Trichogaster Trichopterus 161
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
Housing, Husbandry and Welfare of a “Classic” Fish Model, the Paradise Fish (Macropodus Opercularis)
animals Article Housing, Husbandry and Welfare of a “Classic” Fish Model, the Paradise Fish (Macropodus opercularis) Anita Rácz 1,* ,Gábor Adorján 2, Erika Fodor 1, Boglárka Sellyei 3, Mohammed Tolba 4, Ádám Miklósi 5 and Máté Varga 1,* 1 Department of Genetics, ELTE Eötvös Loránd University, Pázmány Péter stny. 1C, 1117 Budapest, Hungary; [email protected] 2 Budapest Zoo, Állatkerti krt. 6-12, H-1146 Budapest, Hungary; [email protected] 3 Fish Pathology and Parasitology Team, Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; [email protected] 4 Department of Zoology, Faculty of Science, Helwan University, Helwan 11795, Egypt; [email protected] 5 Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1C, 1117 Budapest, Hungary; [email protected] * Correspondence: [email protected] (A.R.); [email protected] (M.V.) Simple Summary: Paradise fish (Macropodus opercularis) has been a favored subject of behavioral research during the last decades of the 20th century. Lately, however, with a massively expanding genetic toolkit and a well annotated, fully sequenced genome, zebrafish (Danio rerio) became a central model of recent behavioral research. But, as the zebrafish behavioral repertoire is less complex than that of the paradise fish, the focus on zebrafish is a compromise. With the advent of novel methodologies, we think it is time to bring back paradise fish and develop it into a modern model of Citation: Rácz, A.; Adorján, G.; behavioral and evolutionary developmental biology (evo-devo) studies. The first step is to define the Fodor, E.; Sellyei, B.; Tolba, M.; housing and husbandry conditions that can make a paradise fish a relevant and trustworthy model. -
Critical Status Review on a Near Threatened Ornamental Gourami
International Journal of Fisheries and Aquatic Studies 2016; 4(5): 477-482 ISSN: 2347-5129 (ICV-Poland) Impact Value: 5.62 (GIF) Impact Factor: 0.549 Critical status review on a near threatened ornamental IJFAS 2016; 4(5): 477-482 © 2016 IJFAS gourami, Ctenops nobilis: A recapitulation for future www.fisheriesjournal.com preservation Received: 03-07-2016 Accepted: 04-08-2016 S Bhattacharya, BK Mahapatra and J Maity S Bhattacharya ICAR-Central Institute of Fisheries Education, Salt Lake Abstract City, Kolkata, India Fish keeping in aquarium which was started from the Roman Empire in 50AD now become a very popular hobby among the world. Small ornamental species are mostly preferable in aquarium industry. BK Mahapatra Gourami is one of the most valuable and popular in small ornamental fish world. In India presently 8 ICAR-Central Institute of indigenous Gourami species are very common and highly demanding. Ctenops nobilis is one of the Fisheries Education, Salt Lake highly demanding and important among the 8 indigenous Gourami species. It is the only known species City, Kolkata, India in its genus. The fish is mainly cold water species. The species is widely distributed but it is a naturally scarce species. As per IUCN Red list, 2010 status the species is assessed as Near Threatened for its J Maity Vidyasagar University, population declines in the wild. Very little data available of the fish resulting problems occur during Midnapore, West Bengal, India maintenance of the fish in aquarium. So the proper study on the fish, captive breeding and rearing procedure of the fish is very important to meet the increasing demand of the fish among aquarium hobbyist. -
Why Is Pseudosphromenus Cupanus (Teleostei: Osphronemidae) Reported from Bangladesh, Indonesia, Malaysia, Myanmar, and Pakistan?
