Sand Dunes on Mars and on Earth

Total Page:16

File Type:pdf, Size:1020Kb

Sand Dunes on Mars and on Earth Sand Dunes on Mars and on Earth Von der Fakult¨at Mathematik und Physik der Universit¨at Stuttgart zur Erlangung der W¨urde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung vorgelegt von Eric Josef Ribeiro Parteli aus Recife/PE, Brasilien Hauptberichter: Prof. Dr. rer. nat. Hans J¨urgen Herrmann Mitberichter: Prof. Dr. rer. nat. G¨unter Wunner Tag der m¨undlichen Pr¨ufung: 29. Januar 2007 Institut f¨ur Computerphysik der Universit¨at Stuttgart 2007 Contents Deutsche Zusammenfassung 7 Introduction 15 1 Physics of aeolian sand and sand dunes 23 1.1 Wind-blownsand .............................. 23 1.1.1 Thresholdwindstrengthforentrainment. ... 24 1.1.2 Saltation .............................. 25 1.2 Factorsdeterminingdunetypes. .. 27 1.3 Modelforsanddunes............................ 31 1.3.1 Windshearstress.......................... 31 1.3.2 Continuumsaltationmodel. 32 1.3.3 Surfaceevolution. 37 1.3.4 Modelparameters. .. .. .. .. .. .. .. 40 1.3.5 Sanddunes ............................. 43 1.4 Conclusion ................................. 46 2 Sand transport on Mars 49 2.1 Aeolian transport on Mars: evidences and measurements from orbiters andlanders ................................. 49 2.2 Martiansaltation .............................. 58 2.2.1 Atmosphereandsand. 58 2.2.2 Saltationtrajectoriesandsandflux . .. 61 2.3 Conclusion ................................. 66 3 Barchan dunes on Mars and on Earth 69 3.1 Theshapeofbarchandunes. 69 3.2 Minimalsizeofabarchandune. 76 3.3 DuneformationonMars . .. .. .. .. .. .. .. 80 3.3.1 The shape of the barchan dunes in the Arkhangelsky CrateronMars 81 3.3.2 EntrainmentofsaltatinggrainsonMars . .. 82 3.4 Conclusion ................................. 89 4 Transverse dunes and transverse dune fields 91 4.1 Profile measurement and simulation of a transverse dune field in the Lenc¸´oisMaranhenses . 92 4.1.1 ThecoastaldunesoftheLenc¸´oisMaranhenses . .... 95 3 4 Contents 4.1.2 Areaofinvestigation . 95 4.1.3 Measurements ........................... 95 4.1.4 Separation bubble for closely spaced transverse dunes ......101 4.2 Conclusion ................................. 107 5 Modelling formation of dune fields 109 5.1 Asimplemodelforatransversedunefield . 109 5.2 Modelling formation of a coastal transverse dune field . ......... 115 5.3 Whenadunefieldisborn. 125 5.4 Conclusion ................................. 127 6 Seif dunes: forms and formation 129 6.1 Evidence for indurated dunes in the Martian north polar region? . 132 6.2 Sand dunes formedby awindofoscillatingdirection . ....... 135 6.2.1 Theshapeoflineardunes . 137 6.2.2 Frombarchanstoseifdunes . 139 6.3 Conclusion ................................. 146 7 Conclusions 149 Bibliography 159 Acknowledgements 171 Contents 5 List of publications related to this thesis. 1. E. J. R. Parteli and H. J. Herrmann, A simple model for a transverse dune field. Physica A, 327, 554–562 (2003). Also in F. Mallamace and H. E. Stanley (Eds.), Proc. International School of Physics, “Enrico Fermi” 2003, The Physics of Complex Systems (New Advances and Perspectives), pp. 153–171, IOS Press (2004). 2. E. J. R. Parteli, Das sich entziehende Land - Zur Physik der Dune¨ und des Treib- sands. In J. Badura and S. Schmidt (Eds.), “Niemandsland - Topographische Ausfluge¨ zwischen Wissenschaft und Kunst”, pp. 44 - 49, IZKT- Schriften- reihe Nr. 2, Stuttgart (2005). 