United States Patent (19) 11) 4,282,110 Koike 45) Aug

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11) 4,282,110 Koike 45) Aug United States Patent (19) 11) 4,282,110 Koike 45) Aug. 4, 1981 54). ANTIBACTERIAL SOAP 3,700,601 10/1972 Bloching .............................. 252/105 3,723,326 3/1973 Cheng et al.......................... 252/107 75) Inventor: Mamoru Koike, Kashiwa, Japan 4,115,294 9/1978 Fearnley et al...................... 252/106 73) Assignee: Kao Soap Co., Ltd., Tokyo, Japan FOREIGN PATENT DOCUMENTS 21 Appl. No.: 93,522 1943694 3/1971 Fed. Rep. of Germany ........... 252/106 22 Filed: Nov. 13, 1979 Primary Examiner-P. E. Willis, Jr. 30 Foreign Application Priority Data Attorney, Agent, or Firm-Oblon, Fisher, Spivak, McClelland & Maier Dec. 22, 1978 (JP) Japan ................................ 53-159628 51) Int. Cl. .......................... C11D 9/14; C11D 9/50 57) ABSTRACT 52 U.S. Cl. ..................................... 252/107; 252/109 An antibacterial soap comprising 2,4,4'-trichloro-2'- 58) Field of Search ........................ 252/106, 107, 109 hydroxydiphenylether in amounts of 0.05 to 5% by weight and at least one of an inorganic phosphorus 56) References Cited oxyacid and a salt thereof has a wide range of antibacte U.S. PATENT DOCUMENTS rial activities and marked resistance to discoloration 2,234,379 3/1941 Martin .................................. 252/109 upon exposure to sunlight. 3,284,362 11/1966 Zussman ...... ... 252/107 3,625,903 12/1971 Davies et al. ........................ 252/107 4 Claims, No Drawings 4,282,110 1. 2 noted drawbacks of the conventional antibacterial ANTIBACTERIAL SOAP soaps. Another object of the invention is to provide a nove BACKGROUND OF THE INVENTION antibacterial soap which exhibits a wide range of anti bacterial activities and is protected against color forma 1. Field of the Invention tion upon exposure to sunlight and which is very stable This invention relates to soaps suitable for skin and in physical properties and does not irritate the skin. hair treatment and has particular reference to a novel In accordance with the invention, there is provided antibacterial soap which comprises 2,4,4-trichloro-2'- an antibacterial soap which comprises 2,4,4'-trichloro hydroxydiphenylether and one or more of an inorganic 10 2'-hydroxydiphenylether in amounts of 0.05 to 5% by phosphorus oxyacid and a salt thereof. weight and at least one of an inorganic phosphorus 2. Description of the Prior Art oxyacid and a salt thereof. 2,4,4'-Trichloro-2'-hydroxydiphenylether is a known These and other objects and advantages of the inven compound which possesses broad antibacterial spec tion will become apparent from the detailed description trum characteristics for microorganisms such as Gram 15 and claims which follow hereinafter. positive and -negative bacteria, mold, yeast and the like. By the term soap is meant a cleansing material in the Moreover, the compound has lower toxic and irritating form of a bar or flake. effects upon the skin and mucous membrane of human beings. Because of such substantial advantages, the DETAILED DESCRIPTION OF THE compound is useful as a good antibacterial agent for 20 PREFERRED EMBODIMENTS inhibiting any noxious microorganisms which would Broadly stated, a novel antibacterial soap according adhere to the skin and hair, and therefore, can be ex to the present invention is produced by incorporating pected to find wide application to soaps, shampoos, into a solid or powdered soap base 2,4,4'-trichloro-2'- detergents, cosmetics, ointments and similar articles. hydroxydiphenylether as an antibacterial agent and at However, such antibacterial compound or 2,4,4-tri 25 least one of a phosphoric oxyacid and a salt thereof as a chloro-2'-hydroxydiphenylether is encountered with discolor-preventing agent. the drawback that the compound when incorporated Typical examples of inorganic phosphorus oxyacids into any conventional soap bases causes the resulting and salts thereof which are useful in the invention in soaps to discolor or become dark brown when they are clude phosphoric acid, hypophosphoric acid, phospho exposed to sunlight. Although discoloration in the soaps 30 rous acid and hypophosphorous acid, and an alkali does not induce adverse effects upon the antibacterial metal salt thereof such as sodium or potassium, and an action of the compound, nevertheless it mars attractive ammonium salt. appearance of the soap product and makes the user