Entschlüsselung Der Genomsequenz Von Escherichia Blattae Und Komparative Bioinformatik Mikrobieller Genome

Total Page:16

File Type:pdf, Size:1020Kb

Entschlüsselung Der Genomsequenz Von Escherichia Blattae Und Komparative Bioinformatik Mikrobieller Genome Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen Entschlüsselung der Genomsequenz von Escherichia blattae und komparative Bioinformatik mikrobieller Genome vorgelegt von Arnim Wiezer aus Göttingen Göttingen 2004 D 7 Referent: Prof. Dr. G. Gottschalk Korreferent: PD Dr. R. Daniel Tag der mündlichen Prüfung: 1.7.2004 Inhaltsverzeichnis 1. Einleitung 1 2. Materialien und Methoden 4 2.1. Organismen und Plasmide ........................ 4 2.2. Nährmedien ................................ 4 2.3. Zellanzucht und Stammhaltung ..................... 6 2.3.1. Zellanzucht ............................ 6 2.3.2. Stammhaltung .......................... 6 2.4. Techniken für die Arbeit mit Nukleinsäuren .............. 6 2.4.1. Geräte und Lösungen ....................... 6 2.4.2. Isolierung chromosomaler DNA ................. 7 2.4.3. Isolierung von Plasmid DNA ................... 7 2.4.4. Isolierung von Cosmid DNA ................... 7 2.4.5. Aufreinigung von PCR-Produkten ................ 8 2.4.6. Isolation von DNA-Fragmenten aus Agarosegelen ....... 8 2.4.7. Scheren von DNA ......................... 8 2.4.8. DNA Konzentrationsbestimmung und Reinheitskontrolle ... 9 2.4.9. Dialyse von Nukleinsäuren .................... 10 2.4.10. Saccharose-Dichtegradientenzentrifugation ........... 10 2.4.11. Agarose Gelelektrophorese .................... 11 2.5. Modifikaton von Nukleinsäuren ..................... 11 2.5.1. Restriktion ............................ 11 2.5.2. Dephosphorylierung ........................ 12 2.5.3. Herstellung von „blunt ends“ ................... 12 2.5.4. Herstellung von Insert-DNA mit A-Überhang ......... 13 2.5.5. Ligation .............................. 13 2.5.6. „TOPO“-Klonierung ....................... 14 I Inhaltsverzeichnis 2.5.7. Transformation von E. coli TOP10-Zellen ............ 14 2.5.8. Transformation von E. coli DH5α-Zellen ............ 14 2.5.9. Blau-Weiß Screening (X-Gal-Test) ................ 15 2.6. Polymerasekettenreaktion (PCR) .................... 16 2.7. Genbanken ................................. 18 2.7.1. Plasmidbanken .......................... 18 2.7.2. Cosmidbanken ........................... 18 2.7.3. Cosmid-Subklonierungen ..................... 19 2.8. Sequenzierung ............................... 19 2.8.1. Sequenzierung mit MegaBace .................. 20 2.8.2. Sequenzierung mit ABI377 .................... 21 2.8.3. Sequenzabbrüche ......................... 22 2.9. Sequenzierungs-Software ......................... 25 2.10. Lückenschluss - gap closure ....................... 25 2.10.1. „Plasmid walking“ ......................... 25 2.10.2. Cosmid-Brücken zum Schließen von Lücken .......... 26 2.10.3. ERGO zum Schließen von Lücken ................ 27 2.10.4. Lückenschluss mit BLAST .................... 29 2.10.5. Multiplex-PCR .......................... 30 2.11. BLAST .................................. 31 2.11.1. Bi-direktionales BLAST ..................... 31 2.12. Annotation ................................ 32 2.12.1. ORF Vorhersage ......................... 