An Overview of the Obstacle Problem

Total Page:16

File Type:pdf, Size:1020Kb

An Overview of the Obstacle Problem An Overview of the Obstacle Problem Donatella Danielli 1. Introduction air, or water and ice. In addition to the usually prescribed Free Boundary Problems naturally occur in physics and en- initial and boundary values, other conditions, arising from gineering when a conserved quantity or relation changes the physical laws governing the model, are imposed at the discontinuously across some value of the variables under free boundary. Since in general, with few exceptions, it is consideration. In mathematical terms, they consist in solv- impossible to explicitly determine the solution and the un- ing partial differential equations (PDEs) in a domain, a derlying domain, the ultimate goal consists in establishing part of whose boundary is a priori unknown, and which analytic and geometric properties for both. In the past few has to be determined as part of the problem. Said portion decades this area of research has seen deep and broad ad- of the boundary is called the free boundary, and in models vancements, due to the assimilation of problems coming it appears, for instance, as the interface between a fluid and from other applied sciences, such as finance, mathematical biology, and population dynamics, just to name a few. Its Donatella Danielli is a professor of mathematics at Purdue University. Her development has been intrinsically intertwined with the email address is [email protected]. theory of Variational Inequalities, born in Italy in the early Communicated by Notices Associate Editor Daniela De Silva. 1960s. Its founding fathers were Guido Stampacchia, who was motivated by questions in potential theory, and Gae- For permission to reprint this article, please contact: [email protected]. tano Fichera, who instead was interested in problems in elasticity with unilateral constraints (more on this later...). DOI: https://doi.org/10.1090/noti2165 NOVEMBER 2020 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1487 functional 퐽(푣) is continuous and strictly convex on the convex set 풦, the existence and uniqueness of minimizers are guaranteed. The obstacle problem can be reformulated as a Varia- tional Inequality on 푊 1,2(Ω). In fact, solving the obstacle problem is equivalent to determining a function 푢 ∈ 풦 such that ∫ ∇푢 ⋅ ∇(푣 − 푢) 푑푥 ≥ 0 for all 푣 ∈ 풦. Ω Figure 1. Example of an obstacle problem. Standard variational arguments show that the solution is harmonic away from the contact set, or Over the years, Variational Inequalities have become an essential tool in various sectors of applied mathematics. Δ푢 = 0 in {푢 > 휙}, From a more theoretical standpoint, they appear in the Cal- culus of Variations when a function is minimized over a set and superharmonic on the contact set, i.e., of constraints, giving rise to a set of differential inequal- Δ푢 ≤ 0 in {푢 = 휙}. ities which replace the classical Euler-Lagrange equation. Free Boundary Problems and Variational Inequalities have Hence, the solution is a superharmonic function in Ω, in generated new and exciting ideas based on the interplay of the sense of distributions. Based on these considerations, methods from PDEs, the Calculus of Variations, Geomet- we can rewrite the obstacle problem in yet another way, ric Measure Theory, and Mathematical Modeling. One of namely as the main driving forces behind the development of their min{−Δ푢, 푢 − 휑} = 0, (1) theory has been the study of the obstacle problem. subject to the boundary condition 푢|휕Ω = 푓(푥). 2. The Classical Theory Two natural questions arise at this point: In its classical formulation, the obstacle problem consists 1. How regular is the function 푢? in finding the equilibrium configuration of an elastic mem- 2. What are the geometric properties of the contact brane whose boundary is held fixed, and which is con- set? Is the free boundary a smooth surface? strained to lie above a given obstacle. Mathematically, we Concerning the first question, it was shown in [Fre72] that seek to minimize the Dirichlet energy the solution is in 퐶1,1(Ω) (assuming that 휑 is at least in the same class), i.e., it has bounded second derivatives. It 2 퐽(푣) = ∫ |∇푣| is readily verified that such regularity is optimal. Heuristi- Ω cally, Δ푢 jumps from 0 on the set where 푢 is detached from in a domain Ω ⊂ ℝ푛, among all configurations 푣(푥) (repre- 휑, to Δ휑 on the contact set, and therefore it is unreasonable senting the vertical displacement of the membrane) with to expect continuity of the second derivatives. prescribed boundary values 푣| = 푓(푥), and constrained 휕Ω The second question is significantly more delicate and to remain above the obstacle 휑(푥), that is, in the class complex. Before we begin to outline the key steps in its an- 1,2 풦 = {푣 ∈ 푊 (Ω) | 푣|휕Ω = 푓(푥), 푣 ≥ 휑}, swer, let us mention that from the point of view of appli- given the compatibility condition 휑 ≤ 푓 on 휕Ω. We will cations, smoothness properties of the interface are crucial denote by 푢 the solution of this minimization problem. to develop, for instance, robust numerical methods. The The domain Ω then breaks down into a region where 푢 first fundamental accomplishment in this direction isdue coincides with the obstacle function, known as the contact to D. Kinderlehrer and L. Nirenberg [KN77], who showed 1 set, and a region where the solution is above the obstacle. that 퐶 free boundaries are, in fact, analytic. Applicabil- The free boundary is defined as the topological boundary of ity of this result, however, rests on the initial knowledge the contact set, that is, of a certain degree of smoothness, whereas a priori the in- terface could be a very irregular object. The breakthrough ℱ(푢) = 휕{푥 ∈ Ω | 푢(푥) = 휑(푥)}. came from the seminal paper [Caf77], where L. Caffarelli, We explicitly observe that, as it often happens in the Calcu- inspired by De Giorgi’s approach for the regularity of area- lus of Variations, searching for solutions in an apparently minimizing surfaces, introduced one of the most trans- natural but too narrow family of admissible functions may formative ideas in the theory of free boundary problems, produce no results. This justifies the choice of the class of namely the use of blow-up arguments. In layman’s terms, competitors as the Sobolev space 푊 1,2(Ω), endowed with they consist in zooming in on a fixed free boundary point, the inner product ⟨푢, 푣⟩ = ∫Ω (푢푣 + ∇푢 ⋅ ∇푣) 푑푥. Since the as if using a magnifying glass, and observing the properties 1488 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 67, NUMBER 10 of the free boundary at a very large scale. The mathemati- As one may surmise from the nomenclature, the objec- cal tool corresponding to the magnifying glass is the rescal- tive is now to show that the free boundary can be expressed ing (see Figure 2). To illustrate its workings, we follow here as a smooth hypersurface in a neighborhood of a regular point, whereas smoothness is not expected around a sin- gular one. Cusp-like or pinched bottleneck singularities, in fact, may occur even when the obstacle is smooth. The main difficulty in the study of the free boundary atthis point lies in transferring the information acquired on the shape of the blow-ups back to the original configuration. In principle, in fact, a point 푥0 ∈ ℱ(푢) could be regular and singular at the same time, depending on the choice of the subsequence 푟푗 taken to pass to the limit. Geometric considerations, however, prove that this is not possible. Figure 2. The effect of rescaling. ∗ 1 + 2 In case (i), to fix ideas assume 푢 (푥) = (푥푛 ) . The new 2 ∗ contact set {푢 = 0} is the half-space {푥푛 ≤ 0} and there- the approach in [Caf98]. First of all, we reduce the prob- fore, undoing the rescaling, one can see that the original lem to a zero-obstacle one by replacing 푢 with 푤 = 푢 − 휑. contact set {푢 = 0} has positive Lebesgue density at 푥0, that Then, in the region {푤 > 0}, one has is, |퐵 (푥 ) ∩ {푢 = 0}| Δ푤 = Δ(푢 − 휑) = −Δ휑 ∶= 푔(푥). 푟 0 lim sup 푛 > 0. 푟→0+ 푟 For the sake of simplicity we will assume 푔(푥) ≡ 1, and con- This is a very stable situation, in the sense that the flatness tinue to denote the solution to this normalized problem of the free boundary for 푢∗ (namely the hyperplane {푥 = by 푢. The starting point is the observation that 푢 exhibits 푛 0}) translates into “almost-flatness” of the free boundary quadratic growth near a free boundary point 푥 ∈ ℱ(푢). 0 of the rescaled functions 푢 for 푟 sufficiently small, and More precisely, there exist two constants 푐, 퐶 > 0 such that 푟 thus for 푢 at a small scale. More precisely, for 휎 > 0 and 2 2 푐푟 ≤ sup 푢 ≤ 퐶푟 , (2) 0 < 푟 < 푟휍 it holds that 퐵푟(푥0) ℱ(푢 ) ∩ 퐵 (푥 ) ⊂ {|푥 | < 휎}. 푛 푟 1/2 0 푛 (5) where 퐵푟(푥0) = {푥 ∈ ℝ | |푥 − 푥0| < 푟}. This estimate suggests the following family of rescaled functions: The first step in establishing the smoothness of the free boundary is to prove its Lipschitz regularity. This easily 1 푢 (푥) = 푢(푥 + 푟푥) (3) follows from the fact that the directional derivatives 휕 푢 푟 푟2 0 푒 are nonnegative near a regular point for 푒 in a cone of di- for 푟 > 0. The boundedness of the second derivatives rections of 푢 allows one to apply the classical compactness result 퐶 = {푥 ∈ ℝ푛 | 푥 > 훿|푥′|}, of Ascoli-Arzelà. We thus infer that, possibly passing to 훿 푛 + with 푥′ = (푥 , … , 푥 ) and 0 < 훿 < 1; see Fig- a subsequence 푟푗 → 0 , 푢푟(푥) converges to a function 1 푛−1 푢∗(푥), called a blow-up limit (or simply blow-up) relative to ure 4.
Recommended publications
  • An Obstacle Problem in a Plane Domain with Two Solutions
    An obstacle problem in a plane domain with two solutions Giovany M. Figueiredo Universidade Federal do Par´a- UFPA Faculdade de Matem´atica CEP 66075-110, Bel´em, PA, Brasil E-mail: [email protected] Marcelo Furtado Universidade de Bras´ılia - UNB Departamento de Matem´atica CEP 70910-900, Bras´ıla, DF, Brasil E-mail: [email protected] and Marcelo Montenegro Universidade Estadual de Campinas, IMECC, Departamento de Matem´atica, Rua S´ergio Buarque de Holanda, 651 CEP 13083-859, Campinas, SP, Brasil E-mail: [email protected] Abstract We prove the existence of two nontrivial solutions for the variational inequality RΩ ∇u∇(v − u) ≥ RΩ f(u)(v − u) for every v belonging to some convex set, where Ω ⊂ R2. The function f has critical exponential growth, 2 in the sense that it behaves like exp(α0s ) as |s|→∞, for some α0 > 0. We use variational methods for lower semicontinuous functionals. Mathematics Subject Classification: 35J60, 35J65, 35J85, 49J40, 35R35, 47J20. Keywords: obstacle problem, exponential critical growth, Trudinger-Moser inequality. 1 Introduction The obstacle problem arises in many branches as for example in the elasticity theory, in control games, minimal surfaces, constrained heating and financial mathematics [6]. In a simple version, one is lead to minimize the functional (u)= u 2dx J |∇ | ZΩ 1 in the set = u H1(Ω) : u = h on ∂Ω and u ζ a.e. in Ω , K { ∈ ≥ } where Ω RN is an open bounded domain with smooth boundary, h is a smooth function⊂ defined on ∂Ω and the obstacle ζ is a smooth function defined in Ω such that ζ ∂Ω < h.
    [Show full text]
  • On Variational Inequalities in Semi-Inner Product Spaces
    TAMKANG JOURNAL OF MATHEMATICS Volume 24, Number 1, Spring 1993 ON VARIATIONAL INEQUALITIES IN SEMI-INNER PRODUCT SPACES MUHAMMAD ASLAM NOOR Abstract. In this paper, we consider and study the variational inequal• ities in the setting of semi-inner product spaces. Using the auxiliary principle, we propose and analyze an innovative and novel iterative al• gorithm for finding the approximate solution of variational inequalities. We also discuss the convergence criteria. 1. Introduction Variational inequality theory has been used to study a wide class of free, moving and equilibrium problems arising in various branches of pure and applied science in a general and unified framework. This theory has been extended and generalized in several directions using new and powerful methods that have led to the solution of basic and fundamental problems thought to be inaccessible previously. Much work in this field has been done either in inner product spaces or in Hilbert spaces and it is generally thought that this is desirable, if not essential, for the results to hold. We, in this paper, consider and study the variational inequalities in the setting of semi-inner product spaces, which are more general than the inner product space. It is observed that the projection technique can not be applied to show that the variational inequality problem is Received January 6, 1991; revised March 20, 1992. (1980) AMS(MOS) Subject Classifications: 49J40, 65K05. Keywords and phrases: Variational inequalities, Auxiliary principle, Iterative algorithms, Semi-inner product spaces. 91 92 MUHAMMAD ASLAM NOOR equivalent to a fixed point problem in semi-inner product spaces. This motivates us to use the auxiliary principle technique to suggest and analyze an iterative algorithm to compute the approximate solution of variational inequalities.
    [Show full text]
  • Regularity for Obstacle Problems in Infinite Dimensional Hilbert
    Advances in Mathematics 220 (2009) 964–983 www.elsevier.com/locate/aim Regularity for obstacle problems in infinite dimensional Hilbert spaces Andrzej Swi¸´ ech a,1, Eduardo V. Teixeira b,∗,2 a School of Mathematics, Georgia Institute of Technology, Atlantla, GA 30332, USA b Universidade Federal do Ceará, Departamento de Matemática, Fortaleza, CE, Brazil Received 9 March 2007; accepted 20 October 2008 Available online 13 November 2008 Communicated by L. Caffarelli Abstract In this paper we study fully nonlinear obstacle-type problems in Hilbert spaces. We introduce the notion of Q-elliptic equation and prove existence, uniqueness, and regularity of viscosity solutions of Q-elliptic obstacle problems. In particular we show that solutions of concave problems with semiconvex obstacles are 2,∞ in the space WQ . © 2008 Elsevier Inc. All rights reserved. MSC: primary 49L25, 35R15, 35R35 Keywords: Obstacle-type problems; Optimal regularity; Fully nonlinear equations in Hilbert spaces; Viscosity solutions 1. Introduction Given an elastic membrane u attached to a fixed boundary ∂D, a classical problem in math- ematical physics asks for the equilibrium position of the membrane when it is constrained to lie above a given obstacle ϕ. Mathematically this problem can be formulated as follows. Given a domain D, a function g : ∂D → R (the deformation of the fixed boundary) and ϕ : D → R * Corresponding author. E-mail addresses: [email protected] (A. Swi¸´ ech), [email protected] (E.V. Teixeira). 1 Supported by NSF grant DMS 0500270. 2 Has been partially supported by NSF grant DMS 0600930 and CNPq. 0001-8708/$ – see front matter © 2008 Elsevier Inc.
    [Show full text]
  • Arxiv:1707.00992V1 [Math.AP] 4 Jul 2017
    OBSTACLE PROBLEMS AND FREE BOUNDARIES: AN OVERVIEW XAVIER ROS-OTON Abstract. Free boundary problems are those described by PDEs that exhibit a priori unknown (free) interfaces or boundaries. These problems appear in Physics, Probability, Biology, Finance, or Industry, and the study of solutions and free boundaries uses methods from PDEs, Calculus of Variations, Geometric Measure Theory, and Harmonic Analysis. The most important mathematical challenge in this context is to understand the structure and regularity of free boundaries. In this paper we provide an invitation to this area of research by presenting, in a completely non-technical manner, some classical results as well as some recent results of the author. 1. Introduction Many problems in Physics, Industry, Finance, Biology, and other areas can be described by PDEs that exhibit apriori unknown (free) interfaces or boundaries. These are called Free Boundary Problems. A classical example is the Stefan problem, which dates back to the 19th century [54, 35]. It describes the melting of a block of ice submerged in liquid water. In the simplest case (the one-phase problem), there is a region where the temperature is positive (liquid water) and a region where the temperature is zero (the ice). In the former region the temperature function θ(t; x) solves the heat equation (i.e., θt = ∆θ in f(t; x): θ(t; x) > 0g), while in the other region the temperature θ is just zero. The position of the free boundary that separates the two regions is part of the problem, and is determined by an extra boundary condition on such interface 2 (namely, jrxθj = θt on @fθ > 0g).
    [Show full text]
  • Free Boundary Regularity in Obstacle Problems
    Free boundary regularity in obstacle problems Alessio Figalli Abstract. These notes record and expand the lectures for the \Journ´ees Equations´ aux D´eriv´eesPartielles 2018" held by the author during the week of June 11-15, 2018. The aim is to give a overview of the classical theory for the obstacle problem, and then present some recent developments on the regularity of the free boundary. Contents 1. Introduction: the obstacle problem 1 2. The functional setting: existence and uniqueness 2 3. Euler-Lagrange equation and consequences 3 4. Optimal regularity 5 5. A new formulation of the obstacle problem 8 6. Non-degeneracy of solutions 9 7. Blow-up analysis and Caffarelli’s dichotomy 10 7.1. Regular free boundary points 11 7.2. Singular free boundary points 11 7.3. Caffarelli’s dichotomy theorem 13 8. Uniqueness of blow-up at singular points 16 9. Stratification and C1 regularity of the singular set 19 10. Recent developments 20 11. Future directions 24 Bibliography 25 1. Introduction: the obstacle problem The classical obstacle problem aims to describe the shape of an elastic membrane lying above an obstacle. n Mathematically, this problem can be described as follows: given a domain Ω ⊂ R , a function ' :Ω ! R (the obstacle), and a function f : @Ω ! R satisfying f ≥ 'j@Ω (the boundary condition), one wants to minimize the Dirichlet integral among all functions that coincide with f on @Ω and lie above the obstacle ' (see Figure 1). Hence, one is lead to minimize Z jrvj2 min : vj@Ω = f; v ≥ ' ; (1.1) v Ω 2 R jrvj2 where the Dirichlet integral Ω 2 represents the elastic energy of the membrane corre- sponding to the graph of v.
    [Show full text]
  • Signorini Conditions for Inviscid Fluids
    Signorini conditions for inviscid fluids by Yu Gu A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Science in Computer Science Waterloo, Ontario, Canada, 2021 c Yu Gu 2021 Author's Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract In this thesis, we present a new type of boundary condition for the simulation of invis- cid fluids { the Signorini boundary condition. The new condition models the non-sticky contact of a fluid with other fluids or solids. Euler equations with Signorini boundary conditions are analyzed using variational inequalities. We derived the weak form of the PDEs, as well as an equivalent optimization based formulation. We proposed a finite el- ement method to numerically solve the Signorini problems. Our method is based on a staggered grid and a level set representation of the fluid surfaces, which may be plugged into an existing fluid solver. We implemented our algorithm and tested it with some 2D fluid simulations. Our results show that the Signorini boundary condition successfully models some interesting contact behavior of fluids, such as the hydrophobic contact and the non-coalescence phenomenon. iii Acknowledgements I would like to thank my supervisor professor Christopher Batty. During my study at University of Waterloo, I was able to freely explore any idea that interests me and always get his support and helpful guidance.
    [Show full text]
  • A Stefan-Signorini Problem *
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF DIFFERENTIAL EQUATIONS 5 1, 213-23 1 (1984) A Stefan-Signorini Problem * AVNER FRIEDMAN Northwestern University, Evanston, Illinois 60201 AND LI-SHANG JIANG Peking University, Peking, China Received April 21, 1982 Consider a one-dimensional slab of ice occupying an interval 0 <x <L. The initial temperature of the ice is GO. Heat enters from the left at a rate q(t). As the temperature at x = 0 increases to 0°C the ice begins to melt. We assume that the resulting water is immediately removed. The ice stops melting when the temperature at its left endpoint becomes strictly negative; due to the flow of heat q(t) melting will resume after a while, the resulting water is again immediately removed, etc. This physical problem was studied by Landau [4] and Lotkin [5], who obtained some numerical results. In this paper we shall formulate the above model as a Stefan problem with Signorini boundary conditions at the moving boundary. We shall establish existence and uniqueness theorems and study regularity and some geometric features of the free boundary. In Section we state an existence theorem; the proof is given in Sections 2 and 3. In Section 4 we prove a uniqueness theorem. In Section 5 we estimate the number of vertical segments of the free boundary. Finally, in Section 6 it is shown that the free boundary is in general not in Clta for CL> f; it is always in C312.
    [Show full text]
  • Quadratic Finite Element Approximation of the Signorini Problem
    MATHEMATICS OF COMPUTATION Volume 72, Number 241, Pages 83{104 S 0025-5718(01)01413-2 Article electronically published on December 5, 2001 QUADRATIC FINITE ELEMENT APPROXIMATION OF THE SIGNORINI PROBLEM Z. BELHACHMI AND F. BEN BELGACEM Abstract. Applying high order finite elements to unilateral contact varia- tional inequalities may provide more accurate computed solutions, compared with linear finite elements. Up to now, there was no significant progress in the mathematical study of their performances. The main question is involved with the modeling of the nonpenetration Signorini condition on the discrete solution along the contact region. In this work we describe two nonconform- ing quadratic finite element approximations of the Poisson-Signorini problem, responding to the crucial practical concern of easy implementation, and we present the numerical analysis of their efficiency. By means of Falk's Lemma we prove optimal and quasi-optimal convergence rates according to the regu- larity of the exact solution. 1. Introduction and functional tools Contact problems are in the heart of a high number of mechanical structures and also have a great importance in hydrostatics and thermostatics. Among them, unilateral contact, typically represented by Signorini's model, causes some specific difficulties, on both theoretical and approximation grounds. We refer to [11], [13] and [19] for mathematical foundation. Much attention has been devoted to the nu- merical simulation of variational inequalities modeling unilateral contact, by finite elements, either from the accuracy point of view (see [16], [18], [24] and refer- ences therein) or for developing efficient algorithms to solve the final minimization problem (see [13], [2]).
    [Show full text]
  • Arxiv:1905.06146V5 [Math.AP] 5 Jun 2020
    THE OBSTACLE PROBLEM FOR A CLASS OF DEGENERATE FULLY NONLINEAR OPERATORS JOAO˜ VITOR DA SILVA AND HERNAN´ VIVAS Abstract. We study the obstacle problem for fully nonlinear elliptic operators with an anisotropic degeneracy on the gradient: min f − |Du|γ F (D2u), u − φ = 0 in Ω u = g on ∂Ω for some degeneracy parameter γ ≥ 0, uniformly elliptic operator F , bounded source term f, and suitably smooth obstacle φ and boundary datum g. We obtain exis- tence/uniqueness of solutions and prove sharp regularity estimates at the free bound- ary points, namely ∂{u>φ} ∩ Ω. In particular, for the homogeneous case (f ≡ 0) we get that solutions are C1,1 at free boundary points, in the sense that they detach from the obstacle in a quadratic fashion, thus beating the optimal regularity allowed for such degenerate operators. We also prove several non-degeneracy properties of solutions and partial results regarding the free boundary. These are the first results for obstacle problems driven by degenerate type operators in non-divergence form and they are a novelty even for the simpler prototype given by an operator of the form G[u]= |Du|γ ∆u, with γ > 0 and f ≡ 1. 1. Introduction 1.1. Motivation and main proposals. A classical problem from Mathematical Physics refers to the equilibrium position of an elastic membrane (whose boundary is held fixed) lying on top of a given body (an obstacle) under the action of contact and/or action-at-a- distance forces, e.g. friction, tension, air resistance and gravity. Currently, this archetype model is often called an obstacle problem.
    [Show full text]
  • Curriculum Vitae
    Umberto Mosco WPI Harold J. Gay Professor of Mathematics May 18, 2021 Department of Mathematical Sciences Phone: (508) 831-5074, Worcester Polytechnic Institute Fax: (508) 831-5824, Worcester, MA 01609 Email: [email protected] Curriculum Vitae Current position: Harold J. Gay Professor of Mathematics, Worcester Polytechnic Institute, Worcester MA, U.S.A. Languages: English, French, German, Italian (mother language) Specialization: Applied Mathematics Research Interests:: Fractal and Partial Differential Equations, Homog- enization, Finite Elements Methods, Stochastic Optimal Control, Variational Inequalities, Potential Theory, Convex Analysis, Functional Convergence. Twelve Most Relevant Research Articles 1. Time, Space, Similarity. Chapter of the book "New Trends in Differential Equations, Control Theory and Optimization, pp. 261-276, WSPC-World Scientific Publishing Company, Hackenseck, NJ, 2016. 2. Layered fractal fibers and potentials (with M.A.Vivaldi). J. Math. Pures Appl. 103 (2015) pp. 1198-1227. (Received 10.21.2013, Available online 11.4.2014). 3. Vanishing viscosity for fractal sets (with M.A.Vivaldi). Discrete and Con- tinuous Dynamical Systems - Special Volume dedicated to Louis Niren- berg, 28, N. 3, (2010) pp. 1207-1235. 4. Fractal reinforcement of elastic membranes (with M.A.Vivaldi). Arch. Rational Mech. Anal. 194, (2009) pp. 49-74. 5. Gauged Sobolev Inequalities. Applicable Analysis, 86, no. 3 (2007), 367- 402. 6. Invariant field metrics and dynamic scaling on fractals. Phys. Rev. Let- ters, 79, no. 21, Nov. (1997), pp. 4067-4070. 7. Variational fractals. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997) No. 3-4, pp. 683-712. 8. A Saint-Venant type principle for Dirichlet forms on discontinuous media (with M.
