Cropping System

Total Page:16

File Type:pdf, Size:1020Kb

Cropping System Cropping System SS Rana & MC Rana "If a better system is thine, impart it; if not, make use of mine. " - Horace Department of Agronomy, Forages and Grassland Management College of Agriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur-176062 (India) Cropping System S S Rana Sr Scientist MC Rana Associate Professor Department of Agronomy, Forages and Grassland Management, COA, CSK HPKV, Palampur-176062 Copyright 2011 SS Rana , Sr Scientist, Department of Agronomy, Forages and Grassland Management, Coll ege of Agriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur- 176062. No part of this pub lication may be reproduced, stored in a retrieval system, or transmitt ed, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the writt en permiss ion of the authors . Citation Rana S S and M C Rana. 2011. Cropping System . Department of Agronomy, College of Agriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur , 80 pages. Preface Prosperity of any country depends upon the prosperity of its people. Economy of most countries, is directly or indirectly dependant on their agriculture. All over the world, farmers work hard but do not make money, especially small farmers because there is very little left after they pay for all inputs. Agriculture being dependant of monsoon, the crop productivity is variable every year. To increase productivity continuous efforts need to be made in conduct of research on different aspects of crop production, post harvest and marketing of the value added products. The emergence of system approach has enabled us to increase production without deteriorating the resource base. There is every possibility of saving resources following system approach in cropping. Cropping system is a commonly and broadly used word to explain a more integrated approach to cropping as compared to monoculture approaches. The text book constitutes of Cropping systems: definition, indices and its importance; physical resources, soil and water management in cropping systems; assessment of land use; Concept of sustainability in cropping systems and farming systems, scope and objectives; production potential under monoculture cropping, multiple cropping, alley cropping, sequential cropping and intercropping, mechanism of yield advantage in intercropping systems; above and below ground interactions and allelopathic effects; competition relations; multi- storeyed cropping and yield stability in intercropping, role of non-monetary inputs and low cost technologies; research need on sustainable agriculture; crop diversification for sustainability; role of organic matter in maintenance of soil fertility; crop residue management; fertilizer use efficiency and concept of fertilizer use in intensive cropping system; plant ideotypes for drylands; and plant growth regulators and their role in sustainability. This book is intended as a professional b a s i c textbook for post-graduate level students of cropping System . At the undergraduate level also it will be very useful for students of agriculture and economics in particular and forestry, animal sciences, fisheries, horticulture and social sciences in general . In addition the text book will be a valuable reference on cropping system for the candidates appearing in competitive examinations including agricultural research services. Professional training institutes like KVKs, polytechnics, rural institutes etc dealing in farmers would also find this text book of immense value. The book is written in a very simple form with up to date data and statistics. It is a comprehensive basic text book on cropping systems and will specifically meet out the requirement of the students of Agron 511. We hope that our friends, well wishers and students will provide motivation and support for constructive criticism to make this book more meaningful. The authors would also welcome suggestions from the other readers to improve the text book. Palampur S S Rana MC Rana AGRON 511 CROPPING SYSTEMS 2+0 Objective To acquaint the students about prevailing cropping systems in the country and practices to improve their productivity Theory UNIT I Cropping systems: definition, indices and its importance; physical resources, soil and water management in cropping systems; assessment of land use. UNIT II Concept of sustainability in cropping systems and farming systems, scope and objectives; production potential under monoculture cropping, multiple cropping, alley cropping, sequential cropping and intercropping, mechanism of yield advantage in intercropping systems. UNIT III Above and below ground interactions and allelopathic effects; competition relations; multi- storeyed cropping and yield stability in intercropping, role of non-monetary inputs and low cost technologies; research need on sustainable agriculture. UNIT IV Crop diversification for