Zootaxa 3990 (4): 575–583 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3990.4.6 http://zoobank.org/urn:lsid:zoobank.org:pub:7FA710EF-3947-4E7F-AAAF-D6BAC7FD72BA Why is Pseudosphromenus cupanus (Teleostei: Osphronemidae) reported from Bangladesh, Indonesia, Malaysia, Myanmar, and Pakistan? SVEN O. KULLANDER1, MD. MIZANUR RAHMAN2, MICHAEL NORÉN1 & ABDUR ROB MOLLAH2 1Department of Zoology, Swedish Museum of Natural History, PO Box 50007, SE-104 05 Stockholm, Sweden. E-mail: [email protected]; [email protected] 2Department of Zoology, University of Dhaka , Dhaka-1000, Bangladesh. E-mail: [email protected]; [email protected] Abstract The native distribution of the small labyrinth fish species Pseudosphromenus cupanus includes southern India and Sri Lanka. According to literature it has a range including also Pakistan, Bangladesh, Myanmar, Malaysia, and Indonesia (Su- matra) but there are no voucher specimens or reliable observations from those areas. The distribution record of P. cupanus was inflated partly by including P. da y i as a synonym. Pseudosphronemus dayi is native to the Western Ghats in India, but the origin of the aquarium importation in 1907 was reported as both Cochin (=Kochi) and Malacca (=Malaysia), the latter locality obviously in error. The basis for the Sumatra record is an obviously mislabeled sample of P. dayi from Pulau Weh close to Sumatra. The basis for reporting the species from Pakistan, Myanmar or Bangladesh could not be located. Mis- identified museum specimens from Myanmar and Pakistan identified as P. -
Fauna of Bannerghatta National Park
Oil er atioll rea erie, 33 Conservation Area Series, 33 Fauna of Bannerghatta National Park Edited by the Director, Zoological Survey of India, Kolkata Zoological Survey of India Kolkata CITATION Editor-Director. 2007. Fauna of Bannerghatta National Park, Conservation Area Series, 33 : 1-141 + XVI colour plates. (Published by the Director, Zoo!. Surv. India, Kolkata) Published : July, 2007 ISBN 978-81-8171-164- 5 Project Coordinator ~ Dr. G Thirumalai and Dr. S. Krishnan Scientist-E Southern Regional Station, Zoological Survey of India, Chennai - 600 028 © Govt. of India, 2007 ALL RIGHTS RESERVED • No part of this publication may be reproduced stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. • This book is sold subject to the condition that it shall not, by way of trade, be lent, resold hired out or otherwise disposed of without the publisher's consent, in an form of binding or cover other than that in which, it is published. • The correct price of this publication is the price printed on this page. Any revised price indicated by a rubber stamp or by a sticker or by any other means is incorrect and should be unacceptable. PRICE Indian Rs. 500.00 Foreign : $ 35; £ 30 Published at the Publication Division by the Director, Zoological Survey of India, 234/ 4 AJe Bose Road, 2nd MSO Building, 13th floor, Nizam Palace, Kolkata 700020 and printed at Shiva Offset Press, 14 Old Connaught Place, Dehra Dun - 248 001 (Uttarakhand) Fauna of BANNERGHATTA NATIONAL PARK Conservation Area Series 33 2007 1-141 CONTENTS 1. -
Osphronemus Goramy ERSS
Gourami (Osphronemus goramy) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2011 Revised, March 2019 Web Version, 5/1/2020 Organism Type: Fish Overall Risk Assessment Category: Uncertain Photo: George Chernilevsky. Image available through public domain. Available: https://commons.wikimedia.org/wiki/File:Osphronemus_goramy_2008_G1.jpg. (March 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2020): “Asia: probably limited to Sumatra, Borneo, Java, the Malay Peninsula, Thailand and Indochina (Mekong basin).” 1 “[In Cambodia:] Known from Mae Khong, Sekong at Stung Treng and Srepok [Kottelat 1985]. Found in the lower Mekong basin, but occurrence is doubtful [Roberts 1994].” “Known from the Mekong basin [in China].” “Known from Java, Borneo and Sumatra [Indonesia] [Kottelat 1985]. Found in the Kapuas basin, Kalimantan Barat, Borneo [Roberts 1992; Kottelat and Widjanarti 2005]. Recorded from Danau Sentarum National Park in the Kapuas basin, Kalimantan Barat [Kottelat and Widjanarti 2005].” “[In Laos:] Known from the Mekong basin around Pak Beng to the Khone Falls [Hill and Hill 1994]. Found in Ban Hang Khone at Don Khone, about 3 km below the fall line of the great waterfalls of the Mekong River at Lee Pee [Roberts 1993].” “Found in Mekong, Chao Phraya, Maeklong and Peninsular Thailand river systems [Vidthayanon et al. 1997]. […]; also from Phatthalung, Hang-kaben (Phra Nakhon Si Ayutthaya), Tapi river (Surat Thani), Kanchanaburi, Mekong river and Songkhla [Monkolprasit et al. 1997].” Status in the United States From Nico and Neilson (2019): “Reported from California, Florida, Hawaii, and Washington. Although a few of the fish introduced to Hawaii survived for an extended period, they did not reproduce (Brock 1960).” “Brock (1960) stated that there may have been introductions into Hawaii prior to 1950 which, similar to the one reported, were unsuccessful.” According to Nico and Nielson (2019), the status of O. -
Unrestricted Species
UNRESTRICTED SPECIES Actinopterygii (Ray-finned Fishes) Atheriniformes (Silversides) Scientific Name Common Name Bedotia geayi Madagascar Rainbowfish Melanotaenia boesemani Boeseman's Rainbowfish Melanotaenia maylandi Maryland's Rainbowfish Melanotaenia splendida Eastern Rainbow Fish Beloniformes (Needlefishes) Scientific Name Common Name Dermogenys pusilla Wrestling Halfbeak Characiformes (Piranhas, Leporins, Piranhas) Scientific Name Common Name Abramites hypselonotus Highbacked Headstander Acestrorhynchus falcatus Red Tail Freshwater Barracuda Acestrorhynchus falcirostris Yellow Tail Freshwater Barracuda Anostomus anostomus Striped Headstander Anostomus spiloclistron False Three Spotted Anostomus Anostomus ternetzi Ternetz's Anostomus Anostomus varius Checkerboard Anostomus Astyanax mexicanus Blind Cave Tetra Boulengerella maculata Spotted Pike Characin Carnegiella strigata Marbled Hatchetfish Chalceus macrolepidotus Pink-Tailed Chalceus Charax condei Small-scaled Glass Tetra Charax gibbosus Glass Headstander Chilodus punctatus Spotted Headstander Distichodus notospilus Red-finned Distichodus Distichodus sexfasciatus Six-banded Distichodus Exodon paradoxus Bucktoothed Tetra Gasteropelecus sternicla Common Hatchetfish Gymnocorymbus ternetzi Black Skirt Tetra Hasemania nana Silver-tipped Tetra Hemigrammus erythrozonus Glowlight Tetra Hemigrammus ocellifer Head and Tail Light Tetra Hemigrammus pulcher Pretty Tetra Hemigrammus rhodostomus Rummy Nose Tetra *Except if listed on: IUCN Red List (Endangered, Critically Endangered, or Extinct -
Croaking Gourami (Trichopsis Vittata) ERSS
Croaking Gourami (Trichopsis vittata) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2011 Revised, April 2019 Web Version, 9/10/2019 Photo: BEDO. Licensed under the Creative Commons Attribution-Share Alike 4.0 International. Available: https://commons.wikimedia.org/wiki/File:Trichopsis_vittata.jpg. 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019): “Asia: Thailand to Viet Nam and the islands of Sumatra, Borneo and Java.” 1 From Low (2019): “The species occurs widely in Java, Sumatra, Borneo (Kalimantan, Sarawak), the Malay Peninsula (Singapore, Peninsular Malaysia, southern Thailand), and the Mekong and Chao Phraya River drainages of Indochina.” Status in the United States From Nico et al. (2019): “Locally established in Palm Beach County, Florida, from at least the late 1970s (Lee et al. 1980 et seq., Courtenay and Stauffer 1990). Thought to be extirpated (Shafland et al. 2008a, b); however, recent collections (October 2012-July 2014) reveal it is in fact established (Schofield and Pecora 2013).” Trichopsis vittata is in trade in the United States. From TRiN’s Tropical Fish (2019): “Croaking Grourami Trichopsis vittata $3.00” Means of Introductions in the United States From Froese and Pauly (2019): “Accidentally released from aquarium fish farms and became established since at least in the late 1970s [Lever 1996] in a localized area on the south side of Lake Worth Drainage District canal L-36, Delray Beach, Palm Beach County, Florida.” Remarks From Low (2019): “Recent genetic evidence has suggested that what is currently considered Trichopsis vittata may in fact comprise a complex of four ecologically- and morphologically-similar, but genetically distinct species (Noren et al. -
