Caderno De Resumos EHFB 2015
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
THE SNAKES of SURINAM, PART XVI: SUBFAMILY XENO- By: A
-THE SNAKES -OF SURINAM, ---PART XVI: SUBFAMILY --XENO- DONTINAE ( GENERA WAGLEROPHIS., XENODON AND XENO PHOLIS). By: A. Abuys, Jukwerderweg 31, 9901 GL Appinge dam, The Netherlands. Contents: The genus WagZerophis - The genus Xeno don - The genus XenophoZis - References. THE GENUS wAGLEROPHIS ROMANO & HOGE, 1972 This genus contains only one species. Prior to 1972 this species was known as Xenodon merremii (Wagler, 1824). This species is found in Surinam. General data for the genus: Head: The head is short and slightly flattened. The strong neck is only marginally narrower than the head. The relatively large eyes have round pupils. Body: Short and stout with smooth scales. The scales have one apical groove. The formation of the dorsal scales is characteristic for this genus. These are arranged so that the upper rows are at an angle to the lower ones (see figure 1) . Tail: Short. Behaviour: Terrestrial and both nocturnal and di urnal. Food: Frogs, toads, lizards and sometimes snakes, insects or small mammals. Habitat: Damp forest floors near swamps or water. Reproduction: Oviparous. Remarks: When threatened or disturbed, the fore part of the body is inflated and the neck is spread in a cobra-like fashion. The head is al· so raised slightly, but not as high and as 181 Fig. 1. Dorsal scale pattern of Waglerophis. From: Peters & Orejas-Miranda, 1970. vertically as a cobra. This is an aggressive snake which will invariably resort to biting if the warning behaviour described above is not heeded. This genus (in common with the genera Xenodon, Heterodon and Lystrophis) has two enlarged teeth attached to the back of the upper jaw. -
The Patagonian Herpetofauna José M
The Patagonian Herpetofauna José M. Cei Instituto de Biología Animal Universidad Nacional de Cuyo Casilla Correo 327 Mendoza, Argentina Reprinted from: Duellman, William E. (ed.). 1979. The South American Herpetofauna: Its origin, evolution, and dispersal. Univ. Kansas Mus. Nat. Hist. MonOgr. 7: 1-485. Copyright © 1979 by The Museum of Natural History, The University of Kansas, Lawrence, Kansas. 13. The Patagonian Herpetofauna José M. Cei Instituto de Biología Animal Universidad Nacional de Cuyo Casilla Correo 327 Mendoza, Argentina The word Patagonia is derived from the longed erosion. Scattered through the region term “Patagones,” meaning big-legged men, are extensive areas of extrusive basaltic rocks. applied to the tall Tehuelche Indians of The open landscape is dissected by transverse southernmost South America by Ferdinand rivers descending from the snowy Andean Magellan in 1520. Subsequently, this pic cordillera; drainage is poor near the Atlantic turesque name came to be applied to a con coast. Patagonia is subjected to severe sea spicuous continental region and to its biota. sonal drought with about five cold winter Biologically, Patagonia can be defined as months and a cool dry summer, infrequently that region east of the Andes and extending interrupted by irregular rains and floods. southward to the Straits of Magellan and eastward to the Atlantic Ocean. The northern boundary is not so clear cut. Elements of the HISTORY OF THE PATAGONIAN BIOTA Pampean biota penetrate southward along the coast between the Rio Colorado and the Rio In contrast to the present, almost uniform Negro (Fig. 13:1). Also, in the west Pata steppe associations in Rio Negro, Chubut, gonian landscapes and biota enter the vol and Santa Cruz provinces, during Oligocene canic regions of southern Mendoza, almost and Miocene times tropical and subtropical reaching the Rio Atuel Basin. -
