Direct Conjugation of NEDD8 to the N-Terminus of a Model Protein Can Induce Degradation

Total Page:16

File Type:pdf, Size:1020Kb

Direct Conjugation of NEDD8 to the N-Terminus of a Model Protein Can Induce Degradation cells Article Direct Conjugation of NEDD8 to the N-Terminus of a Model Protein Can Induce Degradation Kartikeya Vijayasimha, Marilyn Vo Tran, Amy L. Leestemaker-Palmer and Brian P. Dolan * Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; [email protected] (K.V.); [email protected] (M.V.T.); [email protected] (A.L.L.-P.) * Correspondence: [email protected]; Tel.: +1-(541)-737-0828 Abstract: While the role of ubiquitin in protein degradation is well established, the role of other ubiquitin-like proteins (UBLs) in protein degradation is less clear. Neural precursor cell expressed developmentally down-regulated protein 8 (NEDD8) is the UBL with the highest level of amino acids identified when compared to ubiquitin. Here we tested if the N-terminal addition of NEDD8 to a protein of interest could lead to degradation. Mutation of critical glycine residues required for normal NEDD8 processing resulted in a non-cleavable fusion protein that was rapidly degraded within the cells by both the proteasome and autophagy. Both degradation pathways were dependent on a functional ubiquitin-conjugation system as treatment with MLN7243 increased levels of non- cleavable NEDD8-GFP. The degradation of non-cleavable, N-terminal NEDD8-GFP was not due to a failure of GFP folding as different NEDD8-GFP constructs with differing abilities to fold and fluoresce were similarly degraded. Though the fusion of NEDD8 to a protein resulted in degradation, treatment of cells with MLN4924, an inhibitor of the E1 activating enzyme for NEDD8, failed to prevent degradation of other destabilized substrates. Taken together these data suggest that under certain conditions, such as the model system described here, the covalent linkage of NEDD8 to a Citation: Vijayasimha, K.; Tran, M.V.; protein substrate may result in the target proteins degradation. Leestemaker-Palmer, A.L.; Dolan, B.P. Direct Conjugation of NEDD8 to the Keywords: ubiquitination; NEDD8; protein degradation; proteasome N-Terminus of a Model Protein Can Induce Degradation. Cells 2021, 10, 854. https://doi.org/10.3390/ cells10040854 1. Introduction Intracellular protein turnover is an important physiological process. By degrading a Academic Editor: Kunihiro Sakuma subset of proteins and synthesizing different ones, a cell can alter its function in response to environmental changes [1] and remove old or damaged proteins, which prevents their Received: 9 March 2021 accumulation within cells and can lead to toxicity [2–5]. Protein degradation is also Accepted: 8 April 2021 Published: 9 April 2021 necessary for the recycling of amino acids [6–8] and for alerting the adaptive immune system to the presence of intracellular infections via the direct major histocompatibility Publisher’s Note: MDPI stays neutral (MHC) class I antigen presentation pathway [9–11]. A prominent pathway of protein with regard to jurisdictional claims in degradation involves the proteasome, a multi-subunit protein complex containing trypsin- published maps and institutional affil- like, chymotrypsin-like, and caspase-like protease activity [12]. To prevent non-specific iations. protease activity, proteins intended for proteasome-mediated degradation are modified by the addition of a small protein termed ubiquitin [13–15]. Once ubiquitinated, a targeted protein can be degraded via the proteasome or additional ubiquitin proteins can be added to the target protein leading to its subsequent destruction by the proteasome [16–18]. There are several other proteins within eukaryotic cells that are similar to ubiquitin Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. and are termed ubiquitin-like proteins (UBLs) [19,20] and, like-ubiquitin, can be post- This article is an open access article translationally added to a variety of targets proteins resulting in changes to the proteins’ distributed under the terms and functions [21,22]. Unlike ubiquitin, most UBL-protein modifications do not result in a conditions of the Creative Commons protein’s destruction but rather alter protein function or localization [23]. There are a few Attribution (CC BY) license (https:// exceptions to this “rule” though, which suggest that in certain circumstances, UBL