33 2.12.2. ERGO ............................... 33 3. Ergebnisse 35 3.1. Genomprojekt Escherichia blattae .................... 35 3.1.1. Der Organismus .......................... 35 3.1.2. Sequenzierung ........................... 36 3.1.3. Rohsequenzierung ......................... 36 3.1.4. Lückenschluss ........................... 38 3.1.5. Qualitätsverbesserung ...................... 40 3.1.6. Annotation ............................ 40 3.1.7. Horizontaler Gentransfer in Escherichia blattae ........ 45 3.1.8. Vergleich mit anderen Enterobakterien ............. 47 II Inhaltsverzeichnis 3.2. Untersuchung des Methanosarcina mazei Gö1 Genoms ........ 49 3.2.1. Lokalisation des Replikationsursprungs ............. 50 3.2.2. Vergleich mit Methanosarcina acetivorans C2A ......... 56 3.2.3. Horizontaler Gentransfer in Ms. mazei - „first hit“-Methode .. 64 3.2.4. Horizontaler Gentransfer II - Vorhersagen mit SIGI ...... 65 3.3. Untersuchung des Thermus thermophilus HB27 Genoms ....... 66 3.3.1. Bestimmung des Replikationsursprungs ............. 67 3.3.2. Vergleich mit Deinococcus radiodurans R1 ........... 68 3.3.3. Horizontaler Gentransfer in Thermus thermophilus ...... 76 3.4. Programme ................................ 79 3.4.1. Quann ............................... 79 3.4.2. Cogger ............................... 81 3.4.3. secureBLAST ........................... 83 4. Diskussion 85 4.1. Genomsequenzierungsprojekt Escherichia blattae ............ 85 4.1.1. Sequenzierung ........................... 86 4.1.2. Annotation ............................ 86 4.1.3. Horizontaler Gentransfer in Escherichia blattae ........ 87 4.1.4. Vergleich mit anderen Enterobakterien ............. 88 4.2. Untersuchung des Methanosarcina mazei Gö1-Genoms ........ 89 4.2.1. Der Replikationsursprung .................... 90 4.2.2. Vergleich mit Ms. acetivorans .................. 92 4.2.3. Horizontaler Gentransfer in Ms. mazei ............. 95 4.3. Untersuchung des Thermus thermophilus HB27-Genoms ....... 98 4.3.1. Lokalisation des Replikationsursprungs ............. 98 4.3.2. Vergleich mit Deinococcus radiodurans R1 ........... 99 4.3.3. Horizontaler Gentransfer in Thermus thermophilus ...... 103 4.4. Programme ................................ 105 4.4.1. Quann ............................... 105 4.4.2. Cogger ............................... 106 4.5. Ausblick .................................. 108 5. Zusammenfassung 110 5.1. Genomprojekt Escherichia blattae .................... 110 III Inhaltsverzeichnis 5.2. Das Methanosarcina mazei Gö1-Genom ................. 110 5.3. Das Thermus thermophilus HB27-Genom ................ 111 5.4. Programmentwicklungen ......................... 111 Literaturverzeichnis 113 A. Anhang 124 A.1. bi-direktionales BLAST ......................... 124 A.2. Ms. mazei-spezifische Proteine ...................... 127 A.3. Ms. acetivorans-spezifische Proteine ................... 131 A.3.1. COG Gruppen .......................... 143 A.4. Bakterielle Gene nach der first-hit Methode in Ms. mazei ....... 143 A.5. Fremdgene in Ms. mazei SIGI-Vorhersage ................ 149 A.6. T. thermophilus Proteine ohne Homolog in D. radiodurans ....... 153 A.7. Fremdgene in T. thermophilus ...................... 162 A.8. T. thermophilus-spezifische Proteine (COG-Gruppe C) ........ 