sustainability; role of organic matter in maintenance of soil fertility; crop residue management; fertilizer use efficiency and concept of fertilizer use in intensive cropping system. UNIT V Plant ideotypes for drylands; plant growth regulators and their role in sustainability. Suggested Readings Palaniappan SP & Sivaraman K. 1996. Cropping Systems in the Tropics; Principles and Management. New Age. Panda SC. 2003. Cropping and Farming Systems . Agrobios. Reddy SR. 2000. Principles of Crop Production . Kalyani. Sankaran S & Mudaliar TVS. 1997. Principles of Agronomy. The Bangalore Printing & Publ. Co. Singh SS. 2006. Principles and Practices of Agronomy . Kalyani. Tisdale SL, Nelson WL, Beaton JD & Havlin JL. 1997. Soil Fertility and Fertilizers . Prentice Hall. Schedule of lectures SN Topic(s) Number of Pages lectures 1 UNIT I 7 1-18 Cropping systems: definition, indices and its importance; physical resources, soil and water management in cropping systems; assessment of land use. 2 UNIT II 8 19-40 Concept of sustainability in cropping systems and farming systems, scope and objectives; production potential under monoculture cropping, multiple cropping, alley cropping, sequential cropping and intercropping, mechanism of yield advantage in intercropping systems. 3 UNIT III 7 41-53 Above and below ground interactions and allelopathic effects; competition relations; multi- storeyed cropping and yield stability in intercropping, role of non-monetary inputs and low cost technologies; research need on sustainable agriculture. 4 UNIT IV 7 54-73 Crop diversification for sustainability; role of organic matter in maintenance of soil fertility; crop residue management; fertilizer use efficiency and concept of fertilizer use in intensive cropping system. 5 UNIT V 4 74-80 Plant ideotypes for drylands; plant growth regulators and their role in sustainability. UNIT I Cropping systems: definition, indices and its importance; physical resources, soil and water management in cropping systems; assessment of land use What is a System? A system is a group of interacting components, operating "If a better system is thine, impart it; together for a common purpose, capable of reacting as a whole if not, make use of mine. " - Horace to external stimuli: it is unaffected directly by its own outputs and has a specified boundary based on the inclusion of all "The system isn't stupid, but the significant feedbacks. For example, the human body is a people in it are. " - Thomas Szasz system-it has a boundary (e.g., the skin) enclosing a number of components (heart, lungs) that interact (the heart pumps blood to the lungs) for a common purpose (to maintain and operate the living body). Collection of unrelated items does not constitute a system. A bag of marbles is not a system: if a marble is added or subtracted, a bag of marbles remains and may be almost completely unaffected by the change. The marbles only behave as a whole if the whole bag is influenced, for example by dropping it, but if it bursts the constituent parts go their own ways. It is the properties of the system that chiefly matter and they may be summarized in the phrase ‘behavior as a whole in response to stimuli to any part’. Ecosystem : Any collection of organisms that interact or have the potential to interact along with the physical environment in which they live, form an ecological system or ecosystem. Ecosystems are not static entities they are dynamic systems with characteristic pattern of energy flow, nutrient cycling and structural change. Agro-ecosystem: Agro-ecosystems are ecological systems modified by human beings to produce food, fibre or other agricultural products. Like the ecological systems they replace, agro-ecosystems are structurally and dynamically complex. But their complexity arises from the interaction between socio- economic and ecological processes. Crop system : An arrangement of crop populations that transform solar energy, nutrients, water and other inputs into useful biomass ie. food, feed, fuel and fibre. Crop system comprised of soils, crop, weed, pathogen and insect subsystems. The crop can be of different species and variety, but they only constitute one crop system if they are managed as a single unit. The crop system is a subsystem of cropping system. For example, in the maize crop system, maize is the dominant crop which is grown in association with other crops. Cropping Systems : Cropping systems, an important component of a farming system, represents a cropping pattern used on a farm and their interaction with farm resources, other farm enterprises and available technology, which determine their make up. It is defined, as the
Recommended publications
  • Sustainable Intensification of Agriculture by Intercropping