3. J. H. Lee, A. O. Sousa, E. J. R. Parteli and H. J. Herrmann, Modelling formation and evolution of transverse dune fields. International Journal of Modern Physics C 12, No. 16, 1879–1892 (2005). 4. H. J. Herrmann, J. S. Andrade Jr., V. Schatz, G. Sauermann, E. J. R. Parteli, Calcu- lation of the separation streamlines of barchans and transverse dunes. Proc. “PSIS 2004”, Physica A 357, 44–49 (2005). 5. E. J. R. Parteli, V. Schw¨ammle, H. J. Herrmann, L. H. U. Monteiro and L. P. Maia, Profile measurement and simulation of a transverse dune field in the Lenc¸ois´ Maranhenses. Geomorphology 81, 29–42 (2006). 6. H. J. Herrmann, E. J. R. Parteli, V. Schw¨ammle, L. H. U. Monteiro and L. P. Maia, The coastal dunes of the Lenc¸ois´ Maranhenses. Proc. “ICS 2005”, for Journal of Coastal Research. 7. E. J. R. Parteli, V. Schatz and H. J. Herrmann, Barchan dunes on Mars and on Earth. In R. Garcia-Rojo, H. J. Herrmann and S. McNamara (Eds.), Proc. “Powders and Grains 2005”, Vol. 2, pp. 959–962, Balkema, Leiden (2005). 8. V. Schatz, H. Tsoar, K. S. Edgett, E. J. R. Parteli and H. J. Herrmann, Evidence for indurated sand dunes in the Martian north polar region. Journal of Geophysical Research 111(E4), E04006 (2006). 9. E. J. R. Parteli, O. Dur´an and H. J. Herrmann, The Shape of the Barchan Dunes in the Arkhangelsky Crater on Mars. Proc. “XXXVII Lunar and Planetary Science Conf.”, #1827, 2006. 10. H. J. Herrmann, O. Dur´an, E. J. R. Parteli and V. Schatz, Vegetation and induration as sand dunes stabilizators. Proc. ICS 2005. Proc. “ICS 2005”, Journal of Coastal Research (in press). 11. E. J. R. Parteli, O. Dur´an and H. J. Herrmann, Minimal size of a barchan dune. Physical Review E 75, 011301 (2007). 6 Contents 12. E. J. R. Parteli and H. J. Herrmann, Saltation transport on Mars. Physical Review Letters. 13. E. J. R. Parteli, O. Dur´an, V. Schw¨ammle, H. J. Herrmann and H. Tsoar, Modelling seif dunes. preprint. Deutsche Zusammenfassung Sandd¨unen treten in vielen W¨usten und K¨ustengebieten unseres Planeten auf, aber auch auf dem erd¨ahnlichsten Planeten unseres Sonnensystems: dem Mars. D¨unen sind ein Re- sultat des Wechselspieles zwischen dem turbulenten Fluid und dem Granulat und ergeben einen Beweis f¨ur das Vorliegen ¨aolischer Kr¨afte. Der f¨ur die Bildung von D¨unen wichtige ¨aolische Sandtransport findet durch Saltati- on statt (Bagnold 1941). Sobald die Windgeschindigkeit u∗ einen minimalen Wert u∗t ¨uberschreitet, werden einzelne K¨orner mitgerissen, welche nach einer kurzen Flugstrecke wieder auf den Boden fallen. Dort stoßen sie auf ruhende K¨orner und l¨osen einige vom Boden, die ebenso vom Wind mitgetragen werden. So sammeln sich nach und nach im- mer mehr Sandk¨orner in der Saltationsschicht. Der Wind ¨ubertr¨agt dabei Impuls an die Sandk¨orner (Owen 1964) und wird dadurch abgebremst (“feedback effect”). Somit reicht nach einiger Zeit die Geschwindigkeit des Windes nicht mehr aus, um weitere Sandk¨orner aufzunehmen, zumal die Dichte der in der Wolke transportierten K¨orner einen Grenzwert erreicht. Nach einer bestimmten Strecke, der sogenannten “Saturationsl¨ange”, erreicht der Sandfluss einen maximalen Wert. Aus diesem Grund spielt die Saturationsl¨ange eine f¨ur die Entstehung von D¨unen entscheidende Rolle. Jeder Sandh¨ugel, der k¨urzer als die Saturationsl¨ange ist, wird vom Wind vollst¨andig erodiert. Es gibt in der Natur viele verschiedene D¨unenformen, welche haupts¨achlich von der