163 A.9. Gecoggte D. radiodurans-spezifische Proteine .............. 164 A.10.D. radiodurans-spezifische Proteine (COG-Gruppe K) ......... 171 A.11.D. radiodurans-spezifische Proteine (COG-Gruppe V) ......... 172 A.12.Gecoggte T. thermophilus-spezifische Proteine ............. 172 A.13.Fremdgene in E. blattae .......................... 176 A.14.E. blattae-spezifische Proteine ...................... 180 A.15.E. blattae-spezifische Proteine (Fremdgene) ............... 187 A.16.E. blattae-spezifische Proteine (Vergleich Enterobakterien) ...... 189 IV Abkürzungen A Adenin aa Aminosäuren (engl.: amino acids) Amp Ampicillin B. Buchnera (bi)dest. (zweifach) destilliert bp Basenpaare C Cytosin oC Grad Celsius ca. circa DMSO Dimethylsulfoxid DNA Desoxyribonukleinsäure E. Escherichia E-cup Eppendorf-Reaktionsgefäß EDTA Ethylendiamintetracetat et al. et alii (und andere) EtOH Ethanol Fa. Firma G Guanin g Gramm h Stunde IPTG Isopropyl-β-d-thiogalactopyranosid KAc Kalium-Acetat kbp Kilobasen Kan Kanamycin Konz. Konzentration l Liter LB Luria-Bertani V Abkürzungen M molar Mbp Mega Basenpaare MCS multiple cloning site mg Milligramm µg Mikrogramm min Minuten ml Milliliter mM millimolar µm Mikrometer NCBI National Center for Biotechnology Information OD optische Dichte ORF offener Leserahmen (engl.: open reading frame) PCR Polymerasekettenreaktion (engl.: Polymerase Chain Reaction) r Resistenz PEG Polyethylenglycol rpm Umdrehungen pro Minute (engl.: rounds per minute) RT Raumtemperatur S. Salmonella Sek Sekunde Sh. Shigella T Thymin Tab. Tabelle TEMED N, N, N, N’, N’-Tetramethylethylendiamid Tris Tris(hydroxymethyl)-aminoethan U Unit (Einheit für Enzymaktivität) Vol. Volumen v/v Volumeneinheit pro Volumeneinheit w/v Masseneinheit pro Volumeneinheit X-Gal 5-Brom-4-chlor-3-indolyl-β-D-galactopyranosid Y. Yersinia VI 1. Einleitung Stellen Sie sich vor, Sie müssten an einem Projekt mitarbeiten, das wie folgt be- schrieben wird: Es geht darum, den Inhalt einer Datei von 3,2 Gigabyte zu verstehen, die im Massenspeicher eines Computers mit unbekannter Konstruktion abgelegt ist. Das Verständniss dieser Datei ist gleichbedeutend mit dem reverse engineering des Computersystems bis hin zur vollständigen Be- schreibung und seiner Wartung. Das reverse engineering der Datei wird dadurch erschwert, dass die Datei „ein Haufen von Bytes“ in der Reihenfolge ist, in der sie in das Gerät ein- gegeben wurden. Außerdem ist bekannt, dass die Dateien fragmentiert vorliegen und manche Teile des Geräts enthalten auch gelöschte Dateien und anderen „Müll“. Nachdem man den Abfall identifiziert und verwor- fen hat, und nachdem dann die fragmentierten Dateien zusammengefügt wurden, kann man mit dem reverse engineering des Codes beginnen. Dabei verfügt man nur über unvollständige und manchmal auch falsche Erkenntnisse über die CPU (Zentrale Recheneinheit), auf der der Code läuft. Die Aufklärung von Aufbau und Funktion der CPU ist ebenfalls ein Teil des Projekts, denn manche Teile der 3,2 Gigabyte sind binäre Anweisungen für den computergestützten Produktionsprozeß, durch den die CPU hergestellt wird. Darüber hinaus gilt es zu berücksichtigen, dass zu dem riesigen Datenbestand
Recommended publications
  • The Proteasome: a Proteolytic Nanomachine of Cell Regulation and Waste Disposal