    Science of the Total Environment 615 (2018) 767–772 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv The new Green Revolution: Sustainable intensification of agriculture by intercropping Marc-Olivier Martin-Guay a, Alain Paquette b,JérômeDuprasa, David Rivest a,⁎ a Département des sciences naturelles and Institut des sciences de la forêt tempérée (ISFORT), Université du Québec en Outaouais (UQO), 58 rue Principale, Ripon, QC J0V 1V0, Canada b Département des sciences biologiques, Université du Québec à Montréal, CP 8888, Succursale Centre-ville, Montréal QcH3C 3P8, Canada HIGHLIGHTS GRAPHICAL ABSTRACT • Global productivity potential of intercropping was determined using a meta-analysis. • Global land equivalent ratio of intercropping was 1.30. • Land equivalent ratio of intercropping did not vary through a water stress gra- dient. • Intercropping increases gross energy production by 38%. • Intercropping increases gross incomes by 33%. article info abstract Article history: Satisfying the nutritional needs of a growing population whilst limiting environmental repercussions will require Received 14 July 2017 sustainable intensification of agriculture. We argue that intercropping, which is the simultaneous production of Received in revised form 3 October 2017 multiple crops on the same area of land, could play an essential role in this intensification. We carried out the first Accepted 4 October 2017 global meta-analysis on the multifaceted benefits of intercropping. The objective of this study was to determine Available online xxxx the benefits of intercropping in terms of energetic, economic and land-sparing potential through the framework fi Editor: Jay Gan of the stress-gradient hypothesis. We expected more intercropping bene ts under stressful abiotic conditions.
    [Show full text]
  • Redalyc.BIOMASS, YIELD and LAND EQUIVALENT RATIO OF
    Tropical and Subtropical Agroecosystems E-ISSN: 1870-0462 [email protected] Universidad Autónoma de Yucatán México Morales-Rosales, Edgar Jesús; Franco-Mora, Omar BIOMASS, YIELD AND LAND EQUIVALENT RATIO OF Helianthus annus L. IN SOLE CROP AND INTERCROPPED WITH Phaseolus vulgaris L. IN HIGH VALLEYS OF MEXICO Tropical and Subtropical Agroecosystems, vol. 10, núm. 3, septiembre-diciembre, 2009, pp. 431-439 Universidad Autónoma de Yucatán Mérida, Yucatán, México Available in: http://www.redalyc.org/articulo.oa?id=93912996011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Tropical and Subtropical Agroecosystems, 10 (2009): 431 - 439 BIOMASS, YIELD AND LAND EQUIVALENT RATIO OF Helianthus annus L. IN SOLE CROP AND INTERCROPPED WITH Phaseolus vulgaris L. IN HIGH VALLEYS OF MEXICO Tropical and [BIOMASA, RENDIMIENTO Y USO EQUIVALENTE DE LA TIERRA DE Helianthus annus L. EN UNICULTIVO Y ASOCIADO CON Phaseolus vulgaris Subtropical L. EN VALLES ALTOS DE MÉXICO] Agroecosystems Edgar Jesús Morales-Rosales* and Omar Franco-Mora Centro de Investigación y Estudios Avanzados en Fitomejoramiento, Facultad de Ciencias Agrícolas, Universidad Autónoma del Estado de México. Carretera Toluca- Ixtlahuaca Km. 15 C. P. 50200. Toluca, Estado de México. E-mail: [email protected] *Corresponding author SUMARY RESUMEN The aim of the
    [Show full text]
  • Competitive Behaviour of Groundnut in Sesame/Groundnut Intercropping System Under Varying Poultry Manure Rates and Planting Arrangement
    Sustainable Agriculture Research; Vol. 2, No. 3; 2013 ISSN 1927-050X E-ISSN 1927-0518 Published by Canadian Center of Science and Education Competitive Behaviour of Groundnut in Sesame/Groundnut Intercropping System Under Varying Poultry Manure Rates and Planting Arrangement Haruna I. M.1, Aliyu L.2 & Maunde S. M.3 1 Department of Agronomy, Nasarawa State University, Keffi, Nigeria 2 Department of Agronomy, Ahmadu Bello University, Zaria, Nigeria 3 Adamawa State College of Agriculture, Ganye, Nigeria Correspondence: Haruna I. M., Department of Agronomy, Nasarawa State University, Keffi, Nigeria. Tel: 234-803-968-3552. E-mail: [email protected] Received: February 14, 2013. Accepted: March 20, 2013 Online Published: March 22, 2013 doi:10.5539/sar.v2n3p22 URL: http://dx.doi.org/10.5539/sar.v2n3p22 Abstract Field experiment was conducted during the rainy seasons of 2011 and 2012 at the Teaching and Research Farm of the Faculty of Agriculture, Nasarawa State University, Keffi-Lafia Campus to study the competitive behaviour of groundnut in Sesame-groundnut intercropping system. The experiment consisted of four rates of poultry manure (0, 3.0, 6.0 and 9.0 t ha-1) and two planting arrangement (single alternate row and double alternate row planting arrangement). The eight treatment combinations were laid out in a randomized complete block design with four replications. The results obtained in both the years showed that sesame when grown with groundnut under different rates of poultry manure and planting arrangement appeared to be a dominant crop as indicated by its higher values of Land equivalent ratio, competitive ratio, higher and positive values for aggressivity and area time equivalent ratio.