Windrichtung und von der Verf¨ugbarkeit von Sand auf dem Boden abh¨angig sind. Weht der Wind immer aus der selben Richtung, so entstehen bei geringer Sandmenge Barchan Dunen¨ , die sogenannten “Wanderd¨unen”. Wenn mehr Sand vorhanden ist, entstehen in regelm¨assigen Abst¨anden senkrecht zur Windrichtung Transversaldunen¨ . Andert¨ sich die Windrichtung, dann entstehen bei ausreichend viel Sand Longitudinaldunen¨ , die paral- lel zur resultierenden Windrichtung orientiert sind. Nat¨urlich gibt es eine große Anzahl von verschiedenen D¨unenformen, die bis heute, trotz der vielen Messungen der letzten Jahrzehnte, unerkl¨art sind. Besonders interessant f¨ur Planetologen sind die Marsd¨unen, die oft ¨ahnliche Formen ha- ben wie die D¨unen unseres Planeten. Seit der Entdeckung von Marsd¨unen im Jahr 1971, wurden diese zum Gegenstand intensiver Forschung. H¨atten Marsd¨unen unter der heuti- gen d¨unnen Marsatmosph¨are gebildet werden k¨onnen? Marsd¨unen scheinen sich nicht zu bewegen. Unter den heutigen atmosph¨arischen Bedingungen w¨aren nur Winde, die 10 mal so stark sind wie die Winde auf der Erde in der Lage, Sandk¨orner durch Saltation zu trans- portieren (Greeley et al. 1980). Solche Winde treten auf dem Mars nur selten auf (Sutton et al. 1978; Arvidson et al. 1983; Greeley et al. 1999; Sullivan et al. 2005). Aus diesem 7 8 Grund wurde voraussgesetzt, dass Marsd¨unen vor langer Zeit gebildet worden sind, als die Dichte der Marsatmosph¨are h¨oher war als heute (Breed et al. 1979). Der Zeitpunkt 3 an dem die heutige atmosph¨arische Dichte ρfluid 0.016 kg/m (MGSRS 2006) erreicht wurde, ist allerdings unbekannt. ≈ Erst k¨urzlich gelang es Kroy et al. (2002) eine mathematische Modellierung aufzustel- len, welche die wesentlichen Teilprozesse der Physik der D¨unen umfasst. Sie bezieht die mikroskopischen Mengen des Sandtransportes, die Luftbahnen der Sandk¨orner und die Rate ein, bei welcher Sandk¨orner in die sich bewegende Sandschicht mitgerissen werden (Sauermann et al. 2001; Kroy et al. 2002). Diese Modellierung besteht aus einem System von zweidimensionalen kontinuerlichen Gleichungen, welche an Wanderd¨unen ausgie- big gepr¨uft wurden und an Feldmessungen quantitativ sehr erfolgreich best¨atigt wurden (Sauermann et al. 2003). Das Modell reproduziert die beobachtete Abh¨angigkeit der Form einer D¨une von deren Gr¨oße, sowie das Vorliegen einer minimalen D¨unengr¨oße. Diese Arbeit befasst sich im folgenden mit dieser Modellierung, um zum einen die in der Natur am h¨aufigsten beobachteten D¨unenformen — Barchan-, Transversal- und Longitu- dinald¨unen — als Funktion der Windrichtung und der Verf¨ugbarkeit von Sand zu unter- suchen, und zum anderen, um die D¨unenbildung auf dem heutigen Mars zu berechnen. Hierbei stellt sich die Frage, ob deren Entstehung unter der d¨unnen Atmosph¨are des roten Planeten m¨oglich gewesen w¨are. Das eingesetzte D¨unenmodell wird in Kapitel 1 pr¨asentiert. Dabei werden die mit dem Sandtransport und der D¨unenbildung wesentlichen Begriffe erl¨autert, welche wir ben¨otigen, um die Herleitung des Modelles nachvollziehen zu k¨onnen und um die Ergeb- nisse dieser Arbeit zu interpretieren. Wir diskutieren danach die Rolle der Windrichtun- gen und der zur Verf¨ugung stehenden Sandmenge f¨ur die Entstehung unterschiedlicher D¨unenformen, die wir in den n¨achsten Kapiteln untersuchen werden. Zuletzt werden die Gleichungen pr¨asentiert, die wir f¨ur die Berechnung der Marsd¨unen verwenden werden.