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1695 (2004) 19–31 http://www.elsevier.com/locate/bba Review The proteasome: a proteolytic nanomachine of cell regulation and waste disposal Dieter H. Wolf *, Wolfgang Hilt Institut fu¨r Biochemie, Universita¨t Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany Available online 26 October 2004 Abstract The final destination of the majority of proteins that have to be selectively degraded in eukaryotic cells is the proteasome, a highly sophisticated nanomachine essential for life. 26S proteasomes select target proteins via their modification with polyubiquitin chains or, in rare cases, by the recognition of specific motifs. They are made up of different subcomplexes, a 20S core proteasome harboring the proteolytic active sites hidden within its barrel-like structure and two 19S caps that execute regulatory functions. Similar complexes equipped with PA28 regulators instead of 19S caps are a variation of this theme specialized for the production of antigenic peptides required in immune response. Structure analysis as well as extensive biochemical and genetic studies of the 26S proteasome and the ubiquitin system led to a basic model of substrate recognition and degradation. Recent work raised new concepts. Additional factors involved in substrate acquisition and delivery to the proteasome have been discovered. Moreover, first insights in the tasks of individual subunits or subcomplexes of the 19S caps in substrate recognition and binding as well as release and recycling of polyubiquitin tags have been obtained. D 2004 Elsevier B.V. All rights reserved.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Supplemental Methods
    Supplemental Methods: Sample Collection Duplicate surface samples were collected from the Amazon River plume aboard the R/V Knorr in June 2010 (4 52.71’N, 51 21.59’W) during a period of high river discharge. The collection site (Station 10, 4° 52.71’N, 51° 21.59’W; S = 21.0; T = 29.6°C), located ~ 500 Km to the north of the Amazon River mouth, was characterized by the presence of coastal diatoms in the top 8 m of the water column. Sampling was conducted between 0700 and 0900 local time by gently impeller pumping (modified Rule 1800 submersible sump pump) surface water through 10 m of tygon tubing (3 cm) to the ship's deck where it then flowed through a 156 µm mesh into 20 L carboys. In the lab, cells were partitioned into two size fractions by sequential filtration (using a Masterflex peristaltic pump) of the pre-filtered seawater through a 2.0 µm pore-size, 142 mm diameter polycarbonate (PCTE) membrane filter (Sterlitech Corporation, Kent, CWA) and a 0.22 µm pore-size, 142 mm diameter Supor membrane filter (Pall, Port Washington, NY). Metagenomic and non-selective metatranscriptomic analyses were conducted on both pore-size filters; poly(A)-selected (eukaryote-dominated) metatranscriptomic analyses were conducted only on the larger pore-size filter (2.0 µm pore-size). All filters were immediately submerged in RNAlater (Applied Biosystems, Austin, TX) in sterile 50 mL conical tubes, incubated at room temperature overnight and then stored at -80oC until extraction. Filtration and stabilization of each sample was completed within 30 min of water collection.