The Flower Flies and the Unknown Diversity of Drosophilidae (Diptera): a Biodiversity Inventory in the Brazilian Fauna
bioRxiv preprint doi: https://doi.org/10.1101/402834; this version posted August 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The flower flies and the unknown diversity of Drosophilidae (Diptera): a biodiversity inventory in the Brazilian fauna Hermes J. Schmitz1 and Vera L. S. Valente2 1 Universidade Federal da Integração-Latino-Americana, Foz do Iguaçu, PR, Brazil; [email protected] 2 Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; [email protected] Abstract Diptera is a megadiverse order, reaching its peak of diversity in Neotropics, although our knowledge of dipteran fauna of this region is grossly deficient. This applies even for the most studied families, as Drosophilidae. Despite its position of evidence, most aspects of the biology of these insects are still poorly understood, especially those linked to natural communities. Field studies on drosophilids are highly biased to fruit-breeders species. Flower-breeding drosophilids, however, are worldwide distributed, especially in tropical regions, although being mostly neglected. The present paper shows results of a biodiversity inventory of flower-breeding drosophilids carried out in Brazil, based on samples of 125 plant species, from 47 families. Drosophilids were found in flowers of 56 plant species, of 18 families. The fauna discovered showed to be highly unknown, comprising 28 species, 12 of them (>40%) still undescribed. -
Zootaxa 2173
Zootaxa 2173: 66–68 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) On the status of the snake genera Erythrolamprus Boie, Liophis Wagler and Lygophis Fitzinger (Serpentes, Xenodontinae) FELIPE F. CURCIO1,2, VÍTOR DE Q. PIACENTINI1 & DANIEL S. FERNANDES3 1Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11.461, CEP 05422-970, São Paulo, SP, Brazil. 2E-mail: [email protected] 3Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CEP 21941–590, Rio de Janeiro, RJ, Brasil. E-mail: [email protected] The genus Erythrolamprus Boie (1826) comprises six species of Central and South American false coral snakes (Peters & Orejas-Miranda 1970; Zaher 1999; Curcio et al. 2009). It is traditionally allocated in the tribe Xenodontini (subfamily Xenodontinae), along with the genera Liophis, Lystrophis, Umbrivaga, Waglerophis and Xenodon (sensu Dixon 1980; Cadle 1984; Myers 1986; Ferrarezzi 1994; Zaher 1999). Although Xenodontini is supported by morphological and molecular evidence, phylogenetic relationships and classification within the tribe have been the subject of recent debate. Molecular phylogenetic studies have recovered clades with Erythrolamprus nested within some representatives of the genus Liophis (Vidal et al. 2000; Zaher et al. 2009), partly corroborating previous hypotheses based on morphology (e.g. Dixon 1980). Vidal et al.’s (2000) and Zaher et al.’s (2009) sampling of taxa of Erythrolamprus and Liophis is far from comprehensive, each including five species of traditional Liophis (only one of which is common to the two studies) and one species of Erythrolamprus. -
Iheringia Zoologia 1
