Short Note Null Models for Understanding Fairy Shrimp Habitats

Total Page:16

File Type:pdf, Size:1020Kb

Short Note Null Models for Understanding Fairy Shrimp Habitats Animal Biology 67 (2017) 331–338 brill.com/ab Short Note Null models for understanding fairy shrimp habitats Patricio De los Ríos Escalante1,2,∗ 1 Universidad Católica de Temuco, Facultad de Recursos Naturales, Escuela de Ciencias Ambientales, Casilla 15-D, Temuco, Chile 2 Núcleo de Estudios Ambientales, UC Temuco, Chile Submitted: March 10, 2017. Final revision received: July 26, 2017. Accepted: August 19, 2017 Abstract The Chilean fairy shrimp species are represented by the Branchinecta genus, which are poorly de- scribed, and mainly occur in shallow ephemeral pools in the Atacama Desert of northern Chile and the Southern Chilean Patagonian plains. The aim of the present study was to perform an initial ecolog- ical characterization of Branchinecta habitats and its associated communities in the Chilean Southern Patagonian plains (45-53°S) using null models (co-occurrence, niche sharing and size overlap). The results of the co-occurrence analysis revealed that the species’ associations are structured, meaning that at different kinds of Branchinecta habitats, the associated species are different. I did not find niche sharing, which means interspecific competition is absent. Finally the size overlap analysis revealed structured patterns, which are probably due to environmental homogeneity or colonization extinction processes. The habitats studied are shallow ephemeral pools, with extreme environmental conditions, where continuous local colonization and extinction processes probably occur, which would explain the marked Branchinecta species endemism. Keywords Branchinecta; colonization; crustaceans; endemism; extinction; niche sharing; null models; Patagonia Introduction Relatively little is known about the Chilean fairy shrimps because studies have mainly focused on the occurrence of these species, which belong to the Branchinecta Verrill, 1869 genus (De los Ríos-Escalante et al., 2013; De los Ríos- Escalante & Kotov, 2015). These species were described originally for shallow low salinity ephemeral pools in northern Chile (20-22°S; Rogers et al., 2008) and would probably be useful indicators of low salinity and oligotrophic shallow ephemeral ∗ ) E-mail: [email protected] © Koninklijke Brill NV, Leiden, 2017 DOI 10.1163/15707563-00002532 Downloaded from Brill.com09/28/2021 06:15:47AM via free access 332 P. De los Ríos Escalante / Animal Biology 67 (2017) 331–338 pools located in southern Patagonian plains (45-53°S; De los Ríos et al., 2008). Cur- rently, there are seven confirmed Branchinecta species, nevertheless these are not reported for South America (IUCN, 2017). However, from a biogeographical view point, in southern Patagonian these shrimps would be expected to show continuous colonization and extinction dynamics due to the presence of many ephemeral pools that would also explain the high crustacean species endemism and richness there (Menu-Marque et al., 2000; De los Ríos-Escalante & Robles, 2013). The Branchinecta habitats in Chile are characterized by an absence of fish, and are nesting and feeding sites for aquatic birds such as swans, flamingoes and ducks (Soto, 1990; De los Ríos-Escalante, 2010). According to the literature descriptions, Branchinecta in southern Patagonian habitats have a detritivorous diet, consuming mainly dead plant material and grazing on periphyton (Paggi, 1996; Pociecha & Dummont, 2008). They probably have no competitor species, because other mi- crocrustacean species such as copepods of the Boeckella genus and cladocerans of the Daphnia genus graze mainly on phytoplankton and bacteria, and the poten- tial predator would be the large-bodied copepod Parabroteas sarsi Mrázek, 1901 (De los Ríos-Escalante, 2010). Given the limited information available about these species, the aim of the present study was to provide ecological descriptions, based on null model analysis, of crustacean species communities in fairy shrimps habitats in Southern Chilean Patagonia. Material and methods Field work Data were collected during field work done in 2001, 2002 and 2006 on sites with shallow ephemeral pools (surface z 1 km2 and maximum depth < 1) in Patagonian plains. There sites were located in Balmaceda (45°53S; 71°40W), two sites at Vega del Toro (51°07S; 71°40W) and seven sites at Kon Aiken (52°50S; 72°10W). These ephemeral pools are only present in early southern spring (September- October) and have low conductivity (0.42-0.70 mS/cm) and chlorophyll concen- tration (2.1 to 4.4 mg/L; De