    [Show full text]
  • Research and Education for the Development of Integrated Crop-Livestock-Fishfarming Systems in the Tropics DEC 2 1
    S'H ICLARM STUDIESAND REVIEWS16 I. 207 I SR76 #.16 C.t 1 Research and Education for the Development of , r Integrated Crop-livestock-Fish Farming t \ Systems in the Tropics P. Edwards R.S.V. Pullin J.A. Gartner I If - I:' '!Io, .. .... \D ',- .'. , r . ~ _frl~TERNATIONAL C~NTER FOR LIVING AQUATIC RESOURCES MANAG.EMENT , " i ' :1 i I .I earch and Education for the Development of Integrated Crop-Livestock-Fish Farming Systems in the Tropics J.A. Gartner INTERNATIONAL CENTER FOR LIVING AQUATIC RESOURCES MANAGEMENT MANILA, PHILIPPINES Research and education for the development of integrated crop-livestock-fishfarming systems in the tropics DEC 2 1 P. EDWARDS R.S.V. hum J. A. GARTNER Published by the International Center for Living Aauatic Reswrces Mana~ement.MC P.O. Box 1501. ~hcati,Metm Manila, Pklippiis with fmancid assistance from the United Nations Development Programme New York. USA Printed in Manila. Philippines Edwards. P.. R.S.V. Pullin and J.A. Gamer. 1988. Research and education for the development of integrated cmp-livestock-fish farming systems in the tropics. ICLARM Studies and Reviews 16.53 p. International Center for Living Aquatic Resources Management, Manila, Philippines. ISSN 01 15-4389 ISBN 97 1-1022-46-X Cover: Small-scale integrated crop-livestock-fish farming in a rainfed area of Northeast ?hailand. ?his ria farm has a small fishpond that provides fish. pennits dry season cultivation of vegetables on rhe dikes and suppliis drinking water for livestock. ICLARM Contribution No. 470 Contents Preface ................................................. Introduction .............................................. The Concept of Integrated Farming Systems A Definition of Integrated Farming ...........................
    [Show full text]
  • Dynamic Cropping Systems: Increasing Adaptability Amid an Uncertain Future
    Published online June 5, 2007 Dynamic Cropping Systems: Increasing Adaptability Amid an Uncertain Future J. D. Hanson,* M. A. Liebig, S. D. Merrill, D. L. Tanaka, J. M. Krupinsky, and D. E. Stott ABSTRACT was »6.5 billion in late 2005, and is projected to rise Future trends in population growth, energy use, climate change, to 7.6 billion by 2020 and 9.1 billion by 2050 (United and globalization will challenge agriculturists to develop innovative Nations Population Division, 2006). To meet the demand production systems that are highly productive and environmentally for food, agriculture will need to produce as much food sound. Furthermore, future agricultural production systems must pos- in the next 25 yr as it has produced in the last 10 000 yr sess an inherent capacity to adapt to change to be sustainable. Given (Mountain, 2006). Increasing food production to this this context, adoption of dynamic cropping systems is proposed to extent will have significant ramifications on resource meet multiple agronomic and environmental objectives through the use. From 1961 to 1996, the doubling of agricultural food enhancement of management adaptability to externalities. Dynamic production was associated with a 6.9-fold increase in cropping systems are a form of agricultural production that relies on an annual strategy to optimize the outcome of (i) production, (ii) eco- N fertilization, a 3.5-fold increase in P fertilization, a nomic, and (iii) resource conservation goals using ecologically-based 1.7-fold increase of irrigated cropland, and a 1.1-fold management principles. Dynamic cropping systems are inherently increase of land under cultivation (Tilman, 1999).