i »r> 2 E CO _ C/> co LIBRARIES SMITHSONIAN INSTITUTION NOIinillSNI NVINOSHIMS S3IHV 2 i ^ z « co z co z ^NouniiisNi NViNOSHims^SB avaa h li B RAR I ES^SMITHSONIAN^INSTITL <n <" — ^ ^ Z \ ^ ^ 5 co 'LIBRARIES^SMITHSONIAN^INSTITUTION^OIiniliSNI^NVINOSHIlWS^SaiaV ^NOIiniliSNI^NVINOSHilWS^SBiaVaan^lBRARIES^SMITHSONiAN'lNSTIU LI B RAR I ES SMITHSONIAN INSTITUTION^NOlinillSNI^NVINOSHlIWS^ _ I d Vi Z ^rr^ ?> 2 M ZZ CO < *N0linillSNI^NVIN0SHllWS^S3 I H VH S 11 "Yl B RAR I ES^SMITHSONIAN^INSTITU B RAR I ES SMITHSONIAN^INSTITUTION^NOlinillSNrNVINOSHlIWS^SB I h Vfc CO Z CO 5 Ä ^NOIinillSNI^NVINOSHlIWS'sa I d fl Vd H LI B RAR I ES^SMITHSONIAN^NSTITU oo 00 , Z J Z ES SMITHS0NIAN" |NSTITUTI0N N0linillSNl" NVIN0SHllWS S3 I HVh Z l~ 21 r* -» co *• Z —-"^ iy5 *•!/> — II L NOIlfUUSNrNVINOSHlMS S3 I U VU a *R I ES^SMITHSONIAN^INSTITUTION co z * co mm^ ^ ^ S ^ s. ^ -^ < o /£/ CO *" co 2 co 2 CO Z INSTITUTION 11I1SNI NVIN0SH1MS S3ldVdan LIBRARIES SMITHSONIAN J to o: o: Z -I z -J -», l ARIES SMITHSONIAN INSTITUTION NOIlfUllSNI NVIN0SH1IWS S3 1 dV^J 8 II z o ^~~^ co E co X == °° UI1SNI NVIN0SH1IWS S3IUVHail LI B RAR I ES SMITHSONIAN INSTITUTION^ » CO Z ~v co z 2 AR I ES^SMITHSONIAN INSTITUTION NOIlfllllSNI NVINOSHlIWS^Sa I HVH 3 II co 2 co J :Z Z I SMITHSONIAN"jNSTITUTION UllSNl" NVIN0SHllWS S3 I d VU 8 II^LI B RAR ES z r- z 1 > J/ » N> — co _ co ± CO l"l ARIES SMITHSONIAN INSTITUTION NOIlfUllSNI NVIN0SH1IWS S3 I HVHS co co Z . -
Xenodon Pulcher (Jan, 1863) (Serpentes: Dipsadidae) First Record for Brazil and a Distribution Extension
Herpetology Notes, volume 8: 361-364 (2015) (published online on 30 June 2015) Xenodon pulcher (Jan, 1863) (Serpentes: Dipsadidae) first record for Brazil and a distribution extension Hugo Cabral1,2,*, Liliana Piatti3, Franco Leandro de Souza4, Gustavo Scrocchi5 and Vanda Lúcia Ferreira4 The snake genus Xenodon Boie, 1827 is placed We analyzed specimens housed in the Museo de in Xenodontini (Zaher et al., 2009) and currently is Historia Natural del Paraguay (MNHNP) and in the comprised of 11 species distributed in the Guyanas, Colección Zoológica de la Facultad de Ciencias Exactas Brazil, Uruguay, Bolivia, Paraguay and Argentina y Naturales (CZCEN), both in San Lorenzo, Paraguay (Peters and Orejas-Miranda, 1970; Cei, 1993; Scrocchi and in the Coleção Zoológica de Referência da and Cruz, 1993; Giraudo and Scrocchi, 2002; Giraudo, Universidade Federal de Mato Grosso do Sul (ZUFMS), 2002; Carreira et al., 2005; Nenda and Cacivio, 2007; Campo Grande, Brazil. We analyzed morphological Cacciali, 2009). Among them are species formerly placed attributes (counts of ventrals, subcaudals, preocular in Lystrophis Cope, 1885 and Waglerophis Romano scales and complete triads on the body and tail) to & Hoge, 1973, recently synonymized with Xenodon determinate the correct identity of specimens from Porto because of their close phylogenetic relationships (Zaher Murtinho. Damaged specimens were excluded from et al., 2009). analysis. Counts of ventrals follow Dowling (1951), and Xenodon pulcher (Jan, 1863) is distributed from paired cephalic scales are presented in left/ right order. eastern Bolivia to western Paraguay and northern Every record was georeferenced, digitalized and plotted Argentina, and is associated with the Chaco ecoregion on a map using ArcGis 10. -
The Herpetological Journal