Finfish and Shellfish Diversity of Vembanad Lake in the Kumarakom
Journal of Entomology and Zoology Studies 2017; 5(2): 351-357 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Finfish and Shellfish diversity of Vembanad Lake JEZS 2017; 5(2): 351-357 © 2017 JEZS in the Kumarakom region of Kottayam, Kerala, Received: 18-01-2017 Accepted: 19-02-2017 India CP Ansar Regional Agricultural Research Station, Kumorokam, CP Ansar, HS Mogalekar, C Sudhan, DL Chauhan, A Golandaj and Kottayam, Kerala, India J Canciyal HS Mogalekar Department of Fisherie Biology Abstract and Resource Management, The status of finfish and shellfish diversity and seasonal variation in their distribution and abundance Fisheries College and Research were investigated in Vembanad Lake at Kumarakom Region of Kottayam in Kerala. In total 60 species of Institute, Thoothukudi, finfishes and shellfishes belonging to 13 orders, 31 families 43 genera were recorded from the study area. Tamil Nadu, India Calculated values of biodiversity indices were: Shannon Wiener diversity index (H’) [3.72 (August 2015) to 3.86 (July 2015)], Margalef richness index (d) [9.24 (August 2015) to 10.82 (January 2016)], Pielou’s C Sudhan evenness index (J’) [0.9671 (October 2015) to 0.9739 (April 2016)] taxonomic diversity index (D) [65.42 Department of Fisherie Biology (June2015) to 70.6 (November 2015)]. Etroplus maculatus, E. suratensis, Amblypharyngodon melettinus and Resource Management, and Stolephorus indicus were found to be highly abundant species represented from 52 finfish and 8 Fisheries College and Research Institute, Thoothukudi, shellfish species. The results of the present study indicated that Kumarakom Region of Vembanad Lake Tamil Nadu, India is endowed rich edible fish fauna. -
Markers of Genetic Variation in Blue Gourami (Trichogaster Trichopterus) As a Model for Labyrinth Fish
biology Review Markers of Genetic Variation in Blue Gourami (Trichogaster trichopterus) as a Model for Labyrinth Fish Gad Degani 1,2, Isana Veksler-Lublinsky 3 and Ari Meerson 1,2,* 1 MIGAL–Galilee Research Institute, P.O.B. 831, Kiryat Shmona 1101602, Israel 2 Faculty of Sciences, Tel-Hai Academic College, Upper Galilee 1220800, Israel 3 Department of Software and Information Systems Engineering, Ben Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel * Correspondence: [email protected]; Tel.: +972-4-6955022 Simple Summary: This review is a summary of recent studies of genes, many of them involved in growth and reproduction, which can be used for distinguishing between species of the Anabantoidei suborder of fish, focusing on the Blue Gourami as a model species. This is important in both basic science and aquaculture applications. Abstract: Markers of genetic variation between species are important for both applied and basic research. Here, various genes of the blue gourami (Trichogaster trichopterus, suborder Anabantoidei, a model labyrinth fish), many of them involved in growth and reproduction, are reviewed as markers of genetic variation. The genes encoding the following hormones are described: kisspeptins 1 and 2, gonadotropin-releasing hormones 1, 2, and 3, growth hormone, somatolactin, prolactin, follicle- stimulating hormone and luteinizing hormone, as well as mitochondrial genes encoding cytochrome b and 12S rRNA. Genetic markers in blue gourami, representing the suborder Anabantoidei, differ Citation: Degani, G.; from those in other bony fishes. The sequence of the mitochondrial cytochrome c oxidase subunit Veksler-Lublinsky, I.; Meerson, A. 1 (COI) gene of blue gourami is often used to study the Anabantoidei suborder. -