los Ríos et al., 2008). Samples were collected using horizontal hawls with a plankton net of 20 cm diameter and 80 μm mesh size. Crus- tacean zooplankton specimens were identified using literature descriptions (Araya & Zúñiga, 1985; Bayly, 1992; Rogers et al., 2008) and species percentage was es- timated for data collected in 2001 and 2002. Also presence-absence data obtained during field work in 2001, 2002 and 2006 were considered (De los Ríos et al., 2008). Data analysis A species’ absence/presence matrix for all available data was constructed, with the species in rows and the sites in columns (table 1). I calculated a Checkerboard score (“C-score”), which is a quantitative index of occurrence that measures the extent to which species co-occur less frequently than expected by chance (Gotelli, 2000). Downloaded from Brill.com09/28/2021 06:15:47AM via free access P. De los Ríos Escalante / Animal Biology 67 (2017) 331–338 333 Table 1. Presence-absence species matrix for sites during the studied period. Codes for studied sites: B1, B2 and B3: Balmaceda 1, Balmaceda 2, Balmaceda 3 (collection date: September 2001); V1 and V2: Vega del Toro 1 and Vega del Toro 2 (collection date: October 2002); K1 to K7: Kon Aiken 1 (Collection date: October 2002); Kon Aiken 2, Kon Aiken 3, Kon Aiken 4, Kon Aiken 5, Kon Aiken 6, and Kon Aiken 7 (collection date: October 2006). B1 B2 B3 V1 V2 K1 K2 K3 K4 K5 K6 K7 Anostraca Branchinecta gaini Daday, 1902 1 1 11111 B. granulosa Daday, 1902 1 1 B. vuriloche Cohen, 1985 1 1 1 Cladocera Daphnia ambigua Scourfield, 1947 1 1 D. dadayana Paggi, 1999 1 1 1 11111 D. pulex (De Geer, 1778) 1 1 Chydorus sphaericus (O. F. Müller, 1785) 1 1 Copepoda Boeckella brasiliensis (Lubbock, 1885) 1 B. gracilipes Daday, 1901 1 1 1 B. michaelseni Mrázek, 1901 1 B. poppei, Mrázek, 1901 1 1 1 1 1 11111 Parabroteas sarsi Mrázek, 1901 1 1 111111111 Cyclopoida 1 1 1 Nauplius 1 1 1 A community is structured by competition when the C-score is significantly larger than expected by chance (Gotelli, 2000; Tondoh, 2006; Tiho & Johens, 2007). In addition, I compared co-occurrence patterns with null expectations via simulation. Gotelli & Ellison (2013) suggested the statistical null model Fixed-Fixed: in this model the row and column sums of the matrix are preserved. Thus, each random community contains the same number of species as the original community (fixed column), and each species occurs with the same frequency as in the original com- munity (fixed row). The null model analyses were performed using the software “R” (R Development Core Team, 2009) and the package EcosimR version 7.0 (Gotelli & Ellison, 2013; Carvajal-Quintero et al., 2015). Percentage data were considered based on information collected in field work data from 2001 and 2002 (table 2), and a niche sharing null model was applied using Pianka’s overlap index with retained niche breadth and reshuffled zero states using the Ecosim version 7.0 software (Gotelli & Ellison, 2013; Carvajal-Quintero et al., 2015). The Ecosim program also determines whether measured overlap values dif- fered from what would be expected in random sampling of the species data. Ecosim performs Monte Carlo randomisations to create pseudo-communities and then sta- tistically compares the patterns of these randomised communities with those in the Downloaded from Brill.com09/28/2021 06:15:47AM via free access 334 P. De los Ríos Escalante / Animal Biology 67 (2017) 331–338 Table 2. Percentage of abundances of Chilean Patagonian fairy shrimp’s habitats. Codes for studied sites: B1, B2 and B3: Balmaceda 1, Balmaceda 2, Balmaceda 3 (collection date: September 2001); V1 and V2: Vega del Toro 1 and Vega del Toro 2 (collection date: October 2002); K1: Kon Aiken 1 (collection date: October 2002). B1 B2 B3 V1 V2 K1 Anostraca B. gaini 4.1 B. granulosa 2.56.7 B. vuriloche 1.01.31.9 Cladocera D. ambigua 4.66.7 D. dadayana 7.440.0 D. pulex 4.813.3 Ch. sphaericus 1.76.5 Copepoda B. brasiliensis 28.0 B. gracilipes 65.743.316.730.9 B. michaelseni 1.3 B. poppei 9.84.683.723.7 P. s a rs i 8.944.41.333.341.2 Cyclopoida 15.08.99.3 Nauplius 6.99.611.1 real data matrix (Gotelli & Ellison 2013). In this analysis all values of the gen- eral matrix were randomised 1000 times and the niche breadth was retained for each species. In other words, the algorithm retained the amount of specialization for each species (Gotelli & Ellison, 2013; Carvajal-Quintero et al., 2015). Finally for data collected in field work during 2006, I measured total length con- sidering the distance from head to the furcae basis for ten individuals of each species observed in two sites (De los Ríos-Escalante, 2012a). To these data, a size overlap null model analysis was applied, with the aim of determine the non-random pat- terns in size overlap using the software EcosimR (Gotelli & Ellison 2013; Ward & Beggs, 2007). For this purpose, a matrix with one row for species and a second row for size length average was made, the original matrix was reordered for originate random patterns that would generate interspecific competence absence. I applied the following option: length segment variance with metric size overlap, because this uses the mean observation trend; in a structured assemblage this would have a low variance in comparison to random assemblage.