    [Show full text]
  • Agroforestry Benefits and Challenges for Adoption in Europe and Beyond
    sustainability Review Agroforestry Benefits and Challenges for Adoption in Europe and Beyond Maya Sollen-Norrlin 1, Bhim Bahadur Ghaley 2 and Naomi Laura Jane Rintoul 1,* 1 School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1TE, UK; [email protected] 2 Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 2630 Taastrup, Denmark; [email protected] * Correspondence: [email protected] Received: 3 July 2020; Accepted: 18 August 2020; Published: 27 August 2020 Abstract: Soil degradation is a global concern, decreasing the soil’s ability to perform a multitude of functions. In Europe, one of the leading causes of soil degradation is unsustainable agricultural practices. Hence, there is a need to explore alternative production systems for enhanced agronomic productivity and environmental performance, such as agroforestry systems (AFS). Given this, the objective of the study is to enumerate the major benefits and challenges in the adoption of AFS. AFS can improve agronomic productivity, carbon sequestration, nutrient cycling, soil biodiversity, water retention, and pollination. Furthermore, they can reduce soil erosion and incidence of fire and provide recreational and cultural benefits. There are several challenges to the adoption and uptake of AFS in Europe, including high costs for implementation, lack of financial incentives, limited AFS product marketing, lack of education, awareness, and field demonstrations. Policies for financial incentives such as subsidies and payments for ecosystem services provided by AFS must be introduced or amended. Awareness of AFS products must be increased for consumers through appropriate marketing strategies, and landowners need more opportunities for education on how to successfully manage diverse, economically viable AFS.
    [Show full text]
  • Diversifying Cropping Systems PROFILE: THEY DIVERSIFIED to SURVIVE 3
    Opportunities in Agriculture CONTENTS WHY DIVERSIFY? 2 Diversifying Cropping Systems PROFILE: THEY DIVERSIFIED TO SURVIVE 3 ALTERNATIVE CROPS 4 PROFILE: DIVERSIFIED NORTH DAKOTAN WORKS WITH MOTHER NATURE 9 PROTECT NATURAL RESOURCES, RENEW PROFITS 10 AGROFORESTRY 13 PROFILE: PROFITABLE PECANS WORTH THE WAIT 15 STRENGTHEN COMMUNITY, SHARE LABOR 15 PROFILE: STRENGTHENING TIES AMONG MAINE FARMERS 16 RESOURCES 18 Alternative grains and oilseeds – like, from left, buckwheat, amaranth and flax – add diversity to cropping systems and open profitable niche markets while contributing to environmentally sound operations. – Photos by Rob Myers Published by the Sustainable KARL KUPERS, AN EASTERN WASHINGTON GRAIN GROWER, Although growing alternative crops to diversify a Agriculture Network (SAN), was a typical dryland wheat farmer who idled his traditional farm rotation increase profits while lessen- the national outreach arm land in fallow to conserve moisture. After years of ing adverse environmental impacts, the majority of of the Sustainable Agriculture watching his soil blow away and his market price slip, U.S. cropland is still planted in just three crops: soy- Research and Education he made drastic changes to his 5,600-acre operation. beans, corn and wheat. That lack of crop diversity (SARE) program, with funding In place of fallow, he planted more profitable hard can cause problems for farmers, from low profits by USDA's Cooperative State red and hard white wheats along with seed crops like to soil erosion. Adding new crops that fit climate, Research, Education and condiment mustard, sunflower, grass and safflower. geography and management preferences can Extension Service. All of those were drilled using a no-till system Kupers improve not only your bottom line, but also your calls direct-seeding.