    [Show full text]
  • B Number Gene Name Mrna Intensity Mrna
    sample) total list predicted B number Gene name assignment mRNA present mRNA intensity Gene description Protein detected - Membrane protein membrane sample detected (total list) Proteins detected - Functional category # of tryptic peptides # of tryptic peptides # of tryptic peptides detected (membrane b0002 thrA 13624 P 39 P 18 P(m) 2 aspartokinase I, homoserine dehydrogenase I Metabolism of small molecules b0003 thrB 6781 P 9 P 3 0 homoserine kinase Metabolism of small molecules b0004 thrC 15039 P 18 P 10 0 threonine synthase Metabolism of small molecules b0008 talB 20561 P 20 P 13 0 transaldolase B Metabolism of small molecules chaperone Hsp70; DNA biosynthesis; autoregulated heat shock b0014 dnaK 13283 P 32 P 23 0 proteins Cell processes b0015 dnaJ 4492 P 13 P 4 P(m) 1 chaperone with DnaK; heat shock protein Cell processes b0029 lytB 1331 P 16 P 2 0 control of stringent response; involved in penicillin tolerance Global functions b0032 carA 9312 P 14 P 8 0 carbamoyl-phosphate synthetase, glutamine (small) subunit Metabolism of small molecules b0033 carB 7656 P 48 P 17 0 carbamoyl-phosphate synthase large subunit Metabolism of small molecules b0048 folA 1588 P 7 P 1 0 dihydrofolate reductase type I; trimethoprim resistance Metabolism of small molecules peptidyl-prolyl cis-trans isomerase (PPIase), involved in maturation of b0053 surA 3825 P 19 P 4 P(m) 1 GenProt outer membrane proteins (1st module) Cell processes b0054 imp 2737 P 42 P 5 P(m) 5 GenProt organic solvent tolerance Cell processes b0071 leuD 4770 P 10 P 9 0 isopropylmalate
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier Et Al
    US 200601 10747A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier et al. (43) Pub. Date: May 25, 2006 (54) PROCESS FOR IMPROVED PROTEIN (60) Provisional application No. 60/591489, filed on Jul. EXPRESSION BY STRAIN ENGINEERING 26, 2004. (75) Inventors: Thomas M. Ramseier, Poway, CA Publication Classification (US); Hongfan Jin, San Diego, CA (51) Int. Cl. (US); Charles H. Squires, Poway, CA CI2O I/68 (2006.01) (US) GOIN 33/53 (2006.01) CI2N 15/74 (2006.01) Correspondence Address: (52) U.S. Cl. ................................ 435/6: 435/7.1; 435/471 KING & SPALDING LLP 118O PEACHTREE STREET (57) ABSTRACT ATLANTA, GA 30309 (US) This invention is a process for improving the production levels of recombinant proteins or peptides or improving the (73) Assignee: Dow Global Technologies Inc., Midland, level of active recombinant proteins or peptides expressed in MI (US) host cells. The invention is a process of comparing two genetic profiles of a cell that expresses a recombinant (21) Appl. No.: 11/189,375 protein and modifying the cell to change the expression of a gene product that is upregulated in response to the recom (22) Filed: Jul. 26, 2005 binant protein expression. The process can improve protein production or can improve protein quality, for example, by Related U.S. Application Data increasing solubility of a recombinant protein. Patent Application Publication May 25, 2006 Sheet 1 of 15 US 2006/0110747 A1 Figure 1 09 010909070£020\,0 10°0 Patent Application Publication May 25, 2006 Sheet 2 of 15 US 2006/0110747 A1 Figure 2 Ester sers Custer || || || || || HH-I-H 1 H4 s a cisiers TT closers | | | | | | Ya S T RXFO 1961.
    [Show full text]
  • Computational and Systems Biology Themed Issue
    View Article Online / Journal Homepage / Table of Contents for this issue Molecular BioSystems This article was published as part of the Computational and Systems Biology themed issue Please take a look at the full table of contents to access the other papers in this issue. Open Access Article. Published on 13 October 2009. Downloaded 9/23/2021 6:41:00 PM. View Article Online PAPER www.rsc.org/molecularbiosystems | Molecular BioSystems Amidoligases with ATP-grasp, glutamine synthetase-like and acetyltransferase-like domains: synthesis of novel metabolites and peptide modifications of proteinswz Lakshminarayan M. Iyer,a Saraswathi Abhiman,a A. Maxwell Burroughsb and L. Aravind*a Received 28th August 2009, Accepted 28th August 2009 First published as an Advance Article on the web 13th October 2009 DOI: 10.1039/b917682a Recent studies have shown that the ubiquitin system had its origins in ancient cofactor/amino acid biosynthesis pathways. Preliminary studies also indicated that conjugation systems for other peptide tags on proteins, such as pupylation, have evolutionary links to cofactor/amino acid biosynthesis pathways. Following up on these observations, we systematically investigated the non-ribosomal amidoligases of the ATP-grasp, glutamine synthetase-like and acetyltransferase folds by classifying the known members and identifying novel versions. We then established their contextual connections using information from domain architectures and conserved gene neighborhoods. This showed remarkable, previously uncharacterized functional links between diverse peptide ligases, several peptidases of unrelated folds and enzymes involved in synthesis of modified amino acids. Using the network of contextual connections we were able to predict numerous novel pathways for peptide synthesis and modification, amine-utilization, secondary metabolite synthesis and potential peptide-tagging systems.