Recommended publications
  • Arxiv:2105.11503V2 [Physics.Bio-Ph] 26 May 2021 3.1 Geometry and Swimming Speeds of the Cells
    The Bank Of Swimming Organisms at the Micron Scale (BOSO-Micro) Marcos F. Velho Rodrigues1, Maciej Lisicki2, Eric Lauga1,* 1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom. 2 Faculty of Physics, University of Warsaw, Warsaw, Poland. *Email: [email protected] Abstract Unicellular microscopic organisms living in aqueous environments outnumber all other creatures on Earth. A large proportion of them are able to self-propel in fluids with a vast diversity of swimming gaits and motility patterns. In this paper we present a biophysical survey of the available experimental data produced to date on the characteristics of motile behaviour in unicellular microswimmers. We assemble from the available literature empirical data on the motility of four broad categories of organisms: bacteria (and archaea), flagellated eukaryotes, spermatozoa and ciliates. Whenever possible, we gather the following biological, morphological, kinematic and dynamical parameters: species, geometry and size of the organisms, swimming speeds, actuation frequencies, actuation amplitudes, number of flagella and properties of the surrounding fluid. We then organise the data using the established fluid mechanics principles for propulsion at low Reynolds number. Specifically, we use theoretical biophysical models for the locomotion of cells within the same taxonomic groups of organisms as a means of rationalising the raw material we have assembled, while demonstrating the variability for organisms of different species within the same group. The material gathered in our work is an attempt to summarise the available experimental data in the field, providing a convenient and practical reference point for future studies. Contents 1 Introduction 2 2 Methods 4 2.1 Propulsion at low Reynolds number .
    [Show full text]
  • MIAMI UNIVERSITY the Graduate School Certificate for Approving The
    MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Sandra J. Connelly Candidate for the Degree: Doctor of Philosophy __________________________________________ Director Dr. Craig E. Williamson __________________________________________ Reader Dr. Maria González __________________________________________ Reader Dr. David L. Mitchell __________________________________________ Graduate School Representative Dr. A. John Bailer ABSTRACT EFFECTS OF ULTRAVIOLET RADIATION (UVR) INDUCED DNA DAMAGE AND OTHER ECOLOGICAL DETERMINANTS ON CRYPTOSPORIDIUM PARVUM, GIARDIA LAMBLIA, AND DAPHNIA SPP. IN FRESHWATER ECOSYSTEMS Sandra J. Connelly Freshwater ecosystems are especially susceptible to climatic change, including anthropogenic-induced changes, as they are directly influenced by the atmosphere and terrestrial ecosystems. A major environmental factor that potentially affects every element of an ecosystem, directly or indirectly, is ultraviolet radiation (UVR). UVR has been shown to negatively affect the DNA of aquatic organisms by the same mechanism, formation of photoproducts (cyclobutane pyrimidine dimers; CPDs), as in humans. First, the induction of CPDs by solar UVR was quantified in four aquatic and terrestrial temperate ecosystems. Data show significant variation in CPD formation not only between aquatic and terrestrial ecosystems but also within a single ecosystem and between seasons. Second, there is little quantitative data on UV-induced DNA damage and the effectiveness of DNA repair mechanisms on the damage induced in freshwater invertebrates in the literature. The rate of photoproduct induction (CPDs) and DNA repair (photoenzymatic and nucleotide excision repair) in Daphnia following UVR exposures in artificial as well as two natural temperate lake systems was tested. The effect of temperature on the DNA repair rates, and ultimately the organisms’ survival, was tested under controlled laboratory conditions following artificial UVB exposure.
