Comet Section Observing Guide

Total Page:16

File Type:pdf, Size:1020Kb

Comet Section Observing Guide Comet Section Observing Guide 1 The British Astronomical Association Comet Section www.britastro.org/comet BAA Comet Section Observing Guide Front cover image: C/2020 F3 (NEOWISE) by Peter Carson on 2020 July 12.. Back cover image: C/2011 W3 (Lovejoy) by Lester Barnes on 2011 December 23. © The British Astronomical Association 2020 2020 November (rev 6) 2 CONTENTS 1 Foreword .................................................................................................................................. 6 2 An introduction to comets ......................................................................................................... 7 2.1 Anatomy and origins ............................................................................................................................ 7 2.2 Naming .............................................................................................................................................. 12 2.3 Comet orbits ...................................................................................................................................... 13 2.4 Orbit evolution .................................................................................................................................... 15 2.5 Magnitudes ........................................................................................................................................ 18 3 Basic visual observation ......................................................................................................... 19 3.1 Sources of information ....................................................................................................................... 19 3.2 Finder charts ...................................................................................................................................... 19 3.3 Star hopping ...................................................................................................................................... 19 3.4 Instruments ........................................................................................................................................ 20 3.5 Other equipment ................................................................................................................................ 21 3.6 Visual observation ............................................................................................................................. 21 3.7 Estimating the magnitude .................................................................................................................. 23 3.8 Estimating the coma diameter ........................................................................................................... 24 3.9 Submitting observations .................................................................................................................... 25 4 Advanced visual observation .................................................................................................. 26 4.1 Telescope magnification .................................................................................................................... 26 4.2 Magnitude estimate ........................................................................................................................... 26 4.3 Star Magnitude sources ..................................................................................................................... 27 4.4 Coma Diameter .................................................................................................................................. 30 4.5 Degree of condensation .................................................................................................................... 31 4.6 Features in the coma ......................................................................................................................... 33 4.7 Tails ................................................................................................................................................... 34 4.8 Drawing comets ................................................................................................................................. 35 4.9 How to improve your observations .................................................................................................... 36 4.10 Very bright comets ............................................................................................................................. 37 4.11 Electronic submission of visual observations .................................................................................... 38 5 Imaging comets ...................................................................................................................... 39 5.1 Cameras ............................................................................................................................................ 39 5.2 Wide-field imaging ............................................................................................................................. 40 5.3 Remote observing .............................................................................................................................. 42 6 Processing your images ......................................................................................................... 45 6.1 Image calibration ............................................................................................................................... 45 6.2 Image stacking ................................................................................................................................... 46 6.3 Image processing .............................................................................................................................. 47 6.4 Sky Gradient removal ........................................................................................................................ 48 3 6.5 Other processing tools ....................................................................................................................... 48 6.6 Submitting images to the section archive .......................................................................................... 48 7 Extracting scientific data from images ..................................................................................... 53 7.1 Astrometry ......................................................................................................................................... 53 7.2 Getting an MPC code ........................................................................................................................ 56 7.3 Photometry ........................................................................................................................................ 57 7.4 Monitoring dust production ................................................................................................................ 64 7.5 Spectroscopy ..................................................................................................................................... 65 7.6 Monitoring 29P/Schwassmann-Wachmann ...................................................................................... 66 7.6.1 Background ..................................................................................................... 66 7.6.2 How to observe comet 29P .............................................................................. 67 7.6.3 Stacking individual frames ............................................................................... 68 7.6.4 Performing photometry .................................................................................... 69 7.6.5 Reporting photometry of 29P ........................................................................... 72 8 Observation reporting procedures .......................................................................................... 74 8.1 Visual observation report form ........................................................................................................... 74 8.2 Visual observation observing blank ................................................................................................... 76 9 Resources .............................................................................................................................. 78 9.1 Online ................................................................................................................................................ 78 9.2 Periodicals ......................................................................................................................................... 78 9.3 Books and atlases ............................................................................................................................. 78 4 Contacts Section website: www.britastro.org/comet BAA comets discussion email list: http://lists.britastro.org/mailman/listinfo/comets-disc Director: Nick James, 11 Tavistock Road, Chelmsford, Essex, CM1 6JL, England. E-mail: [email protected] Visual observations and analysis: Jonathan Shanklin, 11 City Road, Cambridge, CB1 1DP, England. E-Mail: [email protected] Section Secretary: Denis Buczynski, Templecroft, Tarbatness Road, Portmahomack, Near Tain, Ross-Shire, IV20 1RD, Scotland. E-mail: [email protected] Editor of The Astronomer magazine: Guy Hurst, 16 Westminster Close, Kempshott Rise, BASINGSTOKE, Hampshire. RG22 4PP, England.
Recommended publications
  • 2016 Publication Year 2020-12-21T10:07:06Z
    Publication Year 2016 Acceptance in OA@INAF 2020-12-21T10:07:06Z Title Spectral characterization of V-type asteroids - II. A statistical analysis Authors IEVA, Simone; DOTTO, Elisabetta; Lazzaro, D.; PERNA, Davide; Fulvio, D.; et al. DOI 10.1093/mnras/stv2510 Handle http://hdl.handle.net/20.500.12386/29033 Journal MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY Number 455 MNRAS 455, 2871–2888 (2016) doi:10.1093/mnras/stv2510 Spectral characterization of V-type asteroids – II. A statistical analysis S. Ieva,1‹ E. Dotto,1 D. Lazzaro,2 D. Perna,3 D. Fulvio4 and M. Fulchignoni3 1INAF–Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone (Roma), Italy 2Observatorio Nacional, Rua General Jose´ Cristino, 77 – Sao˜ Cristov´ ao,˜ Rio de Janeiro – RJ-20921-400, Brazil 3LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universites,´ UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cite,´ 5 place Jules Janssen, F-92195 Meudon, France 4Departamento de Fis´ıca, Pontif´ıcia Universidade Catolica´ do Rio de Janeiro, Rua Marques de Sao˜ Vicente 225, Rio de Janeiro 22451-900, Brazil Downloaded from https://academic.oup.com/mnras/article/455/3/2871/2892629 by guest on 06 November 2020 Accepted 2015 October 23. Received 2015 October 22; in original form 2015 August 9 ABSTRACT In recent years, several small basaltic V-type asteroids have been identified all around the main belt. Most of them are members of the Vesta dynamical family, but an increasingly large number appear to have no link with it. The question that arises is whether all these basaltic objects do indeed come from Vesta.
    [Show full text]
  • Comet Section Observing Guide
    Comet Section Observing Guide 1 The British Astronomical Association Comet Section www.britastro.org/comet BAA Comet Section Observing Guide Front cover image: C/1995 O1 (Hale-Bopp) by Geoffrey Johnstone on 1997 April 10. Back cover image: C/2011 W3 (Lovejoy) by Lester Barnes on 2011 December 23. © The British Astronomical Association 2018 2018 December (rev 4) 2 CONTENTS 1 Foreword .................................................................................................................................. 6 2 An introduction to comets ......................................................................................................... 7 2.1 Anatomy and origins ............................................................................................................................ 7 2.2 Naming .............................................................................................................................................. 12 2.3 Comet orbits ...................................................................................................................................... 13 2.4 Orbit evolution .................................................................................................................................... 15 2.5 Magnitudes ........................................................................................................................................ 18 3 Basic visual observation ........................................................................................................
    [Show full text]
  • Asteroid Regolith Weathering: a Large-Scale Observational Investigation
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved.
    [Show full text]
  • 2016 Publication Year 2020-12-21T11:43:55Z
    Publication Year 2016 Acceptance in OA@INAF 2020-12-21T11:43:55Z Title Spectral characterization of V-type asteroids - I. Space weathering effects and implications for V-type NEAs Authors Fulvio, Daniele; PERNA, Davide; IEVA, Simone; Brunetto, Rosario; Kanuchova, Zuzana; et al. DOI 10.1093/mnras/stv2300 Handle http://hdl.handle.net/20.500.12386/29048 Journal MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY Number 455 MNRAS 455, 584–595 (2016) doi:10.1093/mnras/stv2300 Spectral characterization of V-type asteroids – I. Space weathering effects and implications for V-type NEAs Daniele Fulvio,1‹ Davide Perna,2 Simone Ieva,3 Rosario Brunetto,4 Zuzana Kanuchova,5 Carlo Blanco,6,7 Giovanni Strazzulla6 and Elisabetta Dotto3 1Departamento de F´ısica, Pontif´ıcia Universidade Catolica´ do Rio de Janeiro, Rua Marquesˆ de Sao˜ Vicente 225, 22451-900 Rio de Janeiro, RJ, Brazil 2LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universites,´ UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cite,´ 5 place Jules Janssen, F-92195 Meudon, France 3INAF – Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Roma, Italy 4Institut d’Astrophysique Spatiale, CNRS, UMR-8617, Universite´ Paris-Sud, batimentˆ 121, F-91405 Orsay Cedex, France Downloaded from https://academic.oup.com/mnras/article/455/1/584/984768 by guest on 06 November 2020 5Astronomical Institute of the Slovak Academy of Sciences, 059 60 Tatranska´ Lomnica, Slovakia 6INAF – Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania, Italy 7Dipartimento di Fisica e Astronomia, Universita` di Catania, Via S. Sofia 78, I-95123 Catania, Italy Accepted 2015 October 1.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 35, NUMBER 3, A.D. 2008 JULY-SEPTEMBER 95. ASTEROID LIGHTCURVE ANALYSIS AT SCT/ST-9E, or 0.35m SCT/STL-1001E. Depending on the THE PALMER DIVIDE OBSERVATORY: binning used, the scale for the images ranged from 1.2-2.5 DECEMBER 2007 – MARCH 2008 arcseconds/pixel. Exposure times were 90–240 s. Most observations were made with no filter. On occasion, e.g., when a Brian D. Warner nearly full moon was present, an R filter was used to decrease the Palmer Divide Observatory/Space Science Institute sky background noise. Guiding was used in almost all cases. 17995 Bakers Farm Rd., Colorado Springs, CO 80908 [email protected] All images were measured using MPO Canopus, which employs differential aperture photometry to determine the values used for (Received: 6 March) analysis. Period analysis was also done using MPO Canopus, which incorporates the Fourier analysis algorithm developed by Harris (1989). Lightcurves for 17 asteroids were obtained at the Palmer Divide Observatory from December 2007 to early The results are summarized in the table below, as are individual March 2008: 793 Arizona, 1092 Lilium, 2093 plots. The data and curves are presented without comment except Genichesk, 3086 Kalbaugh, 4859 Fraknoi, 5806 when warranted. Column 3 gives the full range of dates of Archieroy, 6296 Cleveland, 6310 Jankonke, 6384 observations; column 4 gives the number of data points used in the Kervin, (7283) 1989 TX15, 7560 Spudis, (7579) 1990 analysis. Column 5 gives the range of phase angles.
    [Show full text]
  • A Study of Asteroid Pole-Latitude Distribution Based on an Extended
    Astronomy & Astrophysics manuscript no. aa˙2009 c ESO 2018 August 22, 2018 A study of asteroid pole-latitude distribution based on an extended set of shape models derived by the lightcurve inversion method 1 1 1 2 3 4 5 6 7 J. Hanuˇs ∗, J. Durechˇ , M. Broˇz , B. D. Warner , F. Pilcher , R. Stephens , J. Oey , L. Bernasconi , S. Casulli , R. Behrend8, D. Polishook9, T. Henych10, M. Lehk´y11, F. Yoshida12, and T. Ito12 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holeˇsoviˇck´ach 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 4 Goat Mountain Astronomical Research Station, 11355 Mount Johnson Court, Rancho Cucamonga, CA 91737, USA 5 Kingsgrove, NSW, Australia 6 Observatoire des Engarouines, 84570 Mallemort-du-Comtat, France 7 Via M. Rosa, 1, 00012 Colleverde di Guidonia, Rome, Italy 8 Geneva Observatory, CH-1290 Sauverny, Switzerland 9 Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100, Israel 10 Astronomical Institute, Academy of Sciences of the Czech Republic, Friova 1, CZ-25165 Ondejov, Czech Republic 11 Severni 765, CZ-50003 Hradec Kralove, Czech republic 12 National Astronomical Observatory, Osawa 2-21-1, Mitaka, Tokyo 181-8588, Japan Received 17-02-2011 / Accepted 13-04-2011 ABSTRACT Context. In the past decade, more than one hundred asteroid models were derived using the lightcurve inversion method. Measured by the number of derived models, lightcurve inversion has become the leading method for asteroid shape determination.
    [Show full text]
  • The Compositional Diversity of Non-Vesta Basaltic Asteroids
    The compositional diversity of non-Vesta basaltic asteroids The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Leith, Thomas B. et al. "The compositional diversity of non-Vesta basaltic asteroids." Icarus 295 (October 2017): 61-73 © 2017 Elsevier As Published http://dx.doi.org/10.1016/j.icarus.2017.05.007 Publisher Elsevier BV Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/127640 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ The compositional diversity of non-Vesta basaltic asteroids Thomas B. Leitha,b, Nicholas A. Moskovitza, Rhiannon G. Maynec, Francesca E. DeMeod, Driss Takire, Brian J. Burta,d, Richard P. Binzeld, Dimitra Pefkoud aLowell Observatory, Flagstaff, AZ, 86001, USA bHarvard-Smithsonian Center for Astrophysics, Cambridge, MA, 02138, USA cMonnig Meteorite Collection, Texas Christian University, Fort Worth, TX, 76129, USA dMassachusetts Institute of Technology, Cambridge, MA, 02139, USA eAstrogeology Science Center, United States Geological Survey, Flagstaff, AZ, 86001, USA Abstract We present near-infrared (0.78-2.45 µm) reflectance spectra for nine middle and outer main belt (a > 2:5 AU) basaltic asteroids. Three of these objects are spectrally distinct from all classifications in the Bus-DeMeo system and could represent spectral end members in the existing taxonomy or be representatives of a new spectral type. The remainder of the sample are classified as V- or R- type. All of these asteroids are dynamically detached from the Vesta collisional family, but are too small to be intact differentiated parent bodies, implying that they originated from differentiated planetesimals which have since been destroyed or ejected from the solar system.
    [Show full text]
  • The Complete the Complete Guide to Guide to Guide to Observing Observing Lunar, Grazing and Lunar, Grazing and Asteroid Occulta
    The Complete Guide to Observing Lunar, Grazing and Asteroid Occultations Published by the International Occultation Timing Association Richard Nugent, Editor Copyright 2007 International Occultation Timing Association, Richard Nugent, Editor. All rights reserved. No part of this publication may be reproduced, distributed or copied in any manner without the written permission from the Editor in Chief. No part of this publication may be reproduced, stored in any retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under the 1976 United States Copyright Act and with the written permission of the Editor and Publisher. Request to the Editor should be sent via email: [email protected]. While the Editor, Authors and Publisher have made their best efforts in preparing the IOTA Occultation Manual, they make no representation or warranties with respect to the accuracy and completeness regard to its contents. The Publisher, Editor and Authors specifically disclaim any implied warranties of merchantability or fitness of the material presented herein for any purpose. The advice and strategies contained herein may not be suitable for your situation and the reader and/or user assumes full responsibility for using and attempting the methods and techniques presented. Neither the publisher nor the authors shall be liable for any loss of profit or any damages, including but not limited to special, incidental, consequential, or other damages and any loss or injury. Persons are advised that occultation observations involve substantial risk and are advised to take the necessary precautions before attempting such observations. Editor in Chief: Richard Nugent Assistant Editor: Lydia Lousteaux Contributors: Trudy E.