    [Show full text]
  • Comparative Genomics of the Mycobacterium Ulcerans And
    MPhil Thesis Ken Doig (197821835) MPhil Thesis – 2012 Candidate Kenneth Douglas Doig Student No. 197821835 Title Comparative genomics of the Mycobacterium ulcerans and Mycobacterium marinum complex Status Submitted in total fulfilment of the requirements of the degree of Master of Philosophy Date September 2012 Supervisors A/Prof. Tim Stinear1 Dr. Torsten Seemann2 Prof. Richard Strugnell1 Department Microbiology and Immunology Faculty Medicine, Dentistry and Health Sciences The University of Melbourne 1. Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia 2. Victorian Bioinformatics Consortium, Monash University, Clayton, Australia MPhil_Thesis-22.doc Page 1 of 1 MPhil Thesis Ken Doig (197821835) Abstract Buruli ulcer is a neglected tropical disease which is prevalent in Western Africa. Its etiological agent, Mycobacteria ulcerans occurs in a wide range of hosts and environments across the world. In contrast to its progenitor Mycobacteria marinum, the bacteria and related strains produce a toxin mycolactone, an immunosuppressive polyketide which gives rise to its pathogenicity. Bacterial pathogenesis has a number of hallmarks such as; an evolutionary bottleneck, insertion sequence (IS) expansion, pseudogene increase, genome reduction, horizontal gene transfers (HGT) and adaption to a new niche. M. ulcerans shows all of these characteristics and is a fine model for gaining a deeper understanding of the mechanics of bacterial pathogenesis in general and specifically for M. ulcerans and related strains. This research analyses the genomic makeup of 35 isolates that produce mycolactone and five M. marinum isolates. Such analysis have recently become possible through the rapid technological development of high throughput sequencing (HTS) allowing whole genome sequences of all isolates to be compared and contrasted.
    [Show full text]
  • Table S3. Bootstrapped Frequency of COG Occurrences for Specific Metabolic Processes Encoded in the Antarctic Bacterioplankton Environmental Genomes
    Table S3. Bootstrapped frequency of COG occurrences for specific metabolic processes encoded in the Antarctic bacterioplankton environmental genomes. Category COG Predicted Protein WEG SEG Inorganic carbon COG1850 Ribulose 1,5-bisphosphate carboxylase, large subunit 4.34 0.85 COG4451 Ribulose bisphosphate carboxylase small subunit 1.19 0.83 COG0574 Phosphoenolpyruvate synthase/pyruvate phosphate dikinase 13.7 6.63 COG4770 Acetyl/propionyl-CoA carboxylase, alpha subunit 7.91 4.85 Sulfur Metabolism (inorganic) COG2897 Rhodanese-related sulfurtransferase 5.64 3.25 COG0607 Rhodanese-related sulfurtransferase 6.02 5.68 COG2895 GTPases - Sulfate adenylate transferase subunit 1 2.28 4.88 COG1054 Predicted sulfurtransferase 2.53 4.17 COG0306 Phosphate/sulphate permeases 7.56 3.27 COG0659 Sulfate permease and related transporters (MFS superfamily) 15.72 15.22 COG0529 Adenylylsulfate kinase and related kinases 1.98 4.16 COG0225 Peptide methionine sulfoxide reductase 7.03 3.22 COG0229 Conserved domain frequently associated with peptide methionine sulfoxide reductase 3.77 2.47 COG0641 Arylsulfatase regulator (Fe-S oxidoreductase) 0.67 0 COG0526 Thiol-disulfide isomerase and thioredoxins 6.99 4.12 COG1651 Protein-disulfide isomerase 10.75 1.65 COG2041 Sulfite oxidase and related enzymes 5.51 3.05 COG2046 ATP sulfurylase (sulfate adenylyltransferase) 4.34 3.46 COG2221 Dissimilatory sulfite reductase (desulfoviridin), alpha and beta subunits 1.21 0 COG2920 Dissimilatory sulfite reductase (desulfoviridin), gamma subunit 1.9 0 COG0155 Sulfite reductase,