    [Show full text]
  • Copépodos (Crustacea: Hexanauplia) Continentales De Colombia: Revisión Y Adiciones Al Inventario
    DOI: 10.21068/c2019.v20n01a04 Gaviria & Aranguren-Riaño Continental copepods (Crustacea: Hexanauplia) of Colombia: revision and additions to the inventory Copépodos (Crustacea: Hexanauplia) continentales de Colombia: revisión y adiciones al inventario Santiago Gaviria and Nelson Aranguren-Riaño Abstract We present the compilation of published and unpublished records of continental copepods of Colombia, as well as personal observations by the authors, yielding an additional list of 52 species and subspecies (7 calanoids, 20 cyclopoids, 25 harpacticoids). In addition to our former inventory (2007) of 69 species, the total number now reaches 121 taxa, increasing by 75 % the known number of continental copepods. Freshwater taxa increased in 15 species and subspecies. The number of brackish species (and marine species collected in brackish environments), recorded from coastal lagoons and temporal offshore ponds reached 39 species and subspecies. Thirteen taxa with locus typicus in Colombia have been described since 2007. Between 2007 and 2018, thirty-nine departmental records were made, and 43 new habitat records were reported (not including the species recorded as new for the country). Parasitic copepods of fish reached six species. However, the number of species is expected to increase with the survey of poorly studied regions like the Amazon and the Eastern Plains, and habitats like groundwater, benthos of lakes and ponds, semiterrestrial environments and additional coastal lagoons. Keywords. Biodiversity. Geographic distribution. Meiobenthos. Neotropical region. Zooplankton. Resumen Como resultado de la compilación de datos publicados y no publicados de copépodos continentales de Colombia, así como de observaciones personales de los autores, se estableció una lista adicional de 52 especies y subespecies (7 calanoideos, 20 cyclopoideos, 25 harpacticoideos).
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • Distribución Geográfica De Boeckella Y Neoboeckella (Calanoida: Centropagidae) En El Perú TRABAJOS ORIGINALES
    Revista peruana de biología 21(3): 223 - 228 (2014) ISSN-L 1561-0837 Distribución de BOECKELLA y NEOBOECKELLA en el Perú doi: http://dx.doi.org/10.15381/rpb.v21i3.10895 FACULTAD DE CIENCIAS BIOLÓGICAS UNMSM TRABAJOS ORIGINALES Distribución geográfica deBoeckella y Neoboeckella (Calanoida: Centropagidae) en el Perú Geographical distribution of Boeckella and Neoboeckella (Calanoida: Centropagidae) in Peru Iris Samanez y Diana López Departamento de Limnología, Museo de Historia Natural de la Universidad Nacional Mayor de San Resumen Marcos. Av. Arenales 1256, Jesús María- Lima El análisis de muestras de plancton colectadas en diferentes localidades a lo largo de los 14, Perú. Andes peruanos, dieron como resultado el registro de siete especies de Boeckella (gracilis, Email Iris Samanez: [email protected] gracilipes, calcaris, poopoensis, occidentalis, titicacae y palustris) y dos de Neoboeckella Email Diana López: [email protected] (kinzeli y loffleri). Todas las especies citadas, exceptuando a las especies de Neoboeckella, fueron registradas en la cuenca del lago Titicaca (Puno). Además, B. palustris, B. gracilipes y B. calcaris fueron también reportadas en Moquegua, Apurímac y Pasco (Andes del sur y central). Boeckella titicacae parece estar restringida a la cuenca del lago Titicaca. Boeckella poopoensis ocurre en cuerpos de agua con elevada conductividad reportándose sólo en Las Salinas en Arequipa. Boeckella occidentalis fue la especie con mayor rango de distribución desde el sur en Puno hasta el norte en Cajamarca y se registra por primera vez para el país Neoboeckella loffleri. Las muestras están depositadas en la Colección de Plancton del De- partamento de Limnología del Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Lima-Perú.
