversary of his death’’. 1. Introduction 1.1. Finite energy solutions. We recall the following regularity theorem by G. Stampacchia concerning solutions of linear Dirichlet problems in W, bounded subset of RN , N > 2, with right hand side a measurable function f ðxÞ. Consider a bounded elliptic matrix MðxÞ with ellipticity constant a > 0 and the related boundary value problem ÀdivðMðxÞDuÞ¼ f ðxÞ in W; ð1Þ u ¼ 0onqW: 1Always remembering (after 40 years) what I have learned from my teacher of ‘‘Istituzioni di Ana- lisi Superiore’’ and ‘‘Analisi Superiore’’ ([7] pg. 1, [8] pg. 1) 2... e piu´ d’onore ancora assai mi fenno, ch’e’ sı´ mi fecer de la loro schiera, sı´ ch’io fui sesto tra cotanto senno. -
Free Boundary Regularity in Obstacle Problems
Free boundary regularity in obstacle problems Alessio Figalli Abstract. These notes record and expand the lectures for the \Journ´ees Equations´ aux D´eriv´eesPartielles 2018" held by the author during the week of June 11-15, 2018. The aim is to give a overview of the classical theory for the obstacle problem, and then present some recent developments on the regularity of the free boundary. Contents 1. Introduction: the obstacle problem 1 2. The functional setting: existence and uniqueness 2 3. Euler-Lagrange equation and consequences 3 4. Optimal regularity 5 5. A new formulation of the obstacle problem 8 6. Non-degeneracy of solutions 9 7. Blow-up analysis and Caffarelli’s dichotomy 10 7.1. Regular free boundary points 11 7.2. Singular free boundary points 11 7.3. Caffarelli’s dichotomy theorem 13 8. Uniqueness of blow-up at singular points 16 9. Stratification and C1 regularity of the singular set 19 10. Recent developments 20 11. Future directions 24 Bibliography 25 1. Introduction: the obstacle problem The classical obstacle problem aims to describe the shape of an elastic membrane lying above an obstacle. n Mathematically, this problem can be described as follows: given a domain Ω ⊂ R , a function ' :Ω ! R (the obstacle), and a function f : @Ω ! R satisfying f ≥ 'j@Ω (the boundary condition), one wants to minimize the Dirichlet integral among all functions that coincide with f on @Ω and lie above the obstacle ' (see Figure 1). Hence, one is lead to minimize Z jrvj2 min : vj@Ω = f; v ≥ ' ; (1.1) v Ω 2 R jrvj2 where the Dirichlet integral Ω 2 represents the elastic energy of the membrane corre- sponding to the graph of v. -
Arxiv:1905.06146V5 [Math.AP] 5 Jun 2020
THE OBSTACLE PROBLEM FOR A CLASS OF DEGENERATE FULLY NONLINEAR OPERATORS JOAO˜ VITOR DA SILVA AND HERNAN´ VIVAS Abstract. We study the obstacle problem for fully nonlinear elliptic operators with an anisotropic degeneracy on the gradient: min f − |Du|γ F (D2u), u − φ = 0 in Ω u = g on ∂Ω for some degeneracy parameter γ ≥ 0, uniformly elliptic operator F , bounded source term f, and suitably smooth obstacle φ and boundary datum g. We obtain exis- tence/uniqueness of solutions and prove sharp regularity estimates at the free bound- ary points, namely ∂{u>φ} ∩ Ω. In particular, for the homogeneous case (f ≡ 0) we get that solutions are C1,1 at free boundary points, in the sense that they detach from the obstacle in a quadratic fashion, thus beating the optimal regularity allowed for such degenerate operators. We also prove several non-degeneracy properties of solutions and partial results regarding the free boundary. These are the first results for obstacle problems driven by degenerate type operators in non-divergence form and they are a novelty even for the simpler prototype given by an operator of the form G[u]= |Du|γ ∆u, with γ > 0 and f ≡ 1. 1. Introduction 1.1. Motivation and main proposals. A classical problem from Mathematical Physics refers to the equilibrium position of an elastic membrane (whose boundary is held fixed) lying on top of a given body (an obstacle) under the action of contact and/or action-at-a- distance forces, e.g. friction, tension, air resistance and gravity. Currently, this archetype model is often called an obstacle problem. -
L' Addio a Un Grande Matematico