feel More particularly, examples of inorganic phosphorus uneasy. This problem is particularly detrimental to oxyacids and salts thereof for use in the invention in commercial acceptance of generally light-colored 35 clude orthophosphoric acid, primary phosphate, sec soaps. Accordingly, a need continues to exist for an ondary phosphate, tertiary phosphate, pyrophosphoric antibacterial soap which produces no color deteriora acid, acid pyrophosphate, neutral pyrophosphate, tion even upon exposure to sunlight. polymetaphosphate, hypophosphoric acid, acid hypo In fact, various attempts have been made to reduce, phosphate, neutral hypophosphate, phosphorous acid, retard or prevent color formation in the soaps of the primary phosphite, secondary phosphite, pyophosphite, type described, and some reports on the problem have polymetaphosphite, hypophosphorous acid and hypo been made public. According to U.S. Pat. No. phosphite. Of these inorganic phosphorus oxyacids and 3,284,362, an aromatic carboxylic acid or an alkali metal salts thereof, preferably useful are orthophosphoric salt thereof is employed as a discolor-preventing agent acid, primary sodium phosphate, primary potassium 45 phosphate, primary ammonium phosphate, pyrophos in a soap composition. The use of a C8-C22 substantially phoric acid, acid sodium pyrophosphate, acid potassium straight-chain fatty acid is disclosed in U.S. Pat. No. pyrophosphate, triphosphoric acid, tetraphosphoric 3,625,903 and Japanese Pat. publication No. 47-20629. acid, trimetaphosphoric acid, tetrametaphosphoric acid, On the other hand, Japanese Pat. publication No. hypophosphoric acid, acid sodium hypophosphate, 52-43207 is concerned with the prevention of a soap 50 phosphorous acid, primary sodium phosphite, primary from discoloration with the aid of an organic acid such potassium phosphite, pyrophosphorous acid, polymeta as malonic acid, citric acid or malic acid. It has now phosphorous acid and hypophosphorous acid. Espe been found that satisfactory results cannot still be ob cially desirable are phosphoric acid, primary alkalimet tained by such prior art techniques. al- or ammonium phosphate, pyrophosphoric acid, acid The present inventor has made many studies concern 55 alkalimetal- or ammonium pyrophosphate, triphospho ing minimizing or avoiding color formation or discolor ric acid, tetraphosphoric acid, trimetaphosphoric acid, ation in a variety of antibacterial soaps into which tetraphosphoric acid, hypophosphoric acid and phos 2,4,4'-trichloro-2'-hydroxydiphenylether is incorpo phorous acid. rated. As a result of those studies, it has been discovered The amount of the antibacterial compound or 2,4,4'- that particular phosphoric oxyacids and salts thereof 60 trichloro-2'-hydroxydiphenylether may vary, depend exhibit excellent discolor-preventing characteristics and ing on the intended use of the soap, and is practically in are surprisingly efficient in keeping the soaps against a range of about 0.05 to 5% by weight. Moreover, the discoloration. The present invention bases its achieve discolor-preventing agent, that is, any selected one inor ment upon this discovery. ganic phosphorus oxyacid or salt thereof, may be added 65 in amounts of about 0.01 to 10%, preferably 0.1 to 2% SUMMARY OF THE INVENTION by weight. The addition of the discolor-preventing It is an object of the present invention to provide a agent in smaller amounts of less than the lower limits novel antibacterial soap which eliminates the above fails to impart sufficient effects, whereas larger amounts 4,282,110 3 4. of more than the upper limit show no appreciable in TABLE 1-continued crease in the effectiveness and adversely affects the 8: Extremely discolored as physical properties of the soap, thereby resulting in compared to the standard Commercially cracked or otherwise deteriorated soap product. Conse 9: unacceptable quently, the discolor-preventing agent should be added 5 in the amounts specified above for satisfactory results. : Wholly discolored or equal Other desired ingredients can be advantageously to the control utilized in the antibacterial soap of this invention in combination with the antibacterial and discolor-pre venting agents. Such ingredients are germicides, anti-in 10 EXAMPLE II flammatory agents, forming additives, antioxidants, Antibacterial soaps were prepared in the same proce perfumes and pigments, and may be included individu dure as in Example I and tested to observe the relation ally or in combination in any convenient manner. ship between the varying ratios of the discolor-prevent Suitable germicides include 3,4,4-trichlorocarbani ing agent present in the soaps and the degrees of color lide (TCC) and 3-trifluoromethyl-4,4'-dichlorocarbani 15 stabilization and cracking. lide (CF3). Suitable anti-inflammatory agents include The results obtained are shown in Table 2. 