    [Show full text]
  • 1Cc7ffb3912954be68ee41d0153
    Gayana 70(1): 31-39, 2006 ISSN 0717-652X ESTADO DE CONOCIMIENTO DE LOS CRUSTACEOS ZOOPLANCTONICOS DULCEACUICOLAS DE CHILE CURRENT STATE OF KNOWLEDGE OF FRESHWATER ZOOPLANKTONIC CRUSTACEA OF CHILE Lorena Villalobos Instituto de Zoología, Universidad Austral de Chile, Casilla 567, Valdivia, Chile. Email: [email protected] RESUMEN Chile se caracteriza por presentar un marcado gradiente geográfico latitudinal y altitudinal. En él es posible encontrar diferentes cuerpos de agua continentales, cuya diversidad se refleja en la composición de especies zooplanctónicas. En este gradiente se pueden distinguir cinco zonas principales, en las cuales en las últimas décadas se ha recolectado información ecológica y en menor parte taxonómica. En el norte se distingue la zona de lagos y lagunas localizados en el altiplano chileno-peruano, en donde ha sido posible registrar especies endémicas como Daphnia peruviana y especies del género Boeckella. Chile central se caracteriza por una serie de cuerpos acuáticos localizados a baja altura y normalmente de baja profundidad, entre los zooplanctontes destaca Tumeodiaptomus vivianae. En esta latitud se encuentran también lagos de alta montaña de mayor profundidad, los que se caracterizan por la presencia de especies del género Boeckella. En la zona centro sur, en los lagos denominados Nahuelbutensis, existen pocos registros a este respecto. En la zona de lagos Norpatagónicos se ha recolectado la mayor información, y se caracterizan por una baja diversidad de especies. Finalmente en la zona sur de Chile, la región más típica en cuanto a riqueza de especies, está localizada en la región de Torres del Paine, con un alto endemismo (Parabroteas sarsi, Daphnia dadayana, D.
    [Show full text]
  • The Evolutionary Diversification of the Centropagidae
    Molecular Phylogenetics and Evolution 55 (2010) 418–430 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev The evolutionary diversification of the Centropagidae (Crustacea, Calanoida): A history of habitat shifts Sarah J. Adamowicz a,*, Silvina Menu-Marque b, Stuart A. Halse c, Janet C. Topan a, Tyler S. Zemlak a, Paul D.N. Hebert a, Jonathan D.S. Witt d a Biodiversity Institute of Ontario, Department of Integrative Biology, 579 Gordon St., University of Guelph, Guelph, ON, Canada N1G 2W1 b Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 4to. Piso, C1428 EHA, Buenos Aires, Argentina c Bennelongia Pty Ltd., P.O. Box 384, Wembley, WA 6913, Australia d Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 article info abstract Article history: The copepod family Centropagidae is widely distributed and occurs in marine, estuarine, freshwater, and Received 9 April 2009 inland saline settings. Molecular phylogenies based upon the 16S and 28S genes demonstrate a complex Revised 1 December 2009 biogeographic history, involving at least five independent invasions of continental waters from the sea. Accepted 4 December 2009 The first colonization was ancient, likely into part of Gondwanaland, and resulted in an inland radiation Available online 11 December 2009 in southern genera via both vicariance and subsequent habitat shifting among different types of conti- nental waters. Species occupying saline lakes are nested within freshwater clades, indicating invasion Keywords: of these habitats via fresh waters rather than directly from the ocean or from epicontinental seas.