modifi- creativecommons.org/licenses/by/ cation may target a protein for destruction. FAT10 is a UBL with two ubiquitin domains 4.0/). and fusion of FAT10 to otherwise stable proteins resulted in their rapid degradation in Cells 2021, 10, 854. https://doi.org/10.3390/cells10040854 https://www.mdpi.com/journal/cells Cells 2021, 10, 854 2 of 23 the proteasome [24]. In addition, FAT10 can bind to regulatory units on the proteasome allowing for FAT10 conjugates to be degraded [25]. The UBL with the greatest similarity to ubiquitin is neural precursor cell expressed developmentally down-regulated protein 8 (NEDD8). Similar to ubiquitin, the covalent linkage of NEDD8 to a target substrate requires an E1-activating enzyme, an E2-conjugating enzyme, and an E3 ligase. NAE1 is the E1 activating enzyme for NEDD8 [26,27], while both UBE2M and UBE2F are NEDD8 E2-conjugating enzymes [28–30]. Multiple E3 ligases have been identified, which can facilitate the transfer of NEDD8 to its substrate (reviewed in [31,32]). NEDDylation can be reversed through the action of the COP9 signalosome [33], which can remove NEDD8 from substrates. The canonical function of NEDD8 is to modify the scaffolding cullin family of proteins. Cullins associate with RING-box proteins to form Cullin-Ring-Ligases (CRLs), the largest family of E3 ubiquitin ligases. The modification of cullins by a single NEDD8 domain brings about a conformational change that facilitates the transfer of ubiquitin from a recruited E2-ubiquitin conjugating enzyme to the substrate of the CRL [34–36]. However, NEDD8 is known to covalently link to other proteins, such as TRAF6, VHL, p53, BCA3, and ribosomal protein L11 to name a few [37–39], and the consequences of protein NEDDylation are often unknown [31]. Several recent reports have highlighted the potential for non-canonical NEDDylation to result in a target protein’s destabilization and destruction. The first substrate identified that could be destabilized and destroyed following NEDD8 conjugation was the epithelial growth factor receptor (EGFR) [40,41]. Other proteins soon joined the list of substrates that could be destabilized and degraded following NEDDylation including HDAC, JunB, SMF2, c-Src, SRSF3, Ajuba, and E2F-1 [42–49]. In some instances, degradation was mediated by the ubiquitin-proteasome system [42–44,47–49]. Additionally, the proteasome-associated protein, NEDD8 ultimate buster 1 (NUB1), has been shown to interact with NEDD8-modified proteins, facilitating their degradation [50]. Considering its similarity to ubiquitin, it is possible that non-canonical NEDD8-modification can serve as a signal for protein degradation. Here we test this hypothesis by creating a non-cleavable form of NEDD8 appended to the N-terminus of GFP. Fusion of ubiquitin and UBLs to the N-terminus of a protein of interest is a powerful tool for identifying UBLs, such as FAT10, that can target a protein for degradation [24,51]. Ubiquitin-fusion has also been extensively used for the study of direct antigen presentation of peptides via the MHC class I antigen presentation pathway [52–55]. We find the fusion of NEDD8 resulted in the rapid degradation of GFP by both autophagy and the proteasome. Degradation required ubiquitination and was partially dependent on the action of NUB1. Interestingly, the N-terminal addition of NEDD8 to GFP prevented fluorescence in eukaryotic cells, though restoring protein folding and fluorescence was not sufficient to prevent rapid protein degradation. While the addition of NEDD8 to a protein could serve as a signal for protein degradation, eliminating the NEDD8 activity in the cell by treatment with MLN4924 did not alter the overall degradation of another rapidly degraded protein. These data indicate that under certain circumstances, the non-canonical addition of NEDD8 to a target protein may result in the proteins’ destruction. 