Recommended publications
  • Railway Employee Records for Colorado Volume Iii
    RAILWAY EMPLOYEE RECORDS FOR COLORADO VOLUME III By Gerald E. Sherard (2005) When Denver’s Union Station opened in 1881, it saw 88 trains a day during its gold-rush peak. When passenger trains were a popular way to travel, Union Station regularly saw sixty to eighty daily arrivals and departures and as many as a million passengers a year. Many freight trains also passed through the area. In the early 1900s, there were 2.25 million railroad workers in America. After World War II the popularity and frequency of train travel began to wane. The first railroad line to be completed in Colorado was in 1871 and was the Denver and Rio Grande Railroad line between Denver and Colorado Springs. A question we often hear is: “My father used to work for the railroad. How can I get information on Him?” Most railroad historical societies have no records on employees. Most employment records are owned today by the surviving railroad companies and the Railroad Retirement Board. For example, most such records for the Union Pacific Railroad are in storage in Hutchinson, Kansas salt mines, off limits to all but the lawyers. The Union Pacific currently declines to help with former employee genealogy requests. However, if you are looking for railroad employee records for early Colorado railroads, you may have some success. The Colorado Railroad Museum Library currently has 11,368 employee personnel records. These Colorado employee records are primarily for the following railroads which are not longer operating. Atchison, Topeka & Santa Fe Railroad (AT&SF) Atchison, Topeka and Santa Fe Railroad employee records of employment are recorded in a bound ledger book (record number 736) and box numbers 766 and 1287 for the years 1883 through 1939 for the joint line from Denver to Pueblo.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Towards Bioinspired in Vitro Models of Intestinal Mucus
    RSC Advances REVIEW View Article Online View Journal | View Issue Towards bioinspired in vitro models of intestinal mucus Cite this: RSC Adv.,2019,9, 15887 Lorenzo Sardelli, Daniela Peneda Pacheco, Anna Ziccarelli, Marta Tunesi, Omar Caspani, Andrea Fusari, Francesco Briatico Vangosa, Carmen Giordano and Paola Petrini * Intestinal mucus is a biological structure that acts as a barrier between the external environment and the epithelium. It actively selects nutrient and drug intake, regulates the symbiosis with the intestinal microbiota and keeps the epithelium protected from the attack of pathogens. All these functions are closely connected to the chemical and structural complexity of this biological material, on which its viscoelastic and diffusive properties depend. Many models have been proposed to replicate these characteristics using glycoproteins in solution and possibly the addition of other mucus components, such as lipids and other proteins. In the field of mucus modelling, an overall view of the mucus as a material, having its own viscous, rheological and diffusive characteristics, has been undersized with Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Received 28th March 2019 respect to a pure biological-functional analysis. In this review, we propose a description of the mucus as Accepted 9th May 2019 a biomaterial, including a presentation of its chemical and structural complexity, and of its main DOI: 10.1039/c9ra02368b viscoelastic-diffusive properties, in order to provide a synthesis of the characteristics necessary for the rsc.li/rsc-advances engineering of more advanced mucus models. Introduction The European Union has moved towards increasing Replacement, Reduction and Rening (3Rs principle) of animal The intestinal microbial species, present in both physiological studies with other scientically validated alternatives, such as in This article is licensed under a and pathological conditions, affect multiple districts of the vitro models,10 as tools for high throughput screening, limiting human body.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • Downloaded for Personal Non-Commercial Research Or Study, Without Prior Permission Or Charge
    MacArtney, Adrienne (2018) Atmosphere crust coupling and carbon sequestration on early Mars. PhD thesis. http://theses.gla.ac.uk/9006/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten:Theses http://theses.gla.ac.uk/ [email protected] ATMOSPHERE - CRUST COUPLING AND CARBON SEQUESTRATION ON EARLY MARS By Adrienne MacArtney B.Sc. (Honours) Geosciences, Open University, 2013. Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at the UNIVERSITY OF GLASGOW 2018 © Adrienne MacArtney All rights reserved. The author herby grants to the University of Glasgow permission to reproduce and redistribute publicly paper and electronic copies of this thesis document in whole or in any part in any medium now known or hereafter created. Signature of Author: 16th January 2018 Abstract Evidence exists for great volumes of water on early Mars. Liquid surface water requires a much denser atmosphere than modern Mars possesses, probably predominantly composed of CO2. Such significant volumes of CO2 and water in the presence of basalt should have produced vast concentrations of carbonate minerals, yet little carbonate has been discovered thus far.