    [Show full text]
  • Inland Water Microcrustacean Assemblages in An
    DOI: http://dx.doi.org/10.1590/1519-6984.08212 Inland water microcrustacean assemblages in an altitudinal gradient in Aysen region (46° S, Patagonia Chile) Patricio De los Ríos-Escalantea,b*, Esteban Quinána and Patricio Acevedoc,d aLaboratorio de Ecología Aplicada y Biodiversidad, Escuela de Ciencias Ambientales, Facultad de Recursos Naturales, Universidad Católica de Temuco - UCTemuco, Casilla 15-D, Temuco, Chile bNúcleo de Estudios Ambientales UCTemuco, Avenida Alemania nº 0211, Casilla 15-D, Temuco, Chile cDepartamento de Física, Facultad de Ciencias e Ingeniería, Universidad de la Frontera - UFRO, Casilla 54-D, Temuco dCenter for Optics and Photonics, Universidad de Concepción - UdeC, Casilla 4012, Concepción, Chile * e-mail: [email protected] Received: January 8, 2013 – Accepted: June 4, 2013 – Distributed: February 28, 2014 (With 1 figure) Abstract The Chilean Patagonia has numerous kinds of inland water ecosystems such as lakes, ponds, wetlands and rivers that have been poorly studied due to access difficulties. This study was carried out in Aysen region, in southern Chile, and it included different kinds of water bodies such as rivers, streams, ponds, lagoons and lakes distributed along an altitudinal gradient at 46° S. It was found a low species number, essentially cladocerans, copepods and amphipods. A null model was applied in order to determine the existence of regulator factors of species associations, and the results revealed that they are not random. The patterns would be influenced by geographical and limnological characteristics of the studied sites. Our results would agree with regional studies on habitat heterogeneity such as in Torres del Paine National Park and other zones in Tierra del Fuego island.
    [Show full text]
  • An Investigation Into Australian Freshwater Zooplankton with Particular Reference to Ceriodaphnia Species (Cladocera: Daphniidae)
    An investigation into Australian freshwater zooplankton with particular reference to Ceriodaphnia species (Cladocera: Daphniidae) Pranay Sharma School of Earth and Environmental Sciences July 2014 Supervisors Dr Frederick Recknagel Dr John Jennings Dr Russell Shiel Dr Scott Mills Table of Contents Abstract ...................................................................................................................................... 3 Declaration ................................................................................................................................. 5 Acknowledgements .................................................................................................................... 6 Chapter 1: General Introduction .......................................................................................... 10 Molecular Taxonomy ..................................................................................................... 12 Cytochrome C Oxidase subunit I ................................................................................... 16 Traditional taxonomy and cataloguing biodiversity ....................................................... 20 Integrated taxonomy ....................................................................................................... 21 Taxonomic status of zooplankton in Australia ............................................................... 22 Thesis Aims/objectives ..................................................................................................
    [Show full text]
  • Universidad Pedagógica Y Tecnológica De Colombia Facultad De Ciencias Escuela De Ciencias Biológicas-Posgrado Maestría En Ciencias Biológicas
    UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA FACULTAD DE CIENCIAS ESCUELA DE CIENCIAS BIOLÓGICAS-POSGRADO MAESTRÍA EN CIENCIAS BIOLÓGICAS ANÁLISIS DE LA IMPORTANCIA DEL CARBONO ORGÁNICO DISUELTO EN LAGOS ANDINOS TROPICALES Requisito para optar el título de Magister en Ciencias Biológicas ADRIANA PEDROZA RAMOS Tunja Enero, 2021 UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA FACULTAD DE CIENCIAS ESCUELA DE CIENCIAS BIOLÓGICAS-POSGRADO MAESTRÍA EN CIENCIAS BIOLÓGICAS ANÁLISIS DE LA IMPORTANCIA DEL CARBONO ORGÁNICO DISUELTO EN LAGOS ANDINOS TROPICALES Requisito para optar el título de Magister en Ciencias Biológicas ADRIANA PEDROZA RAMOS Director: Ph.D. NELSON JAVIER ARANGUREN RIAÑO Universidad Pedagógica y Tecnológica de Colombia Unidad de Ecología en Sistemas Acuáticos Tunja Enero, 2021 CERTIFICADO DE ORIGINALIDAD Nelson Javier