2. Materials and Methods 2.1. Plasmids, Antibodies, and Reagents All primers were from Integrated DNA Technologies (IDT, Coralville, IA, USA) and PCR reactions amplified using a Veriti thermocycler (Applied Biosystems, Foster City, CA, USA). To generate pCAGGS-IRES-Thy1.1, we PCR amplified the IRES-Thy1.1 cassette from pMSCV Thy1.1 using the forward primer 50-ATATATGCTAGCTGATCAGCGGCCGCACCG GTTTCGAACCCCCCCCCCTAACGTTACTGGCCGAA-30 and reverse primer 50-ATAAGA TCTTCACAGAGAAATGAAGTCCAGGGCTTGGAGGAG-30. The resulting PCR product was subcloned into pCAGGS using the NheI and BglII restriction sites and confirmed by Sanger DNA sequencing at the Oregon State University Center for Genome Research and Biocomputing. DNA sequences encoding fusion proteins (wildtype human NEDD8 Cells 2021, 10, 854 3 of 23 or non-cleavable (NC) NEDD8) fused in frame with either enhanced GFP (hereafter GFP) or a cytosolic form of ovalbumin (hereafter OVA) were generated as Gene Blocks by IDT and contained an N-terminal EcoRI site and a C-terminal NheI site for subse- quent cloning into pCAGGS-IRES-Thy1.1. For NC NEDD8-constructs, the three terminal glycines of NEDD8 were changed to alanine and fused in frame with the protein of inter- est. To generate the NC NEDD8-SL8-GFP construct, the amino acid sequence SIINFEKL was introduced between the terminal amino acid for NC NEDD8 and the first amino acid of GFP. Sanger sequencing was
Recommended publications
  • The Aryl Hydrocarbon Receptor: Structural Analysis and Activation Mechanisms
    The Aryl Hydrocarbon Receptor: Structural Analysis and Activation Mechanisms This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the School of Molecular and Biomedical Sciences (Biochemistry), The University of Adelaide, Australia Fiona Whelan, B.Sc. (Hons) 2009 2 Table of Contents THESIS SUMMARY................................................................................. 6 DECLARATION....................................................................................... 7 PUBLICATIONS ARISING FROM THIS THESIS.................................... 8 ACKNOWLEDGEMENTS...................................................................... 10 ABBREVIATIONS ................................................................................. 12 CHAPTER 1: INTRODUCTION ............................................................. 17 1.1 BHLH.PAS PROTEINS ............................................................................................17 1.1.1 General background..................................................................................17 1.1.2 bHLH.PAS Class I Proteins.........................................................................18 1.2 THE ARYL HYDROCARBON RECEPTOR......................................................................19 1.2.1 Domain Structure and Ligand Activation ..............................................19 1.2.2 AhR Expression and Developmental Activity .......................................21 1.2.3 Mouse AhR Knockout Phenotype ...........................................................23
    [Show full text]
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • S41598-018-28214-2.Pdf
    www.nature.com/scientificreports OPEN Dissecting Distinct Roles of NEDDylation E1 Ligase Heterodimer APPBP1 and UBA3 Received: 7 November 2017 Accepted: 25 May 2018 Reveals Potential Evolution Process Published: xx xx xxxx for Activation of Ubiquitin-related Pathways Harbani Kaur Malik-Chaudhry1, Zied Gaieb1, Amanda Saavedra1, Michael Reyes1, Raphael Kung1, Frank Le1, Dimitrios Morikis1,2 & Jiayu Liao1,2 Despite the similar enzyme cascade in the Ubiquitin and Ubiquitin-like peptide(Ubl) conjugation, the involvement of single or heterodimer E1 activating enzyme has been a mystery. Here, by using a quantitative Förster Resonance Energy Transfer (FRET) technology, aided with Analysis of Electrostatic Similarities Of Proteins (AESOP) computational framework, we elucidate in detail the functional properties of each subunit of the E1 heterodimer activating-enzyme for NEDD8, UBA3 and APPBP1. In contrast to SUMO activation, which requires both subunits of its E1 heterodimer AOS1-Uba2 for its activation, NEDD8 activation requires only one of two E1 subunits, UBA3. The other subunit, APPBP1, only contributes by accelerating the activation reaction rate. This discovery implies that APPBP1 functions mainly as a scafold protein to enhance molecular interactions and facilitate catalytic reaction. These fndings for the frst time reveal critical new mechanisms and a potential evolutionary pathway for Ubl activations. Furthermore, this quantitative FRET approach can be used for other general biochemical pathway analysis in a dynamic mode. Ubiquitin and Ubls are peptides that are conjugated to various target proteins to either lead the targeted protein to degradation or changes of activities in vivo, and their dysregulations ofen leads to various diseases, such as can- cers or neurodegenerative diseases1–3.
    [Show full text]
  • The Anti-Tumor Activity of the NEDD8 Inhibitor Pevonedistat in Neuroblastoma
    International Journal of Molecular Sciences Article The Anti-Tumor Activity of the NEDD8 Inhibitor Pevonedistat in Neuroblastoma Jennifer H. Foster 1,* , Eveline Barbieri 1, Linna Zhang 1, Kathleen A. Scorsone 1, Myrthala Moreno-Smith 1, Peter Zage 2,3 and Terzah M. Horton 1,* 1 Texas Children’s Cancer and Hematology Centers, Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX 77030, USA; [email protected] (E.B.); [email protected] (L.Z.); [email protected] (K.A.S.); [email protected] (M.M.-S.) 2 Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92024, USA; [email protected] 3 Peckham Center for Cancer and Blood Disorders, Rady Children’s Hospital, San Diego, CA 92123, USA * Correspondence: [email protected] (J.H.F.); [email protected] (T.M.H.); Tel.: +1-832-824-4646 (J.H.F.); +1-832-824-4269 (T.M.H.) Abstract: Pevonedistat is a neddylation inhibitor that blocks proteasomal degradation of cullin–RING ligase (CRL) proteins involved in the degradation of short-lived regulatory proteins, including those involved with cell-cycle regulation. We determined the sensitivity and mechanism of action of pevonedistat cytotoxicity in neuroblastoma. Pevonedistat cytotoxicity was assessed using cell viability assays and apoptosis. We examined mechanisms of action using flow cytometry, bromod- eoxyuridine (BrDU) and immunoblots. Orthotopic mouse xenografts of human neuroblastoma were generated to assess in vivo anti-tumor activity. Neuroblastoma cell lines were very sensitive to pevonedistat (IC50 136–400 nM). The mechanism of pevonedistat cytotoxicity depended on p53 Citation: Foster, J.H.; Barbieri, E.; status.
    [Show full text]
  • Regulation of NUB1 Activity Through Non-Proteolytic Mdm2-Mediated Ubiquitination
    RESEARCH ARTICLE Regulation of NUB1 Activity through Non- Proteolytic Mdm2-Mediated Ubiquitination Thomas Bonacci, SteÂphane Audebert, Luc Camoin, Emilie Baudelet, Juan-Lucio Iovanna, Philippe Soubeyran* Centre de Recherche en CanceÂrologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix- Marseille Universite and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 NUB1 (Nedd8 ultimate buster 1) is an adaptor protein which negatively regulates the ubiqui- tin-like protein Nedd8 as well as neddylated proteins levels through proteasomal degrada- tion. However, molecular mechanisms underlying this function are not completely understood. Here, we report that the oncogenic E3 ubiquitin ligase Mdm2 is a new NUB1 OPEN ACCESS interacting protein which induces its ubiquitination. Interestingly, we found that Mdm2-medi- Citation: Bonacci T, Audebert S, Camoin L, ated ubiquitination of NUB1 is not a proteolytic signal. Instead of promoting the conjugation Baudelet E, Iovanna J-L, Soubeyran P (2017) of polyubiquitin chains and the subsequent proteasomal degradation of NUB1, Mdm2 rather Regulation of NUB1 Activity through Non- Proteolytic Mdm2-Mediated Ubiquitination. PLoS induces its di-ubiquitination on lysine 159. Importantly, mutation of lysine 159 into arginine ONE 12(1): e0169988. doi:10.1371/journal. inhibits NUB1 activity by impairing its negative regulation of Nedd8 and of neddylated pro- pone.0169988 teins. We conclude that Mdm2 acts as a positive regulator of NUB1 function, by modulating Editor: Chunhong Yan, Augusta University, NUB1 ubiquitination on lysine 159. UNITED STATES Received: August 2, 2016 Accepted: December 27, 2016 Published: January 18, 2017 Introduction Copyright: © 2017 Bonacci et al.