    [Show full text]
  • Permaculture – Food Garden to Maximize Research Multiple Vegetable Yield – a Farmer Success Story
    Success Story Journal Home: www.bioticainternational.com Article: RT0402 Biotica How to cite this article? Bharathi, Permaculture – Food Garden to Maximize Research Multiple Vegetable Yield – A Farmer Success Story. Today [Biotica Research Today 2(11): 1137-1139. [ 1137 Abstract Vol 2:11 egetable cultivation is considered to be a high returned 1139 agri-business. The present case was documented for a 2020 VPermaculture technique adopted by a farmer under the technical guidance of KVK, Namakkal at Palapatti village of Namakkal Permaculture – Food District, Tamil Nadu, India. The observations revealed that sale of multi vegetables at a time and get a gross income of Rs. 1,500.00 Garden to Maximize per day than sole vegetable (Rs. 300.00 – 500.00). The permaculture farmer considers that there is a need to diversify the mono cropping Multiple Vegetable Yield – to multiple cropping in a piece of land for secure and sustainable A Farmer Success Story future. Background Information Sharmila Bharathi C. hri K. K. Velusamy is doing agriculture since 2007 and ICAR - Krishi Vigyan Kendra, Veterinary College and practiced vegetable cultivation in conventional pattern. Research Institute Campus, TANUVAS, Namakkal, Tamil He cultivated each type of vegetable in a single field as Nadu (637 002), India S a monoculture in an area of 50 cent to 1 acre. He observed that the plants of the similar species compete for the same nutrients and become an attractive habitat for pests of that plant and in turn poor yield and return. He also noticed soil Open Access nutrient depletion in that cultivation system. Apart from these, he faced poor returns due to market fluctuation and huge Corresponding Author arrival of the same type of vegetable at that time (Rs.
    [Show full text]
  • Pork Production System and Its Development in Mainland China
    International Journal of Fisheries and Aquaculture Vol. 3(5), pp. 166-174, May 2011 Available online at http://www.academicjournals.org/IJFA ISSN 2006-9839 ©2011 Academic Journals Review Pork production system and its development in mainland China Heng-wei Cheng 1*, You-ming Wang 2, Qing-ping Meng 2, Jia Guo 2 and Yi-zheng Wang 2 1Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN 47906, USA. 2Institute of Feed Science, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310029, P. R. China. Accepted 11 April, 2011 Livestock production and marketing have been driven by the growing consumer demand for high quality and low cost animal protein. As a result, intensive livestock industries have been rapidly developing globally. International trade, especially with China, creates new opportunities and challenges for the emerging international agriculture market. China provides an enormous market for international trade by stimulating its import and export activities. Pigs are the primary farm animals raised for human consumption in China, and the development of pork production systems in China will affect its trade globally. To meet the need for developing international animal agriculture and trade, this article describes the current status of the swine industry, its production in China and the factors that may affect its development. Urbanization, available farmland, grain production, water resources and management practices encompass some of these factors. In addition, the effects of the culture, religion and education of the populations on the development of swine sector in China are also discussed. Understanding the development of the swine production system and its associated factors is critical to assessing China’s impact and implication in the emerging international agricultural market.