    [Show full text]
  • The Minor Planet Bulletin Is Open to Papers on All Aspects of 6500 Kodaira (F) 9 25.5 14.8 + 5 0 Minor Planet Study
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 32, NUMBER 3, A.D. 2005 JULY-SEPTEMBER 45. 120 LACHESIS – A VERY SLOW ROTATOR were light-time corrected. Aspect data are listed in Table I, which also shows the (small) percentage of the lightcurve observed each Colin Bembrick night, due to the long period. Period analysis was carried out Mt Tarana Observatory using the “AVE” software (Barbera, 2004). Initial results indicated PO Box 1537, Bathurst, NSW, Australia a period close to 1.95 days and many trial phase stacks further [email protected] refined this to 1.910 days. The composite light curve is shown in Figure 1, where the assumption has been made that the two Bill Allen maxima are of approximately equal brightness. The arbitrary zero Vintage Lane Observatory phase maximum is at JD 2453077.240. 83 Vintage Lane, RD3, Blenheim, New Zealand Due to the long period, even nine nights of observations over two (Received: 17 January Revised: 12 May) weeks (less than 8 rotations) have not enabled us to cover the full phase curve. The period of 45.84 hours is the best fit to the current Minor planet 120 Lachesis appears to belong to the data. Further refinement of the period will require (probably) a group of slow rotators, with a synodic period of 45.84 ± combined effort by multiple observers – preferably at several 0.07 hours. The amplitude of the lightcurve at this longitudes. Asteroids of this size commonly have rotation rates of opposition was just over 0.2 magnitudes.
    [Show full text]
  • Asteroids' Physical Models from Combined Dense and Sparse
    Astronomy & Astrophysics manuscript no. hanus_2013_AA c ESO 2013 January 30, 2013 Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution 1 1 1 2 3 4 5 6 7 J. Hanuš ∗, J. Durechˇ , M. Brož , A. Marciniak , B. D. Warner , F. Pilcher , R. Stephens , R. Behrend , B. Carry , D. Capekˇ 8, P. Antonini9, M. Audejean10, K. Augustesen11, E. Barbotin12, P. Baudouin13, A. Bayol11, L. Bernasconi14, W. Borczyk2, J.-G. Bosch15, E. Brochard16, L. Brunetto17, S. Casulli18, A. Cazenave12, S. Charbonnel12, B. Christophe19, F. Colas20, J. Coloma21, M. Conjat22, W. Cooney23, H. Correira24, V. Cotrez25, A. Coupier11, R. Crippa26, M. Cristofanelli17, Ch. Dalmas11, C. Danavaro11, C. Demeautis27, T. Droege28, R. Durkee29, N. Esseiva30, M. Esteban11, M. Fagas2, G. Farroni31, M. Fauvaud12,32, S. Fauvaud12,32, F. Del Freo11, L. Garcia11, S. Geier33,34, C. Godon11, K. Grangeon11, H. Hamanowa35, H. Hamanowa35, N. Heck20, S. Hellmich36, D. Higgins37, R. Hirsch2, M. Husarik38, T. Itkonen39, O. Jade11, K. Kaminski´ 2, P. Kankiewicz40, A. Klotz41,42,R. A.Koff43, A. Kryszczynska´ 2, T. Kwiatkowski2, A. Laffont11, A. Leroy12, J. Lecacheux44, Y. Leonie11, C. Leyrat44, F. Manzini45, A. Martin11, G. Masi11, D. Matter11, J. Michałowski46, M. J. Michałowski47, T. Michałowski2, J. Michelet48, R. Michelsen11, E. Morelle49, S. Mottola36, R. Naves50, J. Nomen51, J. Oey52, W. Ogłoza53, A. Oksanen49, D. Oszkiewicz34,54, P. Pääkkönen39, M. Paiella11, H. Pallares11, J. Paulo11, M. Pavic11, B. Payet11, M. Polinska´ 2, D. Polishook55, R. Poncy56, Y. Revaz57, C. Rinner31, M. Rocca11, A. Roche11, D. Romeuf11, R. Roy58, H. Saguin11, P.