5-ureidohydantoin (allantoin), dipotassium glycyrrhe TABLE 2 tate and diammonium glycyrrhetate. Suitable foaming discolor additives include superfatting agents such as lanolin, preventing agent Grades of color Degrees of grades lanolin derivatives, fatty acids, fatty acid esters, higher 20 (phosphoric acid) stabilization of cracking alcohols and alkylalkanolamides.
Recommended publications
  • Appendix H EPA Hazardous Waste Law
    Appendix H EPA Hazardous Waste Law This Appendix is intended to give you background information on hazardous waste laws and how they apply to you. For most U.S. Environmental Protection Agency (EPA) requirements that apply to the University, the Safety Department maintains compliance through internal inspections, record keeping and proper disposal. In Wisconsin, the Department of Natural Resources (DNR) has adopted the EPA regulations, consequently EPA and DNR regulations are nearly identical. EPA defines This Appendix only deals with "hazardous waste" as defined by the EPA. hazardous waste as Legally, EPA defines hazardous waste as certain hazardous chemical waste. This hazardous chemical Appendix does not address other types of regulated laboratory wastes, such as waste; radioactive, infectious, biological, radioactive or sharps. Chapter 8 descibes disposal procedures infectious and biohazardous waste for animals. Chapter 9 describes disposal procedures for sharps and other waste that are regulated by can puncture tissue. Chapter 11 discusses Radiation and the Radiation Safety for other agencies. Radiation Workers provides guidelines for the disposal of radioactive waste. Procedures for medical waste are written by the UW Hospital Safety Officer. The Office of Biological Safety can provide guidance for the disposal of infectious and biological waste. EPA regulations focus on industrial waste streams. As a result, many laboratory chemical wastes are not regulated by EPA as hazardous chemical waste. However, many unregulated chemical wastes do merit special handling and disposal If a waste can be procedures. Thus, Chapter 7 and Appendix A of this Guide recommend disposal defined as: procedures for many unregulated wastes as if they were EPA hazardous waste.
    [Show full text]
  • APPENDIX G Acid Dissociation Constants
    harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants §␮ ϭ 0.1 M 0 ؍ (Ionic strength (␮ † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form.
    [Show full text]
  • THE UNIVERSITY of EDINBURGH
    THE UNIVERSITY of EDINBURGH & l N Thesis scanned from best copy available: may contain faint or blurred text, and/or cropped or missing pages. Scanned as part of the PhD Thesis Digitisation project http://librarvblogs.is.ed.ac.uk/phddigitisation THE ACTION OF YELLOYif PHOSPHORUS ON SALT SOLUTIONS OF CERTAIN HEAVY METALS by OSWALD JAMES WALKER. Thesis presented for the Degree of Ph.D. INTRODUCTION. The fact that yellow phosphorus is able to precipitate many heavy metals from solutions of their Salts has been known for a considerable period. If a stick of phosphorus is placed in a solution of silver nitrate or of copper sulphate, the phosphorus gradually becomes covered with a deposit of the metal and acids of phosphorus are found in the solution. The action may be represented as follows: P + M X + H_0 > M + H X + P acids, and continues as long as any free phosphorus remains. The apparent similarity between this action and the displacement of a metal from solutions of its salts by another metal is very marked and has been commented on by more than one investigator. It has even been suggested that phosphorus, which is usually regarded as a typical non-metallic element, does in this case act in the same way as a real metal. There are, ■ indeed, other reactions of phosphorus which point to it being an element of an 'amphoteric1 nature, capable of furnishing both negative and positive ions. It was noticed, however, that in many cases, the action between phosphorus and the metallic Salt solution/ solution was more complicated,and other products such as phosphides of the metal were found.