    [Show full text]
  • In Pdf Format
    lós 1877 Mik 88 ge N 18 e N i h 80° 80° 80° ll T 80° re ly a o ndae ma p k Pl m os U has ia n anum Boreu bal e C h o A al m re u c K e o re S O a B Bo l y m p i a U n d Planum Es co e ria a l H y n d s p e U 60° e 60° 60° r b o r e a e 60° l l o C MARS · Korolev a i PHOTOMAP d n a c S Lomono a sov i T a t n M 1:320 000 000 i t V s a Per V s n a s l i l epe a s l i t i t a s B o r e a R u 1 cm = 320 km lkin t i t a s B o r e a a A a A l v s l i F e c b a P u o ss i North a s North s Fo d V s a a F s i e i c a a t ssa l vi o l eo Fo i p l ko R e e r e a o an u s a p t il b s em Stokes M ic s T M T P l Kunowski U 40° on a a 40° 40° a n T 40° e n i O Va a t i a LY VI 19 ll ic KI 76 es a As N M curi N G– ra ras- s Planum Acidalia Colles ier 2 + te .
    [Show full text]
  • Dilemma of Geoconservation of Monogenetic Volcanic Sites Under Fast Urbanization and Infrastructure Developments with Special Re
    sustainability Article Dilemma of Geoconservation of Monogenetic Volcanic Sites under Fast Urbanization and Infrastructure Developments with Special Relevance to the Auckland Volcanic Field, New Zealand Károly Németh 1,2,3,* , Ilmars Gravis 3 and Boglárka Németh 1 1 School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; [email protected] 2 Institute of Earth Physics and Space Science, 9400 Sopron, Hungary 3 The Geoconservation Trust Aotearoa, 52 Hukutaia Road, Op¯ otiki¯ 3122, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +64-27-4791484 Abstract: Geoheritage is an important aspect in developing workable strategies for natural hazard resilience. This is reflected in the UNESCO IGCP Project (# 692. Geoheritage for Geohazard Resilience) that continues to successfully develop global awareness of the multifaced aspects of geoheritage research. Geohazards form a great variety of natural phenomena that should be properly identified, and their importance communicated to all levels of society. This is especially the case in urban areas such as Auckland. The largest socio-economic urban center in New Zealand, Auckland faces potential volcanic hazards as it sits on an active Quaternary monogenetic volcanic field. Individual volcanic geosites of young eruptive products are considered to form the foundation of community Citation: Németh, K.; Gravis, I.; outreach demonstrating causes and consequences of volcanism associated volcanism. However, in Németh, B. Dilemma of recent decades, rapid urban development has increased demand for raw materials and encroached Geoconservation of Monogenetic on natural sites which would be ideal for such outreach. The dramatic loss of volcanic geoheritage Volcanic Sites under Fast of Auckland is alarming.
    [Show full text]
  • Table of Contents
    TABLE OF CONTENTS Authorized Motor Repair Service Centers United States Alabama . 5 Utah . 26 Alaska . 5 Vermont . 27 Arizona . 5 Virginia . 27 Arkansas . 5 Washington . 27 Bahamas . 6 West Virginia . 28 Bermuda . 6 Wisconsin . 28 California . 6 Wyoming . 29 Colorado . 7 Connecticut . 7 Canada Delaware . 8 Alberta . 30 District of Columbia . 8 British Columbia . 30 Florida . 8 Manitoba . 30 Georgia . 9 New Brunswick . 31 Hawaii . 10 Newfoundland . 31 Idaho . 10 Nova Scotia . 31 Illinois . 10 Ontario . 31 Indiana . 11 Prince Edward Island . 32 Iowa . 12 Quebec . 32 Kansas . 13 Saskatchewan . 33 Kentucky . 13 Yukon . 33 Louisiana . 14 Maine . 14 Mexico . 34 Maryland . 14 Massachusetts . 15 Michigan . 15 Authorized Electronics Repair Service Centers Minnesota . 16 United States . 35 Mississippi . 17 Canada . 38 Missouri . 17 Mexico . 39 Montana . 18 Nebraska . 18 Nevada . 18 Other Information New Hampshire . 18 Limited Warranty New Jersey . 18 English . 2 New Mexico . 19 French . 3 New York . 19 Spanish . 4 North Carolina . 20 District Offices . 40 North Dakota . 20 Ohio . 21 Oklahoma . 22 Oregon . 22 Pennsylvania . 23 Puerto Rico . 24 Rhode Island . 24 South Carolina . 24 South Dakota . 24 Tennessee . 24 Texas . 25 Authorized Motor Repair - Pages 5-34 Authorized Electronics Repair - Pages 35-39 1 LIMITED WARRANTY Baldor Electric Company and its employees are proud of our products and are committed to providing our customers and end users with the best designed and manufactured motors, drives and other Baldor products. This Limited Warranty and Service Policy describes Baldor’s warranty and warranty procedures. Comments and Questions: We welcome comments and questions regarding our products. Please contact us at: Customer Service: Baldor Electric Company P.O.
    [Show full text]
  • The Physics of Wind-Blown Sand and Dust
    The physics of wind-blown sand and dust Jasper F. Kok1, Eric J. R. Parteli2,3, Timothy I. Michaels4, and Diana Bou Karam5 1Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA 2Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil 3Institute for Multiscale Simulation, Universität Erlangen-Nürnberg, Erlangen, Germany 4Southwest Research Institute, Boulder, CO USA 5LATMOS, IPSL, Université Pierre et Marie Curie, CNRS, Paris, France Email: [email protected] Abstract. The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This article presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small- scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan. PACS: 47.55.Kf, 92.60.Mt, 92.40.Gc, 45.70.Qj, 45.70.Mg, 45.70.-n, 96.30.Gc, 96.30.Ea, 96.30.nd Journal Reference: Kok J F, Parteli E J R, Michaels T I and Bou Karam D 2012 The physics of wind- blown sand and dust Rep. Prog. Phys. 75 106901. 1 Table of Contents 1. Introduction .......................................................................................................................................................... 4 1.1 Modes of wind-blown particle transport ...................................................................................................... 4 1.2 Importance of wind-blown sand and dust to the Earth and planetary sciences ...........................................
    [Show full text]
  • Regional Wind Patterns on Mars Inferred from Dune Field Studies
    47th Lunar and Planetary Science Conference (2016) 1868.pdf REGIONAL WIND PATTERNS ON MARS INFERRED FROM DUNE FIELD STUDIES. Y-J. Ku1 and J. R. Zimbelman2, 1 Department of Geosciences, National Taiwan University, Taipei City 106, Taiwan (R.O.C), 2Center for Earth and Planetary Studies, MRC 315, National Air and Space Museum, Smithsonian Institution, Independence Avenue and 6th Street SW, Washington, DC 20013-7012. ([email protected]) Introduction: Sand dunes are good indicators for through mapping of the CTX images. Some of the the aeolian processes on Earth and Mars. Wind activi- dune types documented include: ties shaped many surface features on Mars, the shapes Barchan: The well-defined crescent-shape dunes of which are related to atmospheric circulation, as well indicate limited sand supply as well as the dominant as possibly to paleo-climate behavior. This research wind direction. Depending on dune shape, elongated classified 15 different types of sand dunes using CTX barchans and barchans with ‘tails’ were also defined, image mapping at 30 sites widely distributed around the later providing evidence for a bi-modal wind re- the planet [1], generating statistical information of dif- gime, perhaps reflecting seasonally varying winds with ferent types to provide a recent view of global wind respective angles as defined by [8]. The total mapped patterns on Mars. The results fill a gap between local area for barchan dunes from all sites is 1489.0 km2. ripple mapping and global wind models. Barchanoid: Generally arc-shaped dunes which are Background: Mars preserves a large number of connected but do not form a single continuous crest sand dune fields that reflect both past and present wind line.