Volume 8, Number 3 July 1998 ISSN 0268-0130 THE HERPETOLOGICAL JOURNAL Published by the Indexed in BRITISH HERPETOLOGICAL SOCIETY Current Contents Th e Herpetological Jo urnal is published quarterly by the British Herpetological Society and is issued freeto members. Articles are listed in Current Awareness in Biological Sciences, Current Contents, Science Citation Index and Zoological Record. Applications to purchase copies and/or for details of membership should be made to the Hon. Secretary, British Herpetological Society, The Zoological Society of London, Regent's Park, London NWl 4RY, UK. Instructions to authors are printed inside the back cover. All contributions should be addressed to the Editor (address below). Editor: Richard A. Griffiths, The Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent CT2 7NJ, UK Associate Editor: Leigh Gillett Editorial Board: Pim Arntzen (Oporto) Donald Broadley (Zimbabwe) John Cooper (Wellingborough) John Davenport (Millport) Andrew Gardner (Oman) Tim Halliday (Milton Keynes) Michael Klemens (New York) Colin McCarthy (London) Andrew Milner (London) Henk Strijbosch (Nijmegen) Richard Tinsley (Bristol) BRITISH HERPETOLOGICAL SOCIETY Copyright It is a fundamental condition that submitted manuscripts have not been published and will not be simultaneously submitted or published elsewhere. By submitting a manuscript, the authors agree that the copyright for their article is transferred to the publisher if and when the article is accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and photographic reproductions. Permission for any such activities must be sought in advance from the Editor. ADVERTISEMENTS The Herpetological Journal accepts advertisements subject to approval of contents by the Editor, to whom enquiries should be addressed. -
AMNH-Scientific-Publications-2014
AMERICAN MUSEUM OF NATURAL HISTORY Fiscal Year 2014 Scientific Publications Division of Anthropology 2 Division of Invertebrate Zoology 11 Division of Paleontology 28 Division of Physical Sciences 39 Department of Earth and Planetary Sciences and Department of Astrophysics Division of Vertebrate Zoology Department of Herpetology 58 Department of Ichthyology 62 Department of Mammalogy 65 Department of Ornithology 78 Center for Biodiversity and Conservation 91 Sackler Institute for Comparative Genomics 99 DIVISION OF ANTHROPOLOGY Berwick, R.C., M.D. Hauser, and I. Tattersall. 2013. Neanderthal language? Just-so stories take center stage. Frontiers in Psychology 4, article 671. Blair, E.H., and Thomas, D.H. 2014. The Guale uprising of 1597: an archaeological perspective from Mission Santa Catalina de Guale (Georgia). In L.M. Panich and T.D. Schneider (editors), Indigenous Landscapes and Spanish Missions: New Perspectives from Archaeology and Ethnohistory: 25–40. Tucson: University of Arizona Press. Charpentier, V., A.J. de Voogt, R. Crassard, J.-F. Berger, F. Borgi, and A. Al- Ma’shani. 2014. Games on the seashore of Salalah: the discovery of mancala games in Dhofar, Sultanate of Oman. Arabian Archaeology and Epigraphy 25: 115– 120. Chowns, T.M., A.H. Ivester, R.L. Kath, B.K. Meyer, D.H. Thomas, and P.R. Hanson. 2014. A New Hypothesis for the Formation of the Georgia Sea Islands through the Breaching of the Silver Bluff Barrier and Dissection of the Ancestral Altamaha-Ogeechee Drainage. Abstract, 63rd Annual Meeting, Geological Society of America, Southeastern Section, April 10–11, 2014. 2 DeSalle, R., and I. Tattersall. 2014. Mr. Murray, you lose the bet. -
Mutualism Exploitation: Predatory Drosophilid Larvae Sugar-Trap Ants and Jeopardize Facultative Ant-Plant Mutualism
