POLICY OPTIONS for MIGRATORY BIRD FLYWAYS CMS Flyways Working Group: Review 3

Total Page:16

File Type:pdf, Size:1020Kb

POLICY OPTIONS for MIGRATORY BIRD FLYWAYS CMS Flyways Working Group: Review 3 CONVENTION ON MIGRATORY SPECIES POLICY OPTIONS FOR MIGRATORY BIRD FLYWAYS CMS Flyways Working Group: Review 3 Colin A Galbraith March 2011 CMS Contract No 14550 and additional staff time from Colin Galbraith Environment Limited Policy Options for Migratory Bird Flyways CMS Flyways Working Group: Review 3 CONTENTS PAGE Executive summary 3 Introduction 14 1.1 Background and approach used 14 The major flyways 15 2.1 Flyways 15 2.2 The status of species on flyways 20 Coverage of existing CMS and non CMS instruments and frameworks 22 3.1 Summary of existing agreements 22 3.2 Gaps in geographical coverage 22 3.3 Coverage of species groups 23 3.4 Priorities to fill the gaps in coverage 24 The key pressures impacting on migratory birds 25 4.1 Habitat loss, fragmentation and reduction in quality 26 4.2 Climate change 28 4.3 By-catch 30 4.4 Unsustainable use 32 4.5 Lead shot and other poisons 35 4.6 Invasive alien species 36 4.7 Agricultural conflicts and pest control 37 4.8 Disease 38 4.9 Information gaps 39 2 Priorities for the development of CMS instruments to cover flyways 40 5.1 The role of CMS 40 5.2 Geographical priorities 41 5.3 Species priorities 46 Options for CMS instruments for migratory bird conservation 49 6.1 High level policy options 50 6.2 Developing a new approach 51 6.3 Identification of priorities and a plan for action 55 6.4 Mechanisms for action 59 6.5 Issues of profile 61 6.6 Practicalities 61 Annex 1 Timetable for major forthcoming meetings 64 Annex 2 Threatened waterbirds in the East Asian-Australasian Flyway 67 Annex 3 Terms of Reference for Flyways Review 69 Annex 4 Acknowledgements 73 Annex 5 Diagram of Regional Framework agreements and Action Plans 75 Annex 6 Acronyms and Abbreviations used 76 Bibliography 78 Executive Summary This Report, commissioned by the Convention on Migratory Species (CMS), and developed with the CMS “Migratory Birds Flyways Working Group”, examines the major migratory bird flyways of the world; reviews the coverage of these flyways by existing agreements under CMS; outlines the key pressures acting on populations of 3 migratory birds; proposes priorities for the development of CMS agreements, and provides options on how these might be developed. Present coverage This report builds on two earlier reviews commissioned by CMS, firstly to consider the extent of knowledge about flyways, and secondly to review the existing coverage of these by agreements under the auspices of CMS. These earlier reviews noted that: Geographical coverage (on paper) is strongest in: • Africa – Eurasia (particularly Eurasia); • Americas (particularly North America); • East Asia – Australasia. Geographical coverage (on paper) is weakest in: • Central Pacific; • Central Asia; Similarly, Pelagic (open ocean) flyways in the Atlantic Ocean, Pacific Ocean, Indian Ocean and Southern Ocean have little coverage by agreements at present. Coverage for species (on paper) is strongest for: • Waterfowl (Anatidae); • Shorebirds/waders (Scolopacidae); • Other migratory waterbirds such as divers (loons), grebes, cranes and herons; • Nearctic-breeding passerines and other landbirds that migrate to the Neotropics for the non-breeding season; • Raptors (particularly in Africa-Eurasia). Coverage of species groups (on paper) is weakest for: • Passerines (particularly in Africa-Eurasia and Asia-Pacific, though coverage is good for Nearctic-breeding migratory passerines in the Americas); 4 • Other landbirds (with some exceptions e.g. certain species covered through bilateral treaties in the Americas). • Inter-tropical and intra-tropical migrants in all regions; Priorities for Action This review has identified the priority actions needed to take two major, interlinked steps in the conservation of migratory birds around the world: Firstly, to put in place an overarching, and common, strategic framework for action at the global level; and secondly, and equally importantly, to use this, to focus effort and action on the key priority conservation issues impacting on migratory bird species, through the production of Action Plans. In terms of priorities for action at the Regional level, it is clear that East, and South Asia are key areas in need of rapid action, given the number of declining species and the wide scale destruction of habitats, especially inter-tidal areas seen there. In addition, there is an urgent need for dedicated measures to focus attention on the declines in the African-Eurasian long-distance sub-Saharan land bird migrants and intra-African migrants. It is important also to clarify the best approach for CMS to adopt in the Central Asian Flyway especially for waterbirds. Considerable work has been done here over recent times and it is appropriate now to agree a way forward There is a need to consolidate the approach to be used in South and Central America, and especially to explore whether a “whole of the Americas “ approach can be developed to migratory birds by clarifying the views of the countries involved