    [Show full text]
  • L.T.C. MOBILITY | Carmarthenshire Association Football League
    L.T.C. MOBILITY Carmarthenshire Association Football League (Affiliated to the West Wales Football Association) SEASON 2018/19 President: S Green Life Members: A C James, R John, A J Jones, D P Francis, J H Evans, M J Bush, M D Hughes, A Richards, R Morgan, S Green, Mrs J Wooller, A Davies, L Griffiths Life Vice Presidents E H Roderick, J N Wooller Mrs A Evans, L G Pewsey, R Snaith OFFICIALS Chairman: R W Barnes • Vice-Chairman: D Hughes Hon. General Secretary (Seniors/Juniors) C R Jenkins, 25 St. Mary’s Rise, Burry Port SA16 0SH Tel: 01554 832109 • Mob: 07971 910107 email: [email protected] Hon. Junior Fixture Secretary TBA Hon. Registration Secretary (Seniors) Mr P Jones, 74 Squirrel Walk, Fforest, Pontarddulais, Swansea SA4 0UJ Tel: 01792 885306 • Mob: 07546 539033 email: [email protected] Hon. Registration Secretary (Juniors) Mr M Lee, 27 Coedcae Road, Llanelli SA15 1HZ Tel: 01554 778519 • Mob: 07740 165488 email: [email protected] Hon. Treasurer Mr D Tovey, 6 Zammitt Crescent, Llanelli SA15 1JA Mob: 07908 971768 • email: [email protected] CARMARTHENSHIRE ASSOCIATION FOOTBALL LEAGUE 1 Hon. Safeguard Officer Mr K McNab, 33 Coedcae Road, Llanelli SA15 1HZ Mob: 07966 774448 • email: [email protected] Hon. Referees Appointments Officer Mr P Owen, 17 Heol y Plas, Fforest, Pontarddulais, Swansea SA4 0TY Tel: 01792 885747 • Mob: 07968 300807 email: [email protected] Mini Football Secretary Mr M Lee, 27 Coedcae Road, Llanelli SA15 1HZ Tel: 01554 778519 • Mob: 07740 165488 email: [email protected] League Accreditation Officer Kevin McNab, 33 Coedcae Road, Llanelli SA15 1HZ Mob: 07966 774448 Email: [email protected] Executive Council Members D Hughes (Unattached) N Stephens (Unattached) W Bevan (Calsonic Juniors) Mrs R B Jones (Unattached) N Richards D Griffiths (Pengelli) A Thomas (Calsonic) Patron: Llanelli Town Mayor West Wales F.A.
    [Show full text]
  • The Interference of Tetrachloromethane
    The interference of tetrachloromethane in the measurement of benzene in air by Gas Chromatography - Photoionisation Detector (GC-PID) Cristina Romero-Trigueros1, Esther González 2, Marta Doval Miñarro3, Enrique González Ferradás2 5 1Dipartimento di Scienze Agro-Ambientali e Territoriali, University of Bari Aldo Moro, Via Amendola, 165/A, 70126, Bari, Italy 2Chemical Engineering Department, School of Chemistry, University of Murcia, 30071, Murcia, Spain 3Chemical and Environmental Engineering Department, Technical University of Cartagena, Paseo Alfonso XIII, 52, 30203 Cartagena, Murcia, Spain 10 Correspondence to: Esther González ([email protected]) Abstract. The European Union requires that benzene in air is continuously measured due to its toxicity and widespread presence in the population nuclei, mainly motivated by vehicle emissions. The reference measuring technique is gas chromatography (GC). Automatic chromatographs used in monitoring stations must verify the operating conditions 15 established in Standard EN 14662 part 3, which includes a type approval section with a number of tests that analysers must pass. Among these tests, the potential interference of a number of compounds is evaluated. The 2005 version of the mentioned standard requires the evaluation of the potential interference of tetrachloromethane (TCM). The 2015 version eliminates TCM as a potential interferent. Although most consumer uses of TCM have been banned, recent studies have measured significant concentrations of TCM in air. In this paper, the potential interference
    [Show full text]