CAPITOLO 1 L' ADDIO A UN GRANDE MATEMATICO Si riportano i discorsi pronunciati il 27 ottobre 1996 nel cortile della Scuola Normale Superiore di Pisa, in occasione del commiato accademico. Nello stesso giorno, presso la Chiesa di S. Frediano (Pisa) si `e tenuto il fu- nerale, officiato dal teologo Severino Dianich; il giorno dopo presso la Basilica di S. Croce (Lecce) il funerale `e stato officiato dall' Arcivescovo di Lecce, Cosmo Francesco Ruppi. 1.1 DISCORSO DI L. MODICA Intervento di Luciano Modica, allievo di De Giorgi e Rettore dell' Universita` di Pisa. Confesso che quando Franco Bassani e Luigi Radicati mi hanno chiesto di prendere la parola oggi durante questo triste e solenne commiato acca- demico da Ennio De Giorgi, la mia prima reazione `e stata quella di tirarmi indietro, temendo che l' empito della commozione e dei ricordi dell' allie- vo sopraffacessero la partecipazione, certo commossa, ma necessariamente composta, di chi qui `e chiamato da Rettore a rappresentare l' Ateneo pisa- no e la sua comunita` di studenti e docenti. Se poi ho accettato, non `e stato perch´e, sono sicuro di superare questo timore, ma perch´e spero che tutti voi familiari, allievi, amici di Ennio, saprete comprendere e scusare l' emotivita` da cui forse non riusciro` ad evitare che sia pervaso il tono delle mie parole. Perch´e la vostra presenza in questo cortile, le cui soavi linee architettoniche tanto Ennio ha amato e che rimangono per tanti dei presenti indissolubil- mente legate alla loro giovinezza, non ha nulla del dovere accademico, se 2 L' ADDIO A UN GRANDE MATEMATICO non i suoi aspetti spirituali piu` alti, mentre invece vuole manifestare la ri- conoscenza e l' affetto tutti umani verso una persona accanto a cui abbiamo avuto il privilegio di trascorrere un periodo piu` o meno lungo, ma sempre indimenticabile, della nostra vita. -
Fritz John, 1910–1994 an Elegant Construction of the Fundamental Solution for Par- Fritz John Died in New Rochelle, NY, on February 10, 1994
people.qxp 3/16/99 5:26 PM Page 255 Mathematics People Mathematics of the AMS and the Society for Industrial and Moser Receives Wolf Prize Applied Mathematics (1968), the Craig Watson Medal of Jürgen Moser of the Eidgenössische Technische Hochschule the U.S. National Academy of Sciences (1969), the John von in Zürich will receive the 1994–1995 Wolf Prize in Mathe- Neumann Lectureship of SIAM (1984), the L. E. J. Brouwer matics. The noted German mathematician will be honored Medal (1984), an Honorary Professorship at the Instituto with the $100,000 award by the Israel-based Wolf Foun- de Matematica Pura e Applicada (1989), and an honorary dation for his “fundamental work on stability in Hamil- doctorate from the University of Bochum (1990). Moser is tonian mechanics and his profound and influential con- a member of the U.S. National Academy of Sciences. tributions to nonlinear differential equations.” The 1994–1995 Wolf Prizes will be presented in March —from Wolf Foundation News Release by the president of Israel, Ezer Weizman, at the Knesset (Parliament) building in Jerusalem. A total of $600,000 will be awarded for outstanding achievements in the fields Aisenstadt Prizes Announced of agriculture, chemistry, physics, medicine, the arts, and mathematics. The Wolf Foundation was established by the The Centre de Recherches Mathématiques in Montreal has late Ricardo Wolf, an inventor, diplomat, and philanthropist. announced that the third and fourth André Aisenstadt Among Moser’s most important achievements is his Mathematics Prizes have been awarded to Nigel D. Hig- role in the development of KAM (Kolmogorov-Arnold- son of Pennsylvania State University and Michael J. -
The Bernstein Theorem in Higher Dimensions
The Bernstein Theorem in Higher Dimensions Umberto Massari,∗ Mario Mirandayand Michele Miranda Jr ∗ Dedicated to the memory of Guido Stampacchia Abstract. { In this work we have reconsidered the famous paper of Bombieri, De Gior- gi and Giusti [4] and, thanks to the software Mathematicar we made it possible for anybody to control the difficult computations. 1. { Introduction On April 27th, 1978, Guido Stampacchia died in Paris. His coffin arrived to Pisa for the Adieu Ceremonial, in the Courtyard of Scuola Normale. That day I was there, and I could not meet Ennio De Giorgi. The apparent absence of him seemed impossible to me, considering the lasting and close friendship between Ennio and Guido. Many years later, Sergio Spagnolo told me that Ennio remained, the whole duration of the Ceremonial, hidden in a corner of the building. The modesty did not permit Ennio to show around his sorrow. Guido had been a putative father for Ennio; he protected a younger and precious man, as long as he could. In March 1961, De Giorgi was invited to Paris for giving two talks. Stampacchia wanted to join him in the trip. There exists a beautiful picture of the two friends, on the Rive Gauche with N^otreDame behind them. A French mathematician told me that Stampacchia in Paris seemed to be the Assistant Professor of De Giorgi. He was wrong. Stampacchia had never been an academic servant. He could be said a devotee of Mathematics. In 1955 Guido pushed Ennio into studying the XIX Hilbert's Problem [5]. And, in 1968 Guido pushed Enrico Bombieri to work with De Giorgi. -
Curriculum Vitae
Umberto Mosco WPI Harold J. Gay Professor of Mathematics May 18, 2021 Department of Mathematical Sciences Phone: (508) 831-5074, Worcester Polytechnic Institute Fax: (508) 831-5824, Worcester, MA 01609 Email: [email protected] Curriculum Vitae Current position: Harold J. Gay Professor of Mathematics, Worcester Polytechnic Institute, Worcester MA, U.S.A. Languages: English, French, German, Italian (mother language) Specialization: Applied Mathematics Research Interests:: Fractal and Partial Differential Equations, Homog- enization, Finite Elements Methods, Stochastic Optimal Control, Variational Inequalities, Potential Theory, Convex Analysis, Functional Convergence. Twelve Most Relevant Research Articles 1. Time, Space, Similarity. Chapter of the book "New Trends in Differential Equations, Control Theory and Optimization, pp. 261-276, WSPC-World Scientific Publishing Company, Hackenseck, NJ, 2016. 2. Layered fractal fibers and potentials (with M.A.Vivaldi). J. Math. Pures Appl. 103 (2015) pp. 1198-1227. (Received 10.21.2013, Available online 11.4.2014). 3. Vanishing viscosity for fractal sets (with M.A.Vivaldi). Discrete and Con- tinuous Dynamical Systems - Special Volume dedicated to Louis Niren- berg, 28, N. 3, (2010) pp. 1207-1235. 4. Fractal reinforcement of elastic membranes (with M.A.Vivaldi). Arch. Rational Mech. Anal. 194, (2009) pp. 49-74. 5. Gauged Sobolev Inequalities. Applicable Analysis, 86, no. 3 (2007), 367- 402. 6. Invariant field metrics and dynamic scaling on fractals. Phys. Rev. Let- ters, 79, no. 21, Nov. (1997), pp. 4067-4070. 7. Variational fractals. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997) No. 3-4, pp. 683-712. 8. A Saint-Venant type principle for Dirichlet forms on discontinuous media (with M. -
Opere Complete E Selecta)
OPERE DI GRANDI MATEMATICI Da circa 45 anni, l’UMI cura la pubblicazione di Opere dei Grandi Matematici Italiani (Opere complete e Selecta). La pubblicazione viene decisa da parte della Commissione Scientifica dell’UMI, sentito il parere di una commissione da essa all’uopo costituita. (Ai Soci UMI sconto 20%) CESARE ARZELÀ (1847-1912) Opere Complete – Volume I 1992, pp.XXXIX+348, brossura f.to 17 cm x 24 cm Opere Complete – Volume II 1992, pp. VII+357, brossura f.to 17 cm x 24 cm Prezzo dei 2 volumi indivisibili € 49,90 Sono state raccolte, in due volumi, tutte le opere scientifiche di Cesare Arzelà. La ristampa degli scritti è preceduta da un saggio, dovuto a G. Letta, P.L. Papini e L. Pepe su «Cesare Arzelà e l’Analisi reale in Italia». I volumi sono corredati, oltre che dall’elenco delle pubblicazioni scientifiche, anche da una bibliografia scientifica riferentesi ad Arzelà, da una notizia di scritti su Cesare Arzelà e da un breve elenco delle onoranze che gli furono dedicate. L’indice dei nomi contenuto nel secondo volume completa l’opera. LUIGI BIANCHI (1856-1928) Vol. I -Aritmetica, Algebra e Analisi. Parte prima 1952, ristampa 2001, pp. 616, brossura f.to 17 cm x 24 cm € 33,90 Vol. II -Aritmetica, Algebra e Analisi. Parte seconda 1953, pp. 276, brossura f.to 17 cm x 24 cm € 25,10 Vol. II -Applicabilità e problemi di deformazioni 1953, pp. 338, brossura f.to 17 cm x 24 cm € 25,10 Vol. III -Sistemi tripli ed n-upli ortogonali e loro trasformazioni 1955, pp.