in developing such an approach. Finally from a Regional perspective, it is important to clarify the approach to be used in the Pacific Region. This large area of ocean and islands tends at present to fall between the work of CMS in Asia and the work in the Americas. Two groups of species in particular require additional urgent action from CMS, namely seabirds and passerines. For both these groups action is required that assists their conservation over extensive areas of land and sea. 5 A key action in dealing with in all these threats; species declines and habitat destruction, is the need to involve local people in the management of fragile areas; and to help them see the real value of migratory bird species and of their habitats to their own wellbeing. Threats to migratory birds Consideration of the threats to migratory birds has confirmed that there is, as expected, a wide range of issues impacting on populations around the world. Habitat loss, climate change, by catch, disease, contamination from different sources including from pesticides and heavy metals, unsustainable use, infrastructure developments and the effects of alien species are all significant threats at present. Habitat loss is considered to be the most important impact for non-seabirds with extensive areas used by migratory birds being destroyed each year. By catch in fishing operations and alien species are the dominant threats to seabirds. The following section summarises the key actions Developing a new approach In order to fill the gaps in the coverage of CMS agreements and to limit the impacts from the threats to migratory birds noted in this Report, the Flyways Working Group suggests that it is important to build on existing agreements and initiatives to provide a new overarching approach. This could take the form of generic Regional agreements, underpinned by a series of flexible action plans designed to tackle the top priorities for action in each part of the world. The Flyways Working Group suggest that this mechanism could provide a streamlined approach for the use of resources by governments that opens to way for more rapid conservation action and better opportunities for partnerships with others in future. The following lists the key findings and actions required to make the implementation of this new approach a reality. Tackling the Threats to Migratory Birds. 6 Action: Habitat loss. CMS has the potential to develop a key role in the conservation of habitats for migratory birds by ensuring that the habitat requirements of migratory birds are integrated into land use policies through Governments, other Multilateral Environmental Agreements (MEAs), UN institutions and Non Governmental Organisations. Some of this can be achieved through designation, using existing mechanisms and through the appropriate management of protected areas, but large proportions of migrants use habitats beyond these sites and conservation of these wider areas is also urgently needed. To achieve this, synergies need to be developed through scaled up collaborations, to address the drivers of change, with the Convention of Biological Biodiversity and other UN institutions especially with the Food and Agriculture Organisation (FAO) and other MEAs as appropriate. As regards the latter, topics where collaboration would be merited could be further defined in a CMS/FAO Memorandum of Cooperation, further to CMS Resolution 9.6. Action: Climate change. The Flyways Working Group stresses the importance of CMS continuing to take action to limit the impact of climate change on migratory bird species. The Flyways Working Group notes, especially in the context of rapid climate change, that it is important to continue to monitor the status of migratory birds and their habitats; to record any changes in their ecology in some detail and increasingly to promote adaptive management to help ensure the success of conservation actions. Action: Bycatch. The issue of bycatch is regarded by the Flyways Working Group as one of the key threats to migratory bird species and is seen as a priority for action. The group noted also the significance of other “non-use” mortality impacting on the populations of some species. Action: Unsustainable use. The Flyways Working Group recognises the importance of CMS tackling the range of issues involved in the unsustainable use of migratory bird species. This can be done via a range of measures at the forthcoming Conference of the Parties in November 2011, and should include Resolutions designed to strengthen cooperation, promote conservation actions, highlight good practice, and where necessary, to stimulate corrective actions to address the situations highlighted in this Report. Particular focal areas where threatened species 7 are affected by unsustainable use include the Mediterranean, Middle East, Sahel and East Asia. Action: Poisoning. The Flyways Working Group considers this an issue on which the Convention is uniquely placed to coordinate action, for example building on the work of AEWA regarding lead shot, to address the indiscriminate killing of carnivorous scavengers by poisoned baits, the killing of waterbirds through poisoning e.g.