    [Show full text]
  • The UBE2L3 Ubiquitin Conjugating Enzyme: Interplay with Inflammasome Signalling and Bacterial Ubiquitin Ligases
    The UBE2L3 ubiquitin conjugating enzyme: interplay with inflammasome signalling and bacterial ubiquitin ligases Matthew James George Eldridge 2018 Imperial College London Department of Medicine Submitted to Imperial College London for the degree of Doctor of Philosophy 1 Abstract Inflammasome-controlled immune responses such as IL-1β release and pyroptosis play key roles in antimicrobial immunity and are heavily implicated in multiple hereditary autoimmune diseases. Despite extensive knowledge of the mechanisms regulating inflammasome activation, many downstream responses remain poorly understood or uncharacterised. The cysteine protease caspase-1 is the executor of inflammasome responses, therefore identifying and characterising its substrates is vital for better understanding of inflammasome-mediated effector mechanisms. Using unbiased proteomics, the Shenoy grouped identified the ubiquitin conjugating enzyme UBE2L3 as a target of caspase-1. In this work, I have confirmed UBE2L3 as an indirect target of caspase-1 and characterised its role in inflammasomes-mediated immune responses. I show that UBE2L3 functions in the negative regulation of cellular pro-IL-1 via the ubiquitin- proteasome system. Following inflammatory stimuli, UBE2L3 assists in the ubiquitylation and degradation of newly produced pro-IL-1. However, in response to caspase-1 activation, UBE2L3 is itself targeted for degradation by the proteasome in a caspase-1-dependent manner, thereby liberating an additional pool of IL-1 which may be processed and released. UBE2L3 therefore acts a molecular rheostat, conferring caspase-1 an additional level of control over this potent cytokine, ensuring that it is efficiently secreted only in appropriate circumstances. These findings on UBE2L3 have implications for IL-1- driven pathology in hereditary fever syndromes, and autoinflammatory conditions associated with UBE2L3 polymorphisms.
    [Show full text]
  • Chlamydia Trachomatis-Containing Vacuole Serves As Deubiquitination
    RESEARCH ARTICLE Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense Annette Fischer1, Kelly S Harrison2, Yesid Ramirez3, Daniela Auer1, Suvagata Roy Chowdhury1, Bhupesh K Prusty1, Florian Sauer3, Zoe Dimond2, Caroline Kisker3, P Scott Hefty2, Thomas Rudel1* 1Department of Microbiology, Biocenter, University of Wu¨ rzburg, Wu¨ rzburg, Germany; 2Department of Molecular Biosciences, University of Kansas, lawrence, United States; 3Rudolf Virchow Center for Experimental Biomedicine, University of Wu¨ rzburg, Wu¨ rzburg, Germany Abstract Obligate intracellular Chlamydia trachomatis replicate in a membrane-bound vacuole called inclusion, which serves as a signaling interface with the host cell. Here, we show that the chlamydial deubiquitinating enzyme (Cdu) 1 localizes in the inclusion membrane and faces the cytosol with the active deubiquitinating enzyme domain. The structure of this domain revealed high similarity to mammalian deubiquitinases with a unique a-helix close to the substrate-binding pocket. We identified the apoptosis regulator Mcl-1 as a target that interacts with Cdu1 and is stabilized by deubiquitination at the chlamydial inclusion. A chlamydial transposon insertion mutant in the Cdu1-encoding gene exhibited increased Mcl-1 and inclusion ubiquitination and reduced Mcl- 1 stabilization. Additionally, inactivation of Cdu1 led to increased sensitivity of C. trachomatis for IFNg and impaired infection in mice. Thus, the chlamydial inclusion serves as an enriched site for a *For correspondence: thomas. deubiquitinating activity exerting a function in selective stabilization of host proteins and [email protected]. protection from host defense. de DOI: 10.7554/eLife.21465.001 Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Celastrol Increases Glucocerebrosidase Activity in Gaucher Disease by Modulating Molecular Chaperones
    Celastrol increases glucocerebrosidase activity in Gaucher disease by modulating molecular chaperones Chunzhang Yanga,1, Cody L. Swallowsa, Chao Zhanga, Jie Lua, Hongbin Xiaob, Roscoe O. Bradya,1, and Zhengping Zhuanga,1 aSurgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1260; and bInstitute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China Contributed by Roscoe O. Brady, November 19, 2013 (sent for review October 21, 2013) Gaucher disease is caused by mutations in the glucosidase, beta, acid increased the catalytic activity of mutant GCase. Celastrol interfered gene that encodes glucocerebrosidase (GCase). Glucosidase, beta, with the recruitment of Cdc37 to Hsp90 halting the assembly of the acid mutations often cause protein misfolding and quantitative loss requisite chaperone complex. Inhibition of Hsp90 reduced its rec- of GCase. In the present study, we found that celastrol, an herb de- ognition of mutant GCase and therefore limited the proteasomal rivative with known anticancer, anti-inflammatory, and antioxidant degradation of the mutant protein. Additionally, celastrol triggered activity, significantly increased the quantity and catalytic activity of a reorganization of the gene expression pattern of molecular chap- GCase. Celastrol interfered with the establishment of the heat-shock erones such as DnaJ homolog subfamily B members 1 and 9 protein 90/Hsp90 cochaperone Cdc37/Hsp90-Hsp70-organizing pro- (DNAJB1/9), heat shock 70kDa proteins 1A and 1B (HSPA1A/B), tein chaperone complex with mutant GCase and reduced heat-shock and Bcl2-associated athanogene 3 (BAG3). The presence of BAG protein 90-associated protein degradation. In addition, celastrol mod- family molecular chaperone regulator 3 (BAG3) further stabi- ulated the expression of molecular chaperones.