Reports Ecology, 97(7), 2016, pp. 1650–1657 © 2016 by the Ecological Society of America Mutualism exploitation: predatory drosophilid larvae sugar- trap ants and jeopardize facultative ant- plant mutualism 1,3 2 2,4 MAYRA C. VIDAL, SEBASTIAN F. SENDOYA, AND PAULO S. OLIVEIRA 1Graduate Program in Ecology, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970 Brazil 2Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970 Brazil Abstract. An open question in the evolutionary ecology of ant- plant facultative mutualism is how other members of the associated community can affect the interaction to a point where reciprocal benefits are disrupted. While visitingQualea grandiflora shrubs to collect sugary rewards at extrafloral nectaries, tropical savanna ants deter herbivores and reduce leaf damage. Here we show that larvae of the flyRhinoleucophenga myrmecophaga, which develop on extra- floral nectaries, lure potentially mutualistic, nectar- feeding ants and prey on them. Foraging ants spend less time on fly- infested foliage. Field experiments showed that predation (or the threat of predation) on ants by fly larvae produces cascading effects through three trophic levels, resulting in fewer protective ants on leaves, increased numbers of chewing herbivores, and greater leaf damage. These results reveal an undocumented mode of mutualism exploita- tion by an opportunistic predator at a plant-provided food source, jeopardizing ant-derived protection services to the plant. Our study documents a rather unusual case of predation of adult ants by a dipteran species and demonstrates a top- down trophic cascade within a gener- alized ant- plant mutualism. Key words: ants; Drosophilidae; extrafloral nectaries; indirect effects; insect herbivory; multitrophic interaction; mutualism disruption; top-down effects; trophic cascade; tropical savanna. -
Download Vol. 9, No. 7
BULLETIN OF THE FLORIDA STATE MUSEUM BIOLOGICAL SCIENCES Volume 9 Number7 THE CRANIAL ANATOMY OF THE HOG-NOSED SNAKES (HETERODON) W. G. Weaver, Jr. Of I UNIVERSITY OF FLORIDA Gainesville 1965 Numbers of the BULLETIN OF THE FLORIDA STATE MUSEUM are pub- lished at irregular intervals. Volumes contain about 800 pages and are not nec- essarily completed in any one calendar year. \VALTER AUFFENBERG, Managing Editor OLIVER L . AUSTIN, JR., Edito, Consultants for this issue: Carl Cans James Peters Communications concerning purchase or exchange of the publication and all man- uscripts should be addressed to the Managing Editor of the Bulletin, Florida State Mitseum, Seagle Building, Gainesville, Florida. Published June 9, 1965 Price for this issue $.45 THE CRANIAL ANATOMY OF THE HOG-NOSED SNAKES (HETERODON) W. G. Weaver, Jr.1 SYNOPSIS. The cranial osteology and myology of the Xenodontine snake genus Heterodon are described and. correlated with certain aspects.of the trunk muscula- ture. Comparisons are made with the genus Xenodon and the viperidae. Heterodon, and to a lesser extent Xenodon, are similar to the Viperidae in many features of their cranial and trunk myology. A Xenod6ntine prot6viper is hypothesized that gave rise to three present- day snake groups: (1) the advanced xenodontine snakes such 'as Xenodon, (2) the more primitive but specialized Heterodon, and (3) the vipers. TABLE OF CONTENTS Introduction ..... _.--1._.:.-__---_.- _ 276 The Vertebral Unit 288 Materials _....._..._._...__.-___._ 276 Cranial Myology 288 Systematic P65ition of Hetero- The Adductores Mandibulae__ 288 don and Xenodon 276 The Constrictor Dorsalis -____ 291 Distribution of Heterodon The Intermandibular Muscles_ 292 and Xenodon __.._........._.. -
Filosofia E História Da Biologia, V. 10, N. 1, 2015
ISSN 1983-053X Filosofia e História da Biologia vol. 10, n° 1, 2015 Associação Brasileira de Filosofia e História da Biologia – ABFHiB Filosofia e História da Biologia 10.1 História da Filosofia e Filosofia e História da Biologia Volume 10, número 1 Jan.-Jun. 2015 Associação Brasileira de Filosofia e História da Biologia – ABFHiB http://www.abfhib.org DIRETORIA DA ABFHiB (GESTÃO 2013-2015) Presidente: Maria Elice Brzezinski Prestes (USP) Vice-Presidente: Charbel N. El-Hani (UFBA) Secretário: F. Felipe de Almeida Faria (GFM-DEFHB- UFSC) Tesoureira: Fernanda da Rocha Brando (FFCLRP-USP) Conselheiros: Anna Carolina Krebs P. Regner (ILEA-UFRGS) Antonio Carlos Sequeira Fernandes (UFRJ, Museu Nacional) Lilian Al-Chueyr Pereira Martins (FFCLRP-USP) Waldir Stefano (UP Mackenzie) A Associação Brasileira de Filosofia e História da Biologia (ABFHiB) foi fundada no dia 17 de agosto de 2006, durante o IV Encontro de Filosofia e História da Biologia, realizado na Universidade Presbiteriana Mackenzie, em São Paulo, SP. O objetivo da AB- FHiB é promover e divulgar estudos sobre a filosofia e a história da biologia, bem como de suas interfaces epistêmicas, estabele- cendo cooperação e comunicação entre todos os pesquisadores que a integram. Filosofia e História da Biologia Editores: Lilian Al-Chueyr Pereira Martins (FFCLRP-USP) Maria Elice Brzezinski Prestes (USP) Editor associado: Roberto de Andrade Martins (UEPB) Conselho editorial: Aldo Mellender de Araújo (UFRGS), Ana Maria de Andrade Caldeira (UNESP), Anna Carolina Regner (ILEA-UFRGS), Charbel Niño El-Hani (UFBA), Gustavo Ca- poni (UFSC), Marisa Russo (UNIFESP), Nadir Ferrari (UFSC), Nelio Bizzo (USP), Pablo Lorenzano (UBA, Argenti- na), Palmira Fontes da Costa (UNL, Portugal), Ricardo Waiz- bort (Fiocruz), Susana Gisela Lamas (UNLP, Argentina) ISSN 1983-053X Filosofia e História da Biologia Volume 10, número 1 Jan.-Jun. -
Wallace and Savage: Heroes, Theories, and Venomous Snake Mimicry
Wallace and Savage: Heroes, Theories, and Venomous Snake Mimicry Harry W. Greene and Roy W. McDiarmid In the dawn of field biology, Alfred Russel Wallace departed for the most distant and dangerous biotic frontiers of the world, carrying with him little formal education but a blessed love of reading and reflective solitude. He sought the insect-ridden Edens of which naturalist explorers dream. His principal lifeline to the English homeland con- sisted of specimens outbound•birds skinned, insects pinned, plants pressed•and sporadic payments for his treasures inbound. An intense young man, totally focused, awesomely persistent and resourceful, resilient to tropical diseases that might have killed others, and nobly selfless, even to Darwin, who otherwise might have become a bitter rival, Wallace endured, and he triumphed. He succeeded brilliantly because he relished detail while thinking across a wide canvas. E. o. WILSON (1999) Among the Bribri, Cabecar, Boruca, Changina, and Chiriqui, when the chicha has been drunk, the night grows late and dark, and the fires die down to burning embers, the wisest old man of the tribe tells his engrossed listeners of a beautiful miraculous golden frog that dwells in the forests of these mystical mountains. According to the legends, this frog is ever so shy and retiring and can only be found after arduous trials and patient search in the dark woods on fog shrouded slopes and frigid peaks. How- ever, the reward for the finder of this marvelous creature is sublime. Anyone who spies the glittering brilliance of the frog is at first astounded by its beauty and overwhelmed by the excitement and joy of discovery...