Recommended publications
  • Nordmann's Greenshank Population Analysis, at Pantai Cemara Jambi
    Final Report Nordmann’s Greenshank Population Analysis, at Pantai Cemara Jambi Cipto Dwi Handono1, Ragil Siti Rihadini1, Iwan Febrianto1 and Ahmad Zulfikar Abdullah1 1Yayasan Ekologi Satwa Alam Liar Indonesia (Yayasan EKSAI/EKSAI Foundation) Surabaya, Indonesia Background Many shorebirds species have declined along East Asian-Australasian Flyway which support the highest diversity of shorebirds in the world, including the globally endangered species, Nordmann’s Greenshank. Nordmann’s Greenshank listed as endangered in the IUCN Red list of Threatened Species because of its small and declining population (BirdLife International, 2016). It’s one of the world’s most threatened shorebirds, is confined to the East Asian–Australasian Flyway (Bamford et al. 2008, BirdLife International 2001, 2012). Its global population is estimated at 500–1,000, with an estimated 100 in Malaysia, 100–200 in Thailand, 100 in Myanmar, plus unknown but low numbers in NE India, Bangladesh and Sumatra (Wetlands International 2006). The population is suspected to be rapidly decreasing due to coastal wetland development throughout Asia for industry, infrastructure and aquaculture, and the degradation of its breeding habitat in Russia by grazing Reindeer Rangifer tarandus (BirdLife International 2012). Mostly Nordmann’s Greenshanks have been recorded in very small numbers throughout Southeast Asia, and there are few places where it has been reported regularly. In Myanmar, for example, it was rediscovered after a gap of almost 129 years. The total count recorded by the Asian Waterbird Census (AWC) in 2006 for Myanmar was 28 birds with 14 being the largest number at a single locality (Naing 2007). In 2011–2012, Nordmann’s Greenshank was found three times in Sumatera Utara province, N Sumatra.
    [Show full text]
  • II Congresso Internacional As Aves 2018
    EVOLUÇÃO Revista de Geistória e Pré-História SÉRIE I, Nº. 2, VOLUME 1 LISBOA. MAIO. 2018 EVOLUÇÃO - Revista de Geistória e Pré-História. 2 (1).2018 CENTRO PORTUGUÊS DE GEO-HISTÓRIA E PRÉ-HISTÓRIA O Centro Português de Geo-História e Pré-História é uma associação sem fins lucrativos Fundada em 15 de fevereiro de 1995, é reconhecida como Entidade de Utilidade Pública desde 2017. Tem por objetivos o fomento e o desenvolvimento de atividades de investigação e de divulgação nos campos científicos da Geo- História e Pré-História. CONCELHO CIENTÍFICO DO CPGP: Paleontologia / Estratigrafia / Paleobotânica: Silvério Figueiredo; Mário Mendes; Pedro Proença Cunha; Ioanna Bachtsevanidou Strantzali Pré-História / Arte Rupestre: Telmo Pereira; Luís Raposo; Luiz Oosterbeek; Fernando Coimbra Geografia Rita Anastácio EVOLUÇÃO. REVISTA DE GEISTÓRIA E PRÉ-HISTÓRIA A Evolução. Revista de Geistória e Pré-História é uma revista de divulgação Científica, publicada pelo Centro Português de Geo-História e Pré-História e tem por objetivo principal contribuir para o desenvolvimento da divulgação científica, através da publicação de artigos e de trabalhos de investigação, divulgação e informação, de autores ou investigadores nacionais ou estrangeiros, nas áreas da Geistória e da Pré-História, podendo estes artigos ser de âmbito nacional ou internacional. CONCELHO EDITORIAL: Silvério Figueiredo; Fernando Coimbra; David Barão; Sofia Silvério; Fernanda Sousa; Ioanna Bachtsevanidou Strantzali; Marta Gomes. Depósito Legal: 189274/02 ISSN:1645-6297 Impressão: CWORLD (Pinhal Novo) Edição: Centro Português de Geo-História e Pré-História Periodicidade: anual Designe gráfico: Fernanda Sousa Sem autorização expressa do editor, não é permitida a reprodução parcial ou total dos artigos desta revista, desde que tal reprodução não decorra das finalidades específicas da divulgação e da crítica.
    [Show full text]
  • Siberian Crane Flyway News
    SIBERIAN CRANE FLYWAY NEWS Photo by S. Sadeghi Zadegan No 9 December 2007 COMPILED BY ELENA ILYASHENKO ICF/CMS SIBERIAN CRANE FLYWAY COORDINATOR 1 Content Information from Breeding and Summering Sites 2007 Eastern Flyway Breeding of Siberian and Sandhill Cranes at the Kytalyk Resource Reserve Yakutia, Russia, 2007 (Nikolai Ger- mogenov, Sergei Sleptsov, Maria Vladimirtseva, Inga Bysykatova) ............................................................... (4) Siberian Crane Records in Mongolia in 2007 (N. Tseveenmyadag) ................................................................ (4) Sightings of Siberian Cranes on the Daurian Steppe, Russia, in 2007 (Oleg Goroshko) ................................... (5) Information from Migration Sites 2007 Western and Central Flyways Sightings of the Siberian Crane in West Siberia, Russia, during Fall Migration 2007 (Anastasia Shilina) .............. (5) Sightings of Siberian Cranes in Uzbekistan ................................................................................................ (6) Siberian Crane Sighting in Samarkand Region, Uzbekistan (L. Belyalova, S. Fundukchiev)................................. (6) Siberian Crane Sightings in Kazakhstan during Migrations in 2007 (Yevgeni Bragin)......................................... (6) Sighting of the Siberian Crane in Astrakhan Nature Reserve, Russia, in the Fall of 2007 (German Rusanov) ........ (7) Eastern Flyway Spring Migration of the Siberian Crane in Northeast Yakutia, Russia, in 2007 (Igor Osipov) .............................. (7) Observations
    [Show full text]
  • Acoustic Monitoring of Night-Migrating Birds: a Progress Report
    Acoustic Monitoring of Night-Migrating Birds: A Progress Report William R. Evans Kenneth V. Rosenberg Abstract—This paper discusses an emerging methodology that to give regular vocalizations in night migration are the vireos uses electronic technology to monitor vocalizations of night-migrat- (Vireonidae), flycatchers (Tyrannidae), and orioles (Icterinae). ing birds. On a good migration night in eastern North America, If a monitoring protocol is consistently maintained, an array thousands of call notes may be recorded from a single ground-based, of microphone stations can provide information on how the audio-recording station, and an array of recording stations across a species composition and number of vocal migrants vary across region may serve as a “recording net” to monitor a broad front of time and space. Such data have application for monitoring migration. Data from pilot studies in Florida, Texas, New York, and avian populations and identifying their migration routes. In British Columbia illustrate the potential of this technique to gather addition, detection and classification of distinctive call-types information that cannot be gathered by more conventional methods, is possible with computers (Mills 1995; Taylor 1995), thus such as mist-netting or diurnal counts. For example, the Texas information on bird populations might be gained automati- station detected a major migration of grassland sparrows, and a cally. In this paper, we summarize the current state of station in British Columbia detected hundreds of Swainson’s knowledge for identifying night-flight calls to species; present Thrushes; both phenomena were not detected with ground monitor- selected results from four ongoing studies that are monitoring ing efforts.
    [Show full text]
  • Population Structure and Annual Migration Pattern of Steppe Eagles
    Population Structure and Annual Migration Pattern of Steppe Eagles at Thoolakharka Watch Site, Nepal, 2012–2014 Author(s): Tulsi Ram Subedi, Robert DeCandido, Hem Sagar Baral, Surya Gurung, Sandesh Gurung, Chong Leong Puan and Shahrul Anuar Mohd Sah Source: Journal of Raptor Research, 51(2):165-171. Published By: The Raptor Research Foundation https://doi.org/10.3356/JRR-16-70.1 URL: http://www.bioone.org/doi/full/10.3356/JRR-16-70.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/ page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non- commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. SHORT COMMUNICATIONS J. Raptor Res. 51(2):165–171 Ó 2017 The Raptor Research Foundation, Inc. POPULATION STRUCTURE AND ANNUAL MIGRATION PATTERN OF STEPPE EAGLES AT THOOLAKHARKA WATCH SITE, NEPAL, 2012–2014 1 TULSI RAM SUBEDI Centre for Marine and Coastal Studies (CEMACS), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia and Nepalese Ornithological Union (NOU), P.O.
    [Show full text]
  • The All-Bird Bulletin
    Advancing Integrated Bird Conservation in North America Spring 2014 Inside this issue: The All-Bird Bulletin Protecting Habitat for 4 the Buff-breasted Sandpiper in Bolivia The Neotropical Migratory Bird Conservation Conserving the “Jewels 6 Act (NMBCA): Thirteen Years of Hemispheric in the Crown” for Neotropical Migrants Bird Conservation Guy Foulks, Program Coordinator, Division of Bird Habitat Conservation, U.S. Fish and Bird Conservation in 8 Wildlife Service (USFWS) Costa Rica’s Agricultural Matrix In 2000, responding to alarming declines in many Neotropical migratory bird popu- Uruguayan Rice Fields 10 lations due to habitat loss and degradation, Congress passed the Neotropical Migra- as Wintering Habitat for tory Bird Conservation Act (NMBCA). The legislation created a unique funding Neotropical Shorebirds source to foster the cooperative conservation needed to sustain these species through all stages of their life cycles, which occur throughout the Western Hemi- Conserving Antigua’s 12 sphere. Since its first year of appropriations in 2002, the NMBCA has become in- Most Critical Bird strumental to migratory bird conservation Habitat in the Americas. Neotropical Migratory 14 Bird Conservation in the The mission of the North American Bird Heart of South America Conservation Initiative is to ensure that populations and habitats of North Ameri- Aros/Yaqui River Habi- 16 ca's birds are protected, restored, and en- tat Conservation hanced through coordinated efforts at in- ternational, national, regional, and local Strategic Conservation 18 levels, guided by sound science and effec- in the Appalachians of tive management. The NMBCA’s mission Southern Quebec is to achieve just this for over 380 Neo- tropical migratory bird species by provid- ...and more! Cerulean Warbler, a Neotropical migrant, is a ing conservation support within and be- USFWS Bird of Conservation Concern and listed as yond North America—to Latin America Vulnerable on the International Union for Conser- Coordination and editorial vation of Nature (IUCN) Red List.
    [Show full text]
  • A Wood-Concrete Nest Box to Study Burrow-Nesting Petrels
    Bedolla-Guzmán et al.: Wood-concrete nest boxes to study petrels 249 A WOOD-CONCRETE NEST BOX TO STUDY BURROW-NESTING PETRELS YULIANA BEDOLLA-GUZMÁN1,2, JUAN F. MASELLO1, ALFONSO AGUIRRE-MUÑOZ2 & PETRA QUILLFELDT1 1Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 38, 35392 Giessen, Germany 2Grupo de Ecología y Conservación de Islas, A.C., Moctezuma 836, Zona Centro, 22800, Ensenada, Baja California, Mexico ([email protected]) Received 6 July 2016, accepted 31 August 2016 Artificial nests have been a useful research and conservation tool is an extended period of bi-parental care, and parents return to feed for a variety of petrel species (Podolsky & Kress 1989, Priddel & the chick only at night (Brooke 2004). Carlile 1995, De León & Mínguez 2003, Bolton et al. 2004). They facilitate observation and provide easy access, reducing overall At San Benito West Island, 140 artificial wooden nests were disturbance to seabirds (Wilson 1986, Priddel & Carlile 1995) deployed by previous researchers, beginning in 1999, to study the and increasing data-collection efficiency (Wilson 1986). Likewise, breeding biology of Cassin’s Auklet Ptychoramphus aleuticus. restoration programs using artificial nests have improved the Auklets readily accepted and used the nest boxes. In the first year, number of potential nest sites, breeding success (Priddel & Carlile the occupancy rate was 30%, increasing to 80% in the fifth year 1995, De León & Mínguez 2003, Bolton et al. 2004, Bried et al. (Shaye Wolf, pers. comm.). At San Benito, auklets breed earlier 2009, McIver et al. 2016) and adult survival rates (Libois et al.
    [Show full text]
  • Nest Density and Success of Columbids in Puerto Rico ’
    The Condor98:1OC-113 0 The CooperOrnithological Society 1996 NEST DENSITY AND SUCCESS OF COLUMBIDS IN PUERTO RICO ’ FRANK F. RIVERA-MILAN~ Department ofNatural Resources,Scientific Research Area, TerrestrialEcology Section, Stop 3 Puerta. de Tierra, 00906, Puerto Rico Abstract. A total of 868 active nests of eight speciesof pigeonsand doves (columbids) were found in 210 0.1 ha strip-transectssampled in the three major life zones of Puerto Rico from February 1987 to June 1992. The columbids had a peak in nest density in May and June, with a decline during the July to October flocking period, and an increasefrom November to April. Predation accountedfor 8 1% of the nest lossesobserved from 1989 to 1992. Nest cover was the most important microhabitat variable accountingfor nest failure or successaccording to univariate and multivariate comparisons. The daily survival rate estimates of nests constructed on epiphytes were significantly higher than those of nests constructedon the bare branchesof trees. Rainfall of the first six months of the year during the study accounted for 67% and 71% of the variability associatedwith the nest density estimatesof the columbids during the reproductivepeak in the xerophytic forest of Gulnica and dry coastal forest of Cabo Rojo, but only 9% of the variability of the nest density estimatesof the columbids in the moist montane second-growthforest patchesof Cidra. In 1988, the abundance of fruits of key tree species(nine speciescombined) was positively correlatedwith the seasonalchanges in nest density of the columbids in the strip-transects of Cayey and Cidra. Pairwise density correlationsamong the columbids suggestedparallel responsesof nestingpopulations to similar or covarying resourcesin the life zones of Puerto Rico.
    [Show full text]
  • Movements of Wild Ruddy Shelducks in the Central Asian Flyway and Their Spatial Relationship to Outbreaks of Highly Pathogenic Avian Influenza H5N1
    Viruses 2013, 5, 2129-2152; doi:10.3390/v5092129 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Article Movements of Wild Ruddy Shelducks in the Central Asian Flyway and Their Spatial Relationship to Outbreaks of Highly Pathogenic Avian Influenza H5N1 John Y. Takekawa 1,*, Diann J. Prosser 2, Bridget M. Collins 2, David C. Douglas 3, William M. Perry 4, Baoping Yan 5, Luo Ze 5, Yuansheng Hou 6, Fumin Lei 7, Tianxian Li 8, Yongdong Li 8 and Scott H. Newman 9,† 1 San Francisco Bay Estuary Field Station, Western Ecological Research Center, U.S. Geological Survey, 505 Azuar Drive, Vallejo, CA 94592, USA 2 Patuxent Wildlife Research Center, U.S. Geological Survey, Beltsville, MD 20705, USA; E-Mails: [email protected] (D.J.P.); [email protected] (B.M.C.) 3 Alaska Science Center, U.S. Geological Survey, Juneau, AK 99801, USA; E-Mail: [email protected] 4 Dixon Field Station, Western Ecological Research Center, U.S. Geological Survey, 800 Business Park Drive, Suite D, Dixon, CA 95620, USA; E-Mail: [email protected] 5 Computer Network Information Center (CNIC), Chinese Academy of Sciences, Beijing 100080, China; E-Mails: [email protected] (B.Y.); [email protected] (L.Z.) 6 Qinghai State Forestry Administration, Qinghai Lake National Nature Reserve (QLNNR), Xining 25700, Qinghai, China; E-Mail: [email protected] 7 Institute of Zoology (IOZ), Chinese Academy of Sciences, Beijing 100101, China; E-Mail: [email protected] 8 Institute of Virology (WIV), Chinese Academy of Sciences, Wuhan 430071, China; E-Mails: [email protected] (T.L.); [email protected] (Y.L.) 9 EMPRES Wildlife Health and Ecology Unit, Animal Health Service, Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome 00153, Italy; E-Mail: [email protected] † Current address: Emergency Center for Transboundary Animal Diseases (ECTAD)-Vietnam, Food and Agriculture Organization of the United Nations (FAO), No.