    [Show full text]
  • Recent Advances
    RECENT ADVANCES THEORY OF VARIATIONAL INEQUALITIES WITH APPLICATIONS TO PROBLEMS OF FLOW THROUGH POROUS MEDIA J. T. ODEN and N. KIKUCHI The University of Texas at Austin, Austin, TX 78712,U.S.A. TABLE OF CONTENTS PREFACE 1173 INTRODUCTItiN’ : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1174 Introductory comments . 1174 Notations and conventions . 1175 1. VARIATIONAL INEQUALITIES . 1177 1.1 Introduction . 1177 1.2 Some preliminary results . 1180 1.3 Projections in Hilbert spaces . 1183 1.4 The Hartman-Stampacchia theorem . 1187 1.5 Variational inequalities of the second kind ’ : : : : : : : . 1188 1.6 A general theorem on variational inequalities . 1189 1.7 Pseudomonotone variational inequalities of the second kind . 1192 1.8 Quasi-variational inequalities . 1194 1.9 Comments . 1201 2. APPROXIMATION AND NUMERICAL ANALYSIS OF VARIATIONAL INEQUALITIES . 1202 2.1 Convergence of approximations . 1202 2.2 Error estimates for finite element approximations of variational inequalities . 1205 2.3 Solution methods . 1210 2.4 Numerical experiments . 1220 3. APPLICATIONS TO SEEPAGE PROBLEMS FOR HOMOGENEOUS DAMS 1225 3.1 Problem setting and Baiocchi’s transformation . 1225 3.2 A variational formulation . 1229 3.3 Special cases . 1237 4. NON-HOMOGENEOUS DAMS . .......... 1246 4.1 Seepage flow problems in nonhomogeneous dams . .......... 1246 4.2 The case k = k(x) . .......... 1247 4.3 Special cases for k = k(x) . .......... 1249 4.4 The case k = k(y) . : : : : : : : : . .......... 1251 4.5 Special cases for k = k(y) . .......... 1255 4.6 Comments . .......... 1256 5. SEEPAGE FLOW PROBLEMS IN WHICH DISCHARGE IS UNKNOWN .......... 1257 5.1 Dam with an impermeable sheet ............... .......... 1257 5.2 Free surface from a symmetric channel .......... 1267 5.3 A seepage flow problem with a horizontal drain 1 1 : : : : 1 : : : .........
    [Show full text]
  • DPG for Signorini Problem
    ON THE DPG METHOD FOR SIGNORINI PROBLEMS THOMAS FÜHRER, NORBERT HEUER, AND ERNST P. STEPHAN Abstract. We derive and analyze discontinuous Petrov-Galerkin methods with optimal test func- tions for Signorini-type problems as a prototype of a variational inequality of the first kind. We present different symmetric and non-symmetric formulations where optimal test functions are only used for the PDE part of the problem, not the boundary conditions. For the symmetric case and lowest order approximations, we provide a simple a posteriori error estimate. In a second part, we apply our technique to the singularly perturbed case of reaction dominated diffusion. Numerical results show the performance of our method and, in particular, its robustness in the singularly perturbed case. 1. Introduction In this paper we develop a framework to solve contact problems by the discontinuous Petrov- Galerkin method with optimal test functions (DPG method). We consider a simplified model problem ( ∆u + u = f in a bounded domain) with unilateral boundary conditions that resembles a scalar version− of the Signorini problem in linear elasticity [34, 14]. We prove well-posedness of our formulation and quasi-optimal convergence. We then illustrate how the scheme can be adapted to the singularly perturbed case of reaction-dominated diffusion ( "∆u + u = f). Specifically, we use the DPG setting from [22] to design a method that controls the− field variables (u, u, and ∆u) in r the so-called balanced norm (which corresponds to u + "1=4 u + "3=4 ∆u with L2-norm ), cf. [28]. The balanced norm is stronger than the energyk k normkr thatk stems fromk k the Dirichlet bilineark · k form of the problem.
    [Show full text]