    [Show full text]
  • Recommended Methods for the Identification and Analysis Of
    Vienna International Centre, P.O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-0, Fax: (+43-1) 26060-5866, www.unodc.org RECOMMENDED METHODS FOR THE IDENTIFICATION AND ANALYSIS OF AMPHETAMINE, METHAMPHETAMINE AND THEIR RING-SUBSTITUTED ANALOGUES IN SEIZED MATERIALS (revised and updated) MANUAL FOR USE BY NATIONAL DRUG TESTING LABORATORIES Laboratory and Scientific Section United Nations Office on Drugs and Crime Vienna RECOMMENDED METHODS FOR THE IDENTIFICATION AND ANALYSIS OF AMPHETAMINE, METHAMPHETAMINE AND THEIR RING-SUBSTITUTED ANALOGUES IN SEIZED MATERIALS (revised and updated) MANUAL FOR USE BY NATIONAL DRUG TESTING LABORATORIES UNITED NATIONS New York, 2006 Note Mention of company names and commercial products does not imply the endorse- ment of the United Nations. This publication has not been formally edited. ST/NAR/34 UNITED NATIONS PUBLICATION Sales No. E.06.XI.1 ISBN 92-1-148208-9 Acknowledgements UNODC’s Laboratory and Scientific Section wishes to express its thanks to the experts who participated in the Consultative Meeting on “The Review of Methods for the Identification and Analysis of Amphetamine-type Stimulants (ATS) and Their Ring-substituted Analogues in Seized Material” for their contribution to the contents of this manual. Ms. Rosa Alis Rodríguez, Laboratorio de Drogas y Sanidad de Baleares, Palma de Mallorca, Spain Dr. Hans Bergkvist, SKL—National Laboratory of Forensic Science, Linköping, Sweden Ms. Warank Boonchuay, Division of Narcotics Analysis, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand Dr. Rainer Dahlenburg, Bundeskriminalamt/KT34, Wiesbaden, Germany Mr. Adrian V. Kemmenoe, The Forensic Science Service, Birmingham Laboratory, Birmingham, United Kingdom Dr. Tohru Kishi, National Research Institute of Police Science, Chiba, Japan Dr.
    [Show full text]
  • Hydrolysis and Atmospheric Oxidation Reactions of Perfluorinated Carboxylic Acid Precursors
    Hydrolysis and Atmospheric Oxidation Reactions of Perfluorinated Carboxylic Acid Precursors by Derek A. Jackson A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Chemistry University of Toronto © Copyright by Derek A. Jackson 2013 Hydrolysis and Atmospheric Oxidation Reactions of Perfluorinated Carboxylic Acid Precursors Derek Andrew Jackson Doctor of Philosophy Department of Chemistry University of Toronto 2013 Abstract This dissertation explores a number of different environmentally relevant reactions that lead to the production of perfluorocarboxylic acids (PFCAs), a family of environmental pollutants that does not undergo any further degradation pathways. The compound perfluoro-2-methyl-3-pentanone (PFMP) is a new fire fighting fluid developed by 3M that is designed as a Halon replacement. The environment fate of PFMP with regards to direct photolysis, abiotic hydrolysis and hydration was determined using a combination of laboratory experiments and computational modeling. PFMP was found to undergo direct photolysis giving a lifetime of 4-14 days depending on latitude and time of year. Offline samples confirmed PFCA products and a mechanism was proposed. Polyfluorinated amides (PFAMs) are a class of chemicals produced as byproducts of polyfluorinated sulfonamide synthesis via electrochemical fluorination (ECF). Using synthesized standards of four model compounds, PFAMs were detected and quantified in a variety of legacy commercial materials synthesized by ECF. PFAMs were hypothesized to undergo biological hydrolysis reactions, suggesting their importance as historical PFOA precursors. ii The PFAMs were also investigated with regards to their environmental fate upon atmospheric oxidation. Using a smog chamber, the kinetics and degradation mechanisms of N- ethylperfluorobutyramide (EtFBA) were elucidated.