Building a DNA Barcode Library for the Freshwater Fishes of Bangladesh
www.nature.com/scientificreports Corrected: Publisher Correction OPEN Building a DNA barcode library for the freshwater fshes of Bangladesh Md. Mizanur Rahman1, Michael Norén2, Abdur Rob Mollah1 & Sven O. Kullander 2 We sequenced the standard DNA barcode gene fragment in 694 newly collected specimens, Received: 21 November 2018 representing 243 species level Operational Barcode Units (OBUs) of freshwater fshes from Bangladesh. Accepted: 3 June 2019 We produced coi sequences for 149 out of the 237 species already recorded from Bangladesh. Another Published online: 28 June 2019 83 species sequenced were not previously recorded for the country, and include about 30 undescribed or potentially undescribed species. Several of the taxa that we could not sample represent erroneous records for the country, or sporadic occurrences. Species identifcations were classifed at confdence levels 1(best) to 3 (worst). We propose the new term Operational Barcode Unit (OBU) to simplify references to would-be DNA barcode sequences and sequence clusters. We found one case where there were two mitochondrial lineages present in the same species, several cases of cryptic species, one case of introgression, one species yielding a pseudogene to standard barcoding primers, and several cases of taxonomic uncertainty and need for taxonomic revision. Large scale national level DNA barcode prospecting in high diversity regions may sufer from lack of taxonomic expertise that cripples the result. Consequently, DNA barcoding should be performed in the context of taxonomic revision, and have a defned, competent end-user. Fish and fsheries play an important role in Bangladesh’s economy, nutrition and culture. With 47 609 km2 of inland water bodies, it is the third inland fsh producing country in the world afer China and India1. -
Patterns of Fish Reproduction at the Interface Between Air and Water Atsushi Ishimatsu,* Hieu Van Mai† and Karen L
Integrative and Comparative Biology Integrative and Comparative Biology, pp. 1–22 doi:10.1093/icb/icy108 Society for Integrative and Comparative Biology INVITED REVIEW Patterns of Fish Reproduction at the Interface between Air and Water Atsushi Ishimatsu,* Hieu Van Mai† and Karen L. M. Martin1,‡ *Organization for Marine Science and Technology, Nagasaki University, 1551-7 Tairamachi, Nagasaki 851-2213, Japan; †Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyomachi, Nagasaki 851-8521, Japan; ‡Department of Biology, Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263-4321, USA 1E-mail: [email protected] Synopsis Although fishes by nature are aquatic, many species reproduce in such a way that their embryos are exposed to air either occasionally or constantly during incubation. We examine the ecological context and review specific examples of reproduction by fishes at the air–water interface, including fishes that do and do not breathe air. Four modes of reproduction at the air–water interface are described across 18 teleost orders, from fresh water, estuaries, and sea water. Mode 1, the most common type of reproduction by fishes at the air–water interface, includes 21 families of mostly marine teleosts that spawn in water onto a substrate surface, on vegetation, or into hollow objects such as shells that will later be continuously or occasionally exposed to air. Although the eggs are emerged into air, many of these species do not emerge into air as adults, and only about half of them breathe air. Mode 2 involves six families of freshwater fishes setting up and guarding a nest and guarding on the water surface, either with bubbles or in vegetation.