    [Show full text]
  • Das Proteasomsystem
    4. Literaturverzeichnis Apcher GS, Maitland J, Dawson S, Sheppard P, Mayer RJ (2004) The alpha4 and alpha7 subunits and assembly of the 20S proteasome. FEBS Lett. 569(1-3):211-6. Aki M, Shimbara N, Takashina M, Akiyama K, Kagawa S, Tamura T, Tanahashi N, Yoshimura T, Tanaka K, Ichihara A (1994) Interferon-gamma induces different subunit organizations and functional diversity of proteasomes. J Biochem (Tokyo) 115:257-269 Bienkowska JR, Hartman H, Smith TF. (2003) A search method for homologs of small proteins. Ubiquitin-like proteins in prokaryotic cells? Protein Eng. 16(12):897-904. Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R (1999) The proteasome. Annu Rev Biophys Biomol Struct, 28, 295-317. Bochtler M, Hartmann C, Song HK, Bourenkov GP, Bartunik HD, Huber R (2000) The structures of HslU and the ATP-dependent protease HslU-HslV. Nature 403, 800-805. Branninigan JA, Dodson G, Duggleby HJ, Moody PC, Smith JL, Tomchick, DR, Murzin AG (1995) A protein catalytic framework with an N-terminal nucleophile is capable of self- activation. Nature 378:414–419 Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, Finley D, Schmidt M. (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol. 1(4):221-6. Brotz-Oesterhelt H, Beyer D, Kroll HP, Endermann R, Ladel C, Schroeder W, Hinzen B, Raddatz S, Paulsen H, Henninger K, Bandow JE, Sahl HG, Labischinski H. (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med. 11(10):1082-7. Bukau, B. (1997) The heat shock response in Escherichia coli.
    [Show full text]
  • ABSTRACT BOZDAG, AHMET. Investigation of Methanol and Formaldehyde Metabolism in Bacillus Methanolicus
    ABSTRACT BOZDAG, AHMET. Investigation of Methanol and Formaldehyde Metabolism in Bacillus methanolicus.(Under the direction of Prof. Michael C. Flickinger). Bacillus methanolicus is a Gram-positive aerobic methylotroph growing optimally at 50-53 °C. Wild-type strains of B. methanolicus have been reported to secrete 58 g/l of L- glutamate in fed-batch cultures. Mutants of B. methanolicus created via classical mutangenesis can secrete 37 g/l of L-lysine, at 50 °C. The genes required for methylotrophyin B. methanolicus are encoded by an endogenous plasmid, pBM19 in strain MGA3, except for hexulose phosphate synthase (hps) and phosphohexuloisomerase (phi) which are encoded on the chromosome.It is a promising candidate for industrial production of chemical intermediates or amino acids from methanol. B. methanolicus employs the ribulose monophospate (RuMP) pathway to assimilate the carbon derived from the methanol, but enzymes that dissimilate carbon are not identified, although formaldehyde and formate were identified as intermediates by 13C NMR. It is important to understand how methanol is oxidized to formaldehyde and then, to formate and carbon dioxide. This study aims to elucidate the methanol dissimilation pathway of B. methanolicus. Growth rates of B. methanolicus MGA3 were assessed on methanol, mannitol, and glucose as a substrate. B. methanolicus achieved maximum growth rate, µmax, when growing on 25 mM methanol, 0.65±0.007 h-1, and it gradually decreased to 0.231±0.004 h-1 at 2Mmethanol concentration which demonstrates substrate inhibition. The maximum growth rates (µmax) of B. methanolicus MGA3 on mannitol and glucose are 0.532±0.002 and 0.336±0.003 h-1, respectively.