    [Show full text]
  • The COP9 Signalosome Variant CSNCSN7A Stabilizes the Deubiquitylating Enzyme CYLD Impeding Hepatic Steatosis
    Article The COP9 Signalosome Variant CSNCSN7A Stabilizes the Deubiquitylating Enzyme CYLD Impeding Hepatic Steatosis Xiaohua Huang 1,* , Dawadschargal Dubiel 2 and Wolfgang Dubiel 2,3,*,† 1 Charité—Universitätsmedizin Berlin, Chirurgische Klinik, Campus Charité Mitte|Campus Virchow-Klinikum, Experimentelle Chirurgie und Regenerative Medizin, Augustenburger Platz 1, 13353 Berlin, Germany 2 Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; [email protected] 3 State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang’an South Road, Xiamen 361102, China * Correspondence: [email protected] (X.H.); [email protected] (W.D.) † Lead Contact. Abstract: Hepatic steatosis is a consequence of distorted lipid storage and plays a vital role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). This study aimed to explore the role of the COP9 signalosome (CSN) in the development of hepatic steatosis and its interplay with the deubiquitylating enzyme (DUB) cylindromatosis (CYLD). CSN occurs as CSNCSN7A and CSNCSN7B variants regulating the ubiquitin proteasome system. It is a deneddylating complex and associates with other DUBs. CYLD cleaves Lys63-ubiquitin chains, regulating a signal cascade that mitigates hepatic steatosis. CSN subunits CSN1 and CSN7B, as well as CYLD, were downregulated with specific siRNA in HepG2 cells and human primary hepatocytes. The same cells were transfected Citation: Huang, X.; Dubiel, D.; with Flag-CSN7A or Flag-CSN7B for pulldowns. Hepatic steatosis in cell culture was induced Dubiel, W. The COP9 Signalosome by palmitic acid (PA). Downregulation of CSN subunits led to reduced PPAR-γ expression.
    [Show full text]
  • NEDD8 Acts As a 'Molecular Switch' Defining the Functional Selectivity Of
    scientificscientificreport report NEDD8 acts as a ‘molecular switch’ defining the functional selectivity of VHL Ryan C. Russell & Michael Ohh+ Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada The von Hippel–Lindau (VHL) tumour suppressor protein is (HIF), which is the main transcription factor that activates the important in the E3 ubiquitin ligase ECV (Elongin B/C–CUL2– expression of many hypoxia-inducible genes to counter VHL)-mediated destruction of hypoxia-inducible factor and the the detrimental effects of compromised oxygen availability promotion of fibronectin (FN) extracellular matrix assembly. (Kaelin, 2002), and as a positive regulator of fibronectin (FN) Although the precise molecular mechanism controlling the extracellular matrix (ECM) assembly (Roberts & Ohh, 2008). selectivity of VHL function remains unknown, a failure in either ECV (Elongin B/C–CUL2–VHL) is an SCF (SKP1/CDC53 or process is associated with oncogenic progression. Here, we show CUL1/F-box protein)-like E3 ubiquitin ligase in which VHL acts as that VHL performs its FN-associated function independently of a substrate-conferring component that recruits the a-subunits of the ECV complex, highlighting the autonomy of these pathways. HIF. These have been modified with hydroxyl groups on Furthermore, we show that NEDD8, a ubiquitin-like molecule, conserved prolyl residues within the oxygen-dependent degrada- acts as a ‘molecular switch’ in which its covalent conjugation to tion domain (ODD) by a class of prolyl hydroxylases in an oxygen- VHL prohibits the engagement of the scaffold component CUL2 dependent manner (Kaelin, 2002). This mechanistic insight and, concomitantly, activates the association with FN.