    [Show full text]
  • Europe's Huntable Birds a Review of Status and Conservation Priorities
    FACE - EUROPEAN FEDERATIONEurope’s FOR Huntable HUNTING Birds A Review AND CONSERVATIONof Status and Conservation Priorities Europe’s Huntable Birds A Review of Status and Conservation Priorities December 2020 1 European Federation for Hunting and Conservation (FACE) Established in 1977, FACE represents the interests of Europe’s 7 million hunters, as an international non-profit-making non-governmental organisation. Its members are comprised of the national hunters’ associations from 37 European countries including the EU-27. FACE upholds the principle of sustainable use and in this regard its members have a deep interest in the conservation and improvement of the quality of the European environment. See: www.face.eu Reference Sibille S., Griffin, C. and Scallan, D. (2020) Europe’s Huntable Birds: A Review of Status and Conservation Priorities. European Federation for Hunting and Conservation (FACE). https://www.face.eu/ 2 Europe’s Huntable Birds A Review of Status and Conservation Priorities Executive summary Context Non-Annex species show the highest proportion of ‘secure’ status and the lowest of ‘threatened’ status. Taking all wild birds into account, The EU State of Nature report (2020) provides results of the national the situation has deteriorated from the 2008-2012 to the 2013-2018 reporting under the Birds and Habitats directives (2013 to 2018), and a assessments. wider assessment of Europe’s biodiversity. For FACE, the findings are of key importance as they provide a timely health check on the status of In the State of Nature report (2020), ‘agriculture’ is the most frequently huntable birds listed in Annex II of the Birds Directive.
    [Show full text]
  • High Apparent Survival of Adult Leach's Storm
    Rennie et al.: Survival of adult Leach’s Storm Petrels in western Canada 133 HIGH APPARENT SURVIVAL OF ADULT LEACH’S STORM PETRELS OCEANODROMA LEUCORHOA IN BRITISH COLUMBIA ISOBEL R.F. RENNIE1, DAVID J. GREEN1, ELIZABETH A. KREBS2 & ANNE HARFENIST3 1Simon Fraser University, Centre for Wildlife Ecology, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada 2Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, 5421 Robertson Road, Delta, BC V4K 3N2, Canada ([email protected]) 3Harfenist Environmental Consulting, PO Box 2498, Smithers, BC V0J 2N0, Canada Received 04 November 2019, accepted 10 February 2020 ABSTRACT RENNIE, I.R.F., GREEN, D.J., KREBS, E.A. & HARFENIST, A. 2020. High apparent survival of Leach’s Storm Petrels Oceanodroma leucorhoa in British Columbia. Marine Ornithology 48: 133–140. Leach’s Storm Petrels Oceanodroma leucorhoa were listed as Vulnerable by the IUCN in 2018. Population declines in the western North Atlantic are associated with low annual adult survival rates, but trends and vital rates of populations in the eastern North Pacific are poorly known. To address this knowledge gap, we estimated the annual apparent survival of breeding adults at two colonies off the coast of British Columbia (Rock Islets: 52°20ʹ40″N, 131°14ʹ10″W and Cleland Island: 49°10ʹ17″N, 126°05ʹ28″W), using capture-mark-recapture data collected between 2006 and 2010. Transient models received substantially more support than standard Cormack-Jolly-Seber models, suggesting that the initial capture and banding reduced burrow fidelity. The model-averaged annual apparent survival rates for both colonies were high (estimate for each colony = 0.975 ± 0.011), compared to rates reported for colonies in the western North Atlantic (< 0.80).
    [Show full text]
  • Missouri Bird Conservation Plan
    Missouri Bird Conservation Plan Outreach Section Missouri Bird Conservation Plan Outreach Section Team Sarah Kendrick, Missouri Department of Conservation Lisa Berger, Greater Ozarks Audubon Society John Besser, Columbia Audubon Society Carol Davit, Missouri Prairie Foundation Holly Dentner, Missouri Department of Conservation Alison Dubbert, Missouri Department of Natural Resources State Parks Heather Feeler, Missouri Department of Conservation Dawn Fredrickson, Missouri Department of Natural Resources State Parks Conway Hawn, Ozark Rivers Audubon Society Tara Hohman, Audubon Center at Riverlands Lauren Hildreth, Missouri Department of Conservation Austin Lambert, Missouri Department of Conservation Mitch Leachman, St. Louis Audubon Society Kendell Loyd, Greater Ozarks Audubon Society Rudy Martinez, Missouri Department of Conservation Bill Mees, Missouri Bird Conservation Initiative Mary Nemecek, Burroughs Audubon Society Kelly Rezac, Missouri Department of Conservation Anne Tieber, St. Louis Zoo Edge Wade, Missouri Birding Society Paige Witek, Missouri River Bird Observatory Michelle Wiegand, Audubon Center at Riverlands Missouri Birding Society 2 Table of Contents CALL TO ACTION ........................................................................................................................................... 4 BACKGROUND AND CONCEPT ...................................................................................................................... 5 Scope of the Missouri Bird Conservation Plan ........................................................................................
    [Show full text]