    [Show full text]
  • Planctomycetes Attached to Algal Surfaces: Insight Into Their Genomes
    MSc 2.º CICLO FCUP 2015 into Planctomycetes their Planctomycetes genomes attached attached to algal surfaces: Insight into to algal their genomes surfaces Mafalda Seabra Faria : Insight : Dissertação de Mestrado apresentada à Faculdade de Ciências da Universidade do Porto Laboratório de Ecofisiologia Microbiana da Universidade do Porto Biologia Celular e Molecular 2014/2015 Mafalda Seabra Faria Seabra Mafalda I FCUP Planctomycetes attached to algal surfaces: Insight into their genomes Planctomycetes attached to algal surfaces: Insight into their genomes Mafalda Seabra Faria Mestrado em Biologia Celular e Molecular Biologia 2015 Orientador Olga Maria Oliveira da Silva Lage, Professora Auxiliar, Faculdade de Ciências da Universidade do Porto Co-orientador Jens Harder, Senior Scientist and Professor, Max Planck Institute for Marine Microbiology FCUP II Planctomycetes attached to algal surfaces: Insight into their genomes Todas as correções determinadas pelo júri, e só essas, foram efetuadas. O Presidente do Júri, Porto, ______/______/_________ FCUP III Planctomycetes attached to algal surfaces: Insight into their genomes FCUP IV Planctomycetes attached to algal surfaces: Insight into their genomes “Tell me and I forget, teach me and I may remember, involve me and I learn.” Benjamin Franklin FCUP V Planctomycetes attached to algal surfaces: Insight into their genomes FCUP VI Planctomycetes attached to algal surfaces: Insight into their genomes Acknowledgements Foremost, I would like to express my sincere gratitude to my supervisor Professor
    [Show full text]
  • Product Sheet Info
    Product Information Sheet for NR-8063 Francisella tularensis subsp. novicida, Growth Conditions: “Two-Allele” Transposon Mutant Library, Media: Tryptic Soy Agar containing 0.1% L-cysteine and 10 µg/mL Plate 29 (tnfn1_pw060510p01) kanamycin Incubation: Catalog No. NR-8063 Temperature: 37°C Atmosphere: Aerobic with 5% CO2 Propagation: For research use only. Not for human use. 1. Scrape top of frozen well with a pipette tip and streak onto agar plate. Contributor: 2. Incubate the plate at 37°C for 24–48 hours. Colin Manoil, Ph.D., Professor of Genome Sciences, University of Washington, Seattle, Washington Citation: Acknowledgment for publications should read “The following Product Description: reagent was obtained through the NIH Biodefense and A comprehensive 16508-member transposon mutant library1 Emerging Infections Research Resources Repository, NIAID, of sequence-defined transposon insertion mutants of NIH: Francisella tularensis subsp. novicida, “Two-Allele” Francisella tularensis subsp. novicida, strain U112 was Transposon Mutant Library, Plate 29 (tnfn1_pw060510p01), prepared to allow the systematic identification of virulence NR-8063.” determinants and other factors associated with Francisella pathogenesis. Genes refractory to insertional inactivation Biosafety Level: 2 helped define the genes essential for viability of the Appropriate safety procedures should always be used with organism. this material. Laboratory safety is discussed in the following publication: U.S. Department of Health and Human Services, To facilitate genome-scale screening using the mutant Public Health Service, Centers for Disease Control and collection, a “two-allele” single-colony purified sublibrary, Prevention, and National Institutes of Health. Biosafety in made up of approximately two purified mutants per gene, Microbiological and Biomedical Laboratories.
    [Show full text]