    [Show full text]
  • Recombinant Human NEDD8 E1/APPBP1/UBA3 Protein Catalog Number: ATGP1425
    Recombinant human NEDD8 E1/APPBP1/UBA3 protein Catalog Number: ATGP1425 PRODUCT INPORMATION Expression system E.coli Domain 1-463aa UniProt No. Q8TBC4 NCBI Accession No. AAH22853 Alternative Names NEDD8-activating enzyme E1 catalytic subunit, uBE1C PRODUCT SPECIFICATION Molecular Weight 54.4 kDa (487aa) Concentration 1mg/ml (determined by Bradford assay) Formulation Liquid in. 20mM Tris-HCl buffer (pH 8.0) containing 20% glycerol, 1mM DTT Purity > 90% by SDS-PAGE Tag His-Tag Application SDS-PAGE Storage Condition Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles. BACKGROUND Description uBA3, also known as NEDD8-activating enzyme E1 catalytic subunit, is the catalytic subunit of the dimeric uBA3- NAE1 E1 enzyme. E1 activates NEDD8 by first adenylating its C-terminal glycine residue with ATP, thereafter linking this residue to the side chain of the catalytic cysteine, yielding a NEDD8-uBA3 thioester and free AMP. E1 finally transfers NEDD8 to the catalytic cysteine of uBE2M. Recombinant human uBA3 protein, fused to His-tag at N-terminus, was expressed in E. coli and purified by using conventional chromatography. 1 Recombinant human NEDD8 E1/APPBP1/UBA3 protein Catalog Number: ATGP1425 Amino acid Sequence MGSSHHHHHH SSGLVPRGSH MGSHMADGEE PERKRRRIEE LLAEKMAVDG GCGDTGDWEG RWNHVKKFLE RSGPFTHPDF EPSTESLQFL LDTCKVLVIG AGGLGCELLK NLALSGFRQI HVIDMDTIDV SNLNRQFLFR PKDIGRPKAE VAAEFLNDRV PNCNVVPHFN KIQDFNDTFY RQFHIIVCGL DSIIARRWIN GMLISLLNYE DGVLDPSSIV PLIDGGTEGF KGNARVILPG MTACIECTLE LYPPQVNFPM CTIASMPRLP EHCIEYVRML QWPKEQPFGE GVPLDGDDPE HIQWIFQKSL ERASQYNIRG VTYRLTQGVV KRIIPAVAST NAVIAAVCAT EVFKIATSAY IPLNNYLVFN DVDGLYTYTF EAERKENCPA CSQLPQNIQF SPSAKLQEVL DYLTNSASLQ MKSPAITATL EGKNRTLYLQ SVTSIEERTR PNLSKTLKEL GLVDGQELAV ADVTTPQTVL FKLHFTS General References Gong L., et al.
    [Show full text]
  • Huang Lab Report
    www.beatson.gla.ac.uk/danny_huang (Figure 2A). Upon DNA damage, Ser429 Figure 1 phosphorylation enhanced MDM2 Enzymatic cascade for Ub autoubiquitination and degradation in cells modifications explaining the rapid p53 activation. We also UBIQUITIN SIGNALLING described a strategy for preparation of MDM2 RING domain for structural analyses to enable rapid development MDM2 RING inhibitor. Insights into Deltex ubiquitin ligases Deltex (DTX) family E3s share a highly conserved C-terminal RING domain followed by a Deltex C-terminal domain (DTC). DTXs have been linked Post-translational modification with ubiquitin (Ub) initiated by to developmental processes involving Notch sequential actions of Ub-activating enzyme (E1), Ub-conjugating signalling and histone ubiquitination during DNA enzyme (E2) and Ub ligase (E3) regulates diverse cellular processes, damage repair. However, their functions remain largely unknown. We discovered that DTX E3s including signal transduction, cell cycle progression, apoptosis and harbour dual activities and catalyse both gene transcription. Deregulation in the Ub pathway is often ubiquitination of ADP-ribosylated substrate and ADP-ribosylation of Ub. We showed that DTX’s associated with human pathogenesis, including cancer. Our group C-terminal DTC domain harbour a conserved Group Leader uses structural biology and biochemical approaches to study the pocket that binds both ADP-ribose (ADPr) and NAD+ (Figure 2B). The DTC domains also bind Danny Huang enzymes in the Ub pathway to understand their regulation, levels of p53, the MDM2 mutant was able to poly-ADP-ribosylated substrates in cells. The restrain p53 activity sufficiently for normal Associate Scientist mechanistic functions and mutation-induced deregulation. We proximity of RING and DTC domain enables the growth.
    [Show full text]