    [Show full text]
  • United States Patent 19 11 4,289,699 Oba Et Al
    United States Patent 19 11 4,289,699 Oba et al. 45 Sep. 15, 1981 54 PROCESS FOR THE PRODUCTION OF Primary Examiner-Donald G. Daus N-(HYDROXYPHENYL) MALEIMEDES Assistant Examiner-D. B. Springer 75 Inventors: Masayuki Oba; Motoo Kawamata; Attorney, Agent, or Firm-Fisher, Christen & Sabol Hikotada Tsuboi; Nobuhito Koga, all 57 ABSTRACT of Yokohama, Japan N-(hydroxyphenyl) maleimides of the general formula 73 Assignee: Mitsui Toatsu Chemicals, Incorporated, Tokyo, Japan 21 Appl. No.: 88,825 (22 Filed: Oct. 26, 1979 N CO-m-CH Related U.S. Application Data (HO) 62) Division of Ser. No. 956,971, Nov. 2, 1978, Pat. No. 4,231,934. where R' stands for H, CH3, C2H5, F, Cl, Br or I and in 30 Foreign Application Priority Data is an integer of 1-5 are produced by treating the corre sponding maleamic acid or by treating the ester of said Nov. 2, 1977 (JP) Japan ................................ 52-130905 N-(hydroxyphenyl) maleimide at a temperature of Nov. 4, 1977 (JP Japan ................................ 52-3504 0-150° C. in the presence of at least one dehydrating 51) Int. Cl. .......................................... C07D 207/.452 agent selected for the group consisting of oxides and (52) U.S. Cl. .......................................... 260/326.5 FM oxyacids of sulfur or phosphorus and alkali metal and 58) Field of Search .............................. 260/326.5 FM alkaline earth metal salts of the said oxyacids. The cor responding maleamic acid can be obtained by reacting 56) - References Cited an aminophenol having one or more hydroxyl groups U.S. PATENT DOCUMENTS on its phenyl nucleus with maleic anhydride.
    [Show full text]
  • Chemical Substances Exempt from Notification of Manufacturing/Import Amount
    Chemical Substances Exempt from Notification of Manufacturing/Import Amount A list under Chemical Substance Control Law (Japan) 2014-3-24 Official issuance: Joint Notice No.1 of MHLW, METI and MOE English source: Chemical Risk Information Platform (CHRIP) Edited by: https://ChemLinked.com ChemLinked Team, REACH24H Consulting Group| http://chemlinked.com 6 Floor, Building 2, Hesheng Trade Centre, No.327 Tianmu Mountain Road, Hangzhou, China. PC: 310023 Tel: +86 571 8700 7545 Fax: +86 571 8700 7566 Email: [email protected] 1 / 1 Specification: In Japan, all existing chemical substances and notified substances are given register numbers by Ministry of International Trade and Industry (MITI Number) as a chemical identifier. The Japanese Chemical Management Center continuously works on confirming the mapping relationships between MITI Numbers and CAS Registry Numbers. Please enter CHRIP to find if there are corresponding CAS Numbers by searching the substances’ names or MITI Numbers. The first digit of a MITI number is a category code. Those adopted in this List are as follows: 1: Inorganic compounds 2: Chained organic low-molecular-weight compounds 3: Mono-carbocyclic organic low-molecular-weight compounds 5: Heterocyclic organic low-molecular-weight compounds 6: Organic compounds of addition polymerization 7: Organic compounds of condensation polymerization 8: Organic compounds of modified starch, and processed fats and oils 9: Compounds of pharmaceutical active ingredients, etc. This document is provided by ChemLinked, a division of REACH24H Consulting Group. ChemLinked is a unique portal to must-know EHS issues in China, and essential regulatory database to keep all EHS & Regulatory Affairs managers well-equipped. You may subscribe and download this document from ChemLinked.com.