    [Show full text]
  • F/F+Z Ps Afnlsf] T'ngfdf Ax'afnl / Ldl>T Afnl W]/} Pkof]Ul Epsf] Oyfy{ Cg';Gwfgaf6 L;4 Epsf] 5
    Journal of Nepal Agricultural Research Council Multiple Cropping as a Means to Raise Productivity by Mina Nath Paudel ISSN: 2392-4535 (Print), 2392-4543 (Online) Vol. 2:37-45, December 2016 DOI: http://dx.doi.org/10.3126/jnarc.v2i0.16120 Multiple Cropping for Raising Productivity and Farm Income of Small Farmers Mina Nath Paudel National Agriculture Genetic Resources Center, Khumaltar, Kathmandu Correspondence: [email protected] Received September 2015, Revised August 2016; Accepted November 2016 Scientific Editors: Madav Joshi, Tek B. Gurung, Ananda P. Gautam Copyright © 2016 NARC. Permits unrestricted use, distribution and reproduction in any medium provided the original work is properly cited ABSTRACT Multiple cropping is an agriculture system long adopted by marginalized small holder farmers especially in hills and mountains. This practice was a meant to enhance farm productivity when farming area is limited. Here, in this paper, a brief review on the benefits of multiple cropping is presented focusing on the practices adopted by marginalized farmers, in general. In multiple cropping, it is generally argued that the practice favors an efficient utilization of resources like air, water, light, space, and nutrients by companion crops in both temporal and spatial dimensions due to their differential growth habits and seasonality. Multiple cropping could be one of the viable alternatives to cope uncertainties and changes, where food and nutritional uncertainty looming large. The ultimate outcome of multiple cropping could be visualized in adverse or harsh environment for increase agriculture production, livelihood and income. Various food products are obtained through multiple cropping. Land equivalent ratio (LER), relative yield total (RYT) and income equivalent ratio (IER) can be increased with mixed/intercropping systems.
    [Show full text]
  • The Effects of Different Soil Amendments on Fertility and Productivity in Organic
    The Effects of Different Soil Amendments on Fertility and Productivity in Organic Farming Systems A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Scott E. Fisher November 2011 © 2011 Scott E. Fisher. All Rights Reserved. 2 This thesis titled The Effects of Different Soil Amendments on Fertility and Productivity in Organic Farming Systems by SCOTT E. FISHER has been approved for the Program of Environmental Studies and the College of Arts and Sciences by Jared L. DeForest Assistant Professor of Environmental and Plant Biology Howard Dewald Interim Dean, College of Arts and Sciences 3 ABSTRACT FISHER, SCOTT E, M.S., November 2011, Environmental Studies The Effects of Different Soil Amendments on Fertility and Productivity in Organic Farming Systems Director of Thesis: Jared L. DeForest Productivity and soil fertility are two of the most important factors in farming. Many organic farmers fertilize their crops with composted plant or animal waste. Some organic farmers who do not have access to large amounts of compost utilize processed fertilizers that are acceptable under certified organic standards. I hypothesized that soils fertilized with composted organic matter would be more fertile and productive than soils fertilized with processed organic fertilizer. To test the hypotheses, I measured nutrient content and availability at three organic farms, each of which uses a different type of fertilizer (animal manure, composted mushroom growing medium, and processed fertilizer). I also grew beans (Phaseolus vulgaris) in soil from each of the farms to measure bean weight as an estimate of productivity.
    [Show full text]
  • Design and Analysis of Mixed Cropping Experiments for Indigenous Pacific Island Agroforestry1
    Design and Analysis of Mixed Cropping Experiments for Indigenous Pacific Island Agroforestry1 Mareko P. Tofinga2 common resources, rather than as a direct measure of yield Abstract: Mixed cropping (including agroforestry) often gives yield advan- advantage. RYT is measured by the expression: tages as opposed to monocropping. Many criteria have been used to assess yield advantage in crop mixtures. Some of these are presented. In addition, the Yij Yji relative merits of replacement, additive and bivariate factorial designs are (1.1) Relative Yield Total (RYT) = + K discussed. The concepts of analysis of mixed cropping are applied to an Yii Yjj example of an alley cropping (a type of agroforestry) experiment, and a basic agroforestry research guide is described. where Yii and Yjj are the biomass yields per unit area of compo- nents I and J in pure stands, and Yij and Yji are their respective yields in mixtures with each other. The mixtures Mixed cropping is the growing of two or more crops simul- Yij Yji taneously on the same land, either with or without distinct row and Yii Yjj arrangement (Andrews and Kassam 1976), and includes the practice of agroforestry. Mixed cropping was probably the first are termed the relative biomass yields of I and J respectively. A type of organized crop production (Francis 1986, Plucknett and RYT of 1.0 is said to indicate that the components of the mixture Smith 1986) and is still widely practiced in the developing world fully share the same limiting resources, i.e., they are fully in (Osiru and Willey 1972). The fact that intercropping is still competition with each other (de Wit 1960, Trenbath 1974).
    [Show full text]