Generalized derivatives for the solution operator of the obstacle problem Anne-Therese Rauls∗ Gerd Wachsmuth† June 14, 2018 We characterize generalized derivatives of the solution operator of the obstacle problem. This precise characterization requires the usage of the theory of so-called capacitary measures and the associated solution operators of relaxed Dirichlet problems. The generalized derivatives can be used to obtain a novel necessary optimality condition for the optimal control of the obstacle problem with control constraints. A comparison shows that this system is stronger than the known system of C-stationarity. Keywords: obstacle problem, generalized derivative, capacitary measure, relaxed Dirich- let problem, C-stationarity MSC: 49K40, 47J20, 49J52, 58C20 1 Introduction We consider the obstacle problem Find y ∈ K : h−∆y − u, z − yi ≥ 0 ∀z ∈ K. (1) d 1 Here, Ω ⊂ R is a bounded, open set and the closed, convex set K ⊂ H0 (Ω) is given by 1 K := {v ∈ H0 (Ω) | v ≥ ψ q.e. on Ω}, where ψ :Ω → [−∞, ∞) is a given quasi upper-semicontinuous function. We assume K 6= ∅. It is well known that for each u ∈ H−1(Ω) there exists a unique solution arXiv:1806.05052v1 [math.OC] 13 Jun 2018 ∗Technische Universität Darmstadt, Department of Mathematics, Research Group Optimiza- tion, 64293 Darmstadt, Germany, http://www3.mathematik.tu-darmstadt.de/hp/ag-optimierung/ rauls-anne-therese/startseite.html,
[email protected] †Brandenburgische Technische Universität Cottbus-Senftenberg, Institute of Mathematics, Chair of Optimal Control, 03046 Cottbus, Germany, https://www.b-tu.de/fg-optimale-steuerung,
[email protected] 1 1 −1 1 y := S(u) ∈ H0 (Ω) of (1).