    [Show full text]
  • An Interstellar Synthesis of Phosphorus Oxoacids
    ARTICLE DOI: 10.1038/s41467-018-06415-7 OPEN An interstellar synthesis of phosphorus oxoacids Andrew M. Turner1,2, Alexandre Bergantini 1,2, Matthew J. Abplanalp1,2, Cheng Zhu 1,2, Sándor Góbi 1,2, Bing-Jian Sun3, Kang-Heng Chao3, Agnes H.H. Chang3, Cornelia Meinert 4 & Ralf I. Kaiser 1,2 Phosphorus signifies an essential element in molecular biology, yet given the limited solubility of phosphates on early Earth, alternative sources like meteoritic phosphides have been proposed to incorporate phosphorus into biomolecules under prebiotic terrestrial conditions. Here, we report on a previously overlooked source of prebiotic phosphorus from interstellar 1234567890():,; phosphine (PH3) that produces key phosphorus oxoacids—phosphoric acid (H3PO4), phos- phonic acid (H3PO3), and pyrophosphoric acid (H4P2O7)—in interstellar analog ices exposed to ionizing radiation at temperatures as low as 5 K. Since the processed material of molecular clouds eventually enters circumstellar disks and is partially incorporated into planetesimals like proto Earth, an understanding of the facile synthesis of oxoacids is essential to untangle the origin of water-soluble prebiotic phosphorus compounds and how they might have been incorporated into organisms not only on Earth, but potentially in our universe as well. 1 Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA. 2 W.M. Keck Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA. 3 Department of Chemistry, National Dong Hwa University, Shoufeng, 974 Hualien, Taiwan. 4 Université Côte d’Azur, CNRS, Institut de Chimie de Nice, Nice, France. Correspondence and requests for materials should be addressed to R.I.K.
    [Show full text]
  • Scientific Opinion on the Safety Evaluation of the Active Substances
    EFSA Journal 2013;11(6):3245 SCIENTIFIC OPINION Scientific Opinion on the safety evaluation of the active substances, iron, polyethyleneglycol, disodium pyrophosphate, monosodium phosphate and sodium chloride for use in food contact materials1 EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF)2, 3 European Food Safety Authority (EFSA), Parma, Italy ABSTRACT This scientific opinion of EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety evaluation of an iron based oxygen absorber, comprising polyethyleneglycol, disodium pyrophosphate, monosodium phosphate and sodium chloride. This mixture is incorporated in polyethylene (PE) or polypropylene (PP) articles intended to be in contact with foodstuffs for hot fill/pasteurisation and/or long term storage at room temperature. For dried and fatty foods, direct contact with the materials is envisaged whereas other food types will be separated from the active material by a layer that does not contain the active components. All the substances constituting the oxygen absorber system have been evaluated and authorised for use as plastic food contact materials, as food additives or as food supplements. Based on migration results, the specific migration limits for iron, polyethyleneglycol, pyrophosphoric acid salts, phosphoric acid salts and sodium chloride, and the tolerable intake of phosphorus (phosphate) are not expected to be exceeded when the oxygen absorber system is used under the intended conditions of use, notably
    [Show full text]
  • 19650003847.Pdf
    NATIONAL BUREAU OF STANDARDS REPO RT 8595 PRELIMINARY REPORT ON A SURVEY OF THERMODYNAMIC PROPERTIES OF THE COMPOUNDS OF THE ELEMENTS CHNOPS i N65 2 CACC£S$IO NUMB£:R) CTHRU) ~ ___f£ / I- (PAGES) (CdOEI ::; ~ CIU - d -P?02c2/ :33 (NASA CR OR TMX OR AD NUMBER) (CATEQORY) Progress Report for the Period 1 August to 31 October 1964 to National Aeronautics and Space Administration GPO PRICE $ _____ OTS PRICE(S) $ 1 November 1964 Hard copy (He) of· cJV r Microfiche (MF) __....;... : .:::.j~I?J~_ <@> U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARD S The ational Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. It responsibilities include development and main tena nce of the national stand· ards of measurement, and the provisions of means for making measurements consi tent with those standard ; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures, and making such tests as may be nece sary, particu­ larl: for ~overn ment agencies; cooperation in the establi hment of standard practices for incorpora­ tion in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of device to serve special needs of the Government: assi tance to indus! r). business. and consumers in the development and acceptance of commercial tandard and simplified trade practice recommendations; administration of programs in cooperation with United tates bu iness groups and standards organizations for the development of international standard of practice; and maintenance of a clearinghouse for the collection and dis emination of scientific, tech­ nical.