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 41, NUMBER 4, A.D. 2014 OCTOBER-DECEMBER 203. LIGHTCURVE ANALYSIS FOR 4167 RIEMANN Amy Zhao, Ashok Aggarwal, and Caroline Odden Phillips Academy Observatory (I12) 180 Main Street Andover, MA 01810 USA [email protected] (Received: 10 June) Photometric observations of 4167 Riemann were made over six nights in 2014 April. A synodic period of P = 4.060 ± 0.001 hours was derived from the data. 4167 Riemann is a main-belt asteroid discovered in 1978 by L. V. Period analysis was carried out by the authors using MPO Canopus Zhuraveya. Observations of the asteroid were conducted at the and its Fourier analysis feature developed by Harris (Harris et al., Phillips Academy Observatory, which is equipped with a 0.4-m f/8 1989). The resulting lightcurve consists of 288 data points. The reflecting telescope by DFM Engineering. Images were taken with period spectrum strongly favors the bimodal solution. The an SBIG 1301-E CCD camera that has a 1280x1024 array of 16- resulting lightcurve has synodic period P = 4.060 ± 0.001 hours micron pixels. The resulting image scale was 1.0 arcsecond per and amplitude 0.17 mag. Dips in the period spectrum were also pixel. Exposures were 300 seconds and taken primarily at –35°C. noted at 8.1200 hours (2P) and at 6.0984 hours (3/2P). A search of All images were guided, unbinned, and unfiltered. Images were the Asteroid Lightcurve Database (Warner et al., 2009) and other dark and flat-field corrected with Maxim DL.
    [Show full text]
  • The First Confirmation of V-Type Asteroids Among the Mars Crosser
    The first confirmation of V-type asteroids among the Mars crosser populationI A. O. Ribeiroa, F. Roiga,∗, M. Canada-Assandri˜ b,c, J. M. F. Carvanoa, F. L. Jasmina, A. Alvarez-Candal´ a,d, R. Gil-Huttonb,c aObservat´orioNacional, Rua General Jos´eCristino 77, Rio de Janeiro, 20921-400, Brazil bUniversidad Nacional de San Juan, Av. Espa˜na1512 sur, San Juan, J5402DSP, Argentina cComplejo Astron´omicoEl Leoncito (CONICET), Av. Espa˜na1512 sur, San Juan, J5402DSP, Argentina dInstituto de Astrof´ısicade Andaluc´ıa- CSIC, Glorieta de la Astronom´ıas/n, E18008, Granada, Spain Abstract The Mars crossing region constitutes a path to deliver asteroids from the Inner Main Belt to the Earth crossing space. While both the Inner Main Belt and the population of Earth crossing asteroids contains a significant fraction of asteroids belonging to the V taxonomic class, only two of such V-type asteroids has been detected in the Mars crossing region up to now. In this work, we systematically searched for asteroids belonging to the V class among the populations of Mars crossing asteroids, in order to support alternative paths to the delivery of this bodies into the Earth crossing region. We selected 18 candidate V-type asteroids in the Mars crossing region using observations contained in the Sloan Digital Sky Survey Moving Objects Catalog. Then, we observed 4 of these candidates to take their visible spectra using the Southern Astrophysical Research Telescope (SOAR). We also performed the numerical simulation of the orbital evolution of the observed asteroids. We confirmed that 3 of the observed asteroids belong to the V class, and one of these may follow a path that drives it to an Earth collision in some tens of million years.
    [Show full text]