Aranguren Riaño, Doctor en Ciencias-Biología con énfasis en ecología de ecosistemas continentales, Docente asociado, UPTC. CERTIFICA: Que el trabajo de grado realizado bajo mi dirección por Adriana Pedroza Ramos titulado “ANÁLISIS DE LA IMPORTANCIA DEL CARBONO ORGÁNICO DISUELTO EN LAGOS ANDINOS TROPICALES”, reúne las condiciones de originalidad requeridas para optar al título de Magister en Ciencias Biológicas otorgado por la UPTC. Y para que así conste, firmo la siguiente certificación en Tunja, a los dieciocho días del mes de enero de 2021. _____________________________ PhD. Nelson Javier Aranguren Riaño Director Universidad Pedagógica y Tecnológica de Colombia Unidad de Ecología en Sistemas Acuáticos I _____________________________
    [Show full text]
  • DNA Barcoding of Antarctic Freshwater Copepod
    Anim. Syst. Evol. Divers. Vol. 36, No. 4: 396-399, October 2020 https://doi.org/10.5635/ASED.2020.36.4.044 Short communication DNA Barcoding of Antarctic Freshwater Copepod Boeckella poppei (Crustacea: Copepoda: Calanoida: Centropagidae) Inhabiting King George Island, South Shetland Islands, Antarctica Seunghyun Kang1,*, Euna Jo1,2 1Korea Polar Research Institute, Incheon 21990, Korea 2College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea ABSTRACT The Antarctic freshwater copepod, Boeckella poppei (Mrazek, 1901), has the widest range of distribution extending from southern South America to Antarctic continent, among all Boeckella species. Boeckella poppei is the only freshwater copepod known to be inhabiting the Antarctic continent. In present study, we analyzed the DNA barcodes of the mitochondrial cytochrome c oxidase subunit I (COI) gene of B. poppei from King George Island, Antarctica. The intraspecific genetic distances varied from 0% to 13% and interspecific genetic distances ranged from 11% to 14%. The overlap of DNA barcode gap suggests careful threshold-based delimitation of species boundaries. Keywords: Boeckella poppei, Antarctica, DNA barcode, COI, copepod INTRODUCTION sphere, the DNA barcode information of the species has been reported from two geographical regions: Argentina (Cabo Boeckella de Guerne & Richard, 1889, is a freshwater cala- Virgenes and Tierra del Fuego) (Adamowicz et al., 2007), noid copepod belonging to the family Centropagidae, which and Signy Island (Maturana et al., 2020). Here, we report the is mostly restricted to the Southern Hemisphere (Bayly, DNA barcodes of B. poppei from King George Island and 1992). A total of 14 species of Boeckalla have been reported verify the usefulness of DNA barcode for this species com- from the southern latitudes of South (Bayly et al., 2003; Ada- pared with other populations and closely related species.
    [Show full text]
  • The Freshwater Fauna of the South Polar Region: a 140-Year Review
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Tasmania Open Access Repository Papers and Proceedings of the Royal Society of Tasmania, Volume 151, 2017 19 THE FRESHWATER FAUNA OF THE SOUTH POLAR REGION: A 140-YEAR REVIEW. by Herbert J.G. Dartnall (with one text-figure, one table and one appendix) Dartnall, H.J.G. 2017 (6:xii): The freshwater fauna of the South Polar Region: A 140-year review. Papers and Proceedings of the Royal Society of Tasmania 151: 19–57. https://doi.org/10.26749/rstpp.151.19 ISSN 0080-4703. Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109 Australia. E-mail: [email protected] The metazoan fauna of Antarctic and sub-Antarctic freshwaters is reviewed. Almost 400 species, notably rotifers, tardigrades and crustaceans have been identified. Sponges, molluscs, amphibians, reptiles and fishes are absent though salmonid fishes have been successfully introduced on some of the sub-Antarctic islands. Other alien introductions include insects (Chironomidae) and annelid worms (Oligochaeta). The fauna is predominately benthic in habitat and becomes increasingly depauperate at higher latitudes. Endemic species are known but only a few are widely distributed. Planktonic species are rare and only one parasitic species has been noted. Keywords: freshwater, fauna, Antarctica, sub-Antarctic Islands, maritime Antarctic, continental Antarctica. INTRODUCTION included in this definition. While these cool-temperate islands have a similar verdant vegetation and numerous The first collections of Antarctic freshwater invertebrates water bodies they are warmer and some are vegetated with were made during the “Transit of Venus” expeditions woody shrubs and trees.] of 1874 (Brady 1875, 1879, Studer 1878).
    [Show full text]