    [Show full text]
  • Oswaal NEET Sample Question Papers Chemistry
    CHAPTER-1 SOME BASIC CONCEPTS OF CHEMISTRY Topic 1 General Introduction, Laws of Chemical Combination, Dalton’s Atomic Theory, Atomic and Molecular Masses » Revision Notes Chemistry is defined as the branch of science which deals with the study of composition, structure and properties of matter. Chemistry is related with all the fields of our life, e.g., food, fuels, textiles, dyes, drugs, disinfectants, perfumes, building materials, paints, inks, fertilizers, insecticide, pesticide, soap, detergents, etc. Matter : Matter is anything that has mass and occupies space. For example, book, pen, pencil, water, air, all living beings etc. are composed of matter. Accuracy – Freedom from mistake or error : The quality or state of being accurate or the ability to work or perform without making mistakes. Accuracy = Mean value – True Value Precision : The quality, condition, or fact of being exact and accurate or the closeness of the set of values obtained from identical measurements of quantity. Precision = Individual Value – Arithmetic Mean Value Significant Figures : The digits in a properly recorded measurement or the total number of figures in a number including the last digit whose value is uncertain are called significant figures, e.g., 180.00 has five significant figures. Laws of Chemical Combination : Elements combine to form compounds in accordance with the following five basic laws, called the laws of chemical combinations : (i) Law of Conservation of Mass : Mass can neither be created nor destroyed. (ii) Law of Definite Proportions Compositions : A given compound always contains exactly the same proportion of elements by weight. (iii) Law of Multiple Proportions : If two elements can combine to form more than one compound, the masses of one element that combine with a fixed mass of the other element, are in the ratio of small whole numbers.
    [Show full text]
  • 1301:7-9-03 Reporting Requirements for Hazardous Substances and List of Hazardous Substances
    1301:7-9-03 Reporting requirements for hazardous substances and list of hazardous substances. (A) Purpose. For the purpose of prescribing rules pursuant to section 3737.88 of the Revised Code, the fire marshal hereby adopts this rule to establish reporting requirements for underground storage tank systems that contain hazardous substance(s) and to list those substances which are hereby identified as hazardous substances. This rule is adopted by the fire marshal in accordance with Chapter 119. of the Revised Code and shall not be considered a part of the "Ohio Fire Code". (B) Definitions. For the purpose of this rule: (1) "Release of a hazardous substance" means: (a) Any spilling, leaking, emitting, discharging, escaping, leaching or disposing of a hazardous substance(s) from an underground storage tank system into the ground water, a surface water body, subsurface soils or otherwise into the environment; (b) Any spilling, leaking, emitting, discharging, escaping, or disposing of a hazardous substance(s) into ground water, a surface water body, subsurface soils or otherwise into the environment while transferring or attempting to transfer a hazardous substance(s) into an underground storage tank system; or (c) Contamination of subsurface soils or ground water on the UST site by a hazardous substance(s) found and confirmed through laboratory analysis of samples from the UST site. (2) "Suspected release of a hazardous substance" means evidence of a release of a hazardous substance(s) obtained through one or more of the following events: (a)
    [Show full text]