Chemotherapy Induces NEDP1-Mediated Destabilization of MDM2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Aryl Hydrocarbon Receptor: Structural Analysis and Activation Mechanisms
The Aryl Hydrocarbon Receptor: Structural Analysis and Activation Mechanisms This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the School of Molecular and Biomedical Sciences (Biochemistry), The University of Adelaide, Australia Fiona Whelan, B.Sc. (Hons) 2009 2 Table of Contents THESIS SUMMARY................................................................................. 6 DECLARATION....................................................................................... 7 PUBLICATIONS ARISING FROM THIS THESIS.................................... 8 ACKNOWLEDGEMENTS...................................................................... 10 ABBREVIATIONS ................................................................................. 12 CHAPTER 1: INTRODUCTION ............................................................. 17 1.1 BHLH.PAS PROTEINS ............................................................................................17 1.1.1 General background..................................................................................17 1.1.2 bHLH.PAS Class I Proteins.........................................................................18 1.2 THE ARYL HYDROCARBON RECEPTOR......................................................................19 1.2.1 Domain Structure and Ligand Activation ..............................................19 1.2.2 AhR Expression and Developmental Activity .......................................21 1.2.3 Mouse AhR Knockout Phenotype ...........................................................23 -
Structural Basis for High-Affinity Peptide Inhibition of P53 Interactions with MDM2 and MDMX
Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX Marzena Pazgiera,1, Min Liua,b,1, Guozhang Zoua, Weirong Yuana, Changqing Lia, Chong Lia, Jing Lia, Juahdi Monboa, Davide Zellaa, Sergey G. Tarasovc, and Wuyuan Lua,2 aInstitute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201; bThe First Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Shaanxi Province 710061, China; and cStructural Biophysics Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702 Communicated by Robert C. Gallo, University of Maryland, Baltimore, MD, January 28, 2009 (received for review September 29, 2008) The oncoproteins MDM2 and MDMX negatively regulate the ac- ligase activity (10). Structurally related to MDM2, MDMX of tivity and stability of the tumor suppressor protein p53—a cellular 490-aa residues possesses domain structures arranged similarly process initiated by MDM2 and/or MDMX binding to the N- to MDM2, except that MDMX lacks ubiquitin-ligase function terminal transactivation domain of p53. MDM2 and MDMX in many (11, 12). Growing evidence supports that in unstressed cells tumors confer p53 inactivation and tumor survival, and are impor- MDM2 primarily controls p53 stability through ubiquitylation to tant molecular targets for anticancer therapy. We screened a target the tumor suppressor protein for constitutive degradation duodecimal peptide phage library against site-specifically biotin- by the proteasome (13, 14), whereas MDMX mainly functions as ylated p53-binding domains of human MDM2 and MDMX chemi- a significant p53 transcriptional antagonist independently of cally synthesized via native chemical ligation, and identified sev- MDM2 (15, 16). -
S41598-018-28214-2.Pdf
www.nature.com/scientificreports OPEN Dissecting Distinct Roles of NEDDylation E1 Ligase Heterodimer APPBP1 and UBA3 Received: 7 November 2017 Accepted: 25 May 2018 Reveals Potential Evolution Process Published: xx xx xxxx for Activation of Ubiquitin-related Pathways Harbani Kaur Malik-Chaudhry1, Zied Gaieb1, Amanda Saavedra1, Michael Reyes1, Raphael Kung1, Frank Le1, Dimitrios Morikis1,2 & Jiayu Liao1,2 Despite the similar enzyme cascade in the Ubiquitin and Ubiquitin-like peptide(Ubl) conjugation, the involvement of single or heterodimer E1 activating enzyme has been a mystery. Here, by using a quantitative Förster Resonance Energy Transfer (FRET) technology, aided with Analysis of Electrostatic Similarities Of Proteins (AESOP) computational framework, we elucidate in detail the functional properties of each subunit of the E1 heterodimer activating-enzyme for NEDD8, UBA3 and APPBP1. In contrast to SUMO activation, which requires both subunits of its E1 heterodimer AOS1-Uba2 for its activation, NEDD8 activation requires only one of two E1 subunits, UBA3. The other subunit, APPBP1, only contributes by accelerating the activation reaction rate. This discovery implies that APPBP1 functions mainly as a scafold protein to enhance molecular interactions and facilitate catalytic reaction. These fndings for the frst time reveal critical new mechanisms and a potential evolutionary pathway for Ubl activations. Furthermore, this quantitative FRET approach can be used for other general biochemical pathway analysis in a dynamic mode. Ubiquitin and Ubls are peptides that are conjugated to various target proteins to either lead the targeted protein to degradation or changes of activities in vivo, and their dysregulations ofen leads to various diseases, such as can- cers or neurodegenerative diseases1–3. -
The Anti-Tumor Activity of the NEDD8 Inhibitor Pevonedistat in Neuroblastoma
International Journal of Molecular Sciences Article The Anti-Tumor Activity of the NEDD8 Inhibitor Pevonedistat in Neuroblastoma Jennifer H. Foster 1,* , Eveline Barbieri 1, Linna Zhang 1, Kathleen A. Scorsone 1, Myrthala Moreno-Smith 1, Peter Zage 2,3 and Terzah M. Horton 1,* 1 Texas Children’s Cancer and Hematology Centers, Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX 77030, USA; [email protected] (E.B.); [email protected] (L.Z.); [email protected] (K.A.S.); [email protected] (M.M.-S.) 2 Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92024, USA; [email protected] 3 Peckham Center for Cancer and Blood Disorders, Rady Children’s Hospital, San Diego, CA 92123, USA * Correspondence: [email protected] (J.H.F.); [email protected] (T.M.H.); Tel.: +1-832-824-4646 (J.H.F.); +1-832-824-4269 (T.M.H.) Abstract: Pevonedistat is a neddylation inhibitor that blocks proteasomal degradation of cullin–RING ligase (CRL) proteins involved in the degradation of short-lived regulatory proteins, including those involved with cell-cycle regulation. We determined the sensitivity and mechanism of action of pevonedistat cytotoxicity in neuroblastoma. Pevonedistat cytotoxicity was assessed using cell viability assays and apoptosis. We examined mechanisms of action using flow cytometry, bromod- eoxyuridine (BrDU) and immunoblots. Orthotopic mouse xenografts of human neuroblastoma were generated to assess in vivo anti-tumor activity. Neuroblastoma cell lines were very sensitive to pevonedistat (IC50 136–400 nM). The mechanism of pevonedistat cytotoxicity depended on p53 Citation: Foster, J.H.; Barbieri, E.; status. -
The Ubiquitin Proteasome System and Its Involvement in Cell Death Pathways
Cell Death and Differentiation (2010) 17, 1–3 & 2010 Macmillan Publishers Limited All rights reserved 1350-9047/10 $32.00 www.nature.com/cdd Editorial The ubiquitin proteasome system and its involvement in cell death pathways F Bernassola1, A Ciechanover2 and G Melino1,3 Cell Death and Differentiation (2010) 17, 1–3; doi:10.1038/cdd.2009.189 Following the awarding of the 2004 Nobel Prize in Chemistry Inactivation of the proteasome following caspase-mediated to Aaron Ciechanover, Avram Hershko, and Irwin A Rose cleavage may disable the proteasome, interfering with its for the discovery of ubiquitin (Ub)-mediated degradation, role in the regulation of key cellular processes and thereby Cell Death and Differentiation has drawn the attention of facilitating induction of apoptosis. The noted recent develop- its readers to the Ub Proteasome System (UPS) and its ments show how understanding of these functions is just involvement in regulating cell death pathways.1–4 The current starting to emerge. For example, why does dIAP1 associate set of reviews is an update on this theme.5–16 with multiple E2s via its RING finger? Does dIAP1 also interact From previous review articles published in Cell Death and with the E3 – the F-box protein Morgue, which is a part of an Differentiation, it was apparent that the UPS has a major SCF E3 complex? Why does dIAP1, which is an E3, have to mechanistic role in regulating cell death via modification and interact with other ligases such as the N-end rule UBR1 and degradation of key regulatory proteins involved in -
538.Full.Pdf
The Bacterial Fermentation Product Butyrate Influences Epithelial Signaling via Reactive Oxygen Species-Mediated Changes in Cullin-1 Neddylation This information is current as of September 24, 2021. Amrita Kumar, Huixia Wu, Lauren S. Collier-Hyams, Young-Man Kwon, Jason M. Hanson and Andrew S. Neish J Immunol 2009; 182:538-546; ; doi: 10.4049/jimmunol.182.1.538 http://www.jimmunol.org/content/182/1/538 Downloaded from References This article cites 75 articles, 30 of which you can access for free at: http://www.jimmunol.org/content/182/1/538.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The Bacterial Fermentation Product Butyrate Influences Epithelial Signaling via Reactive Oxygen Species-Mediated Changes in Cullin-1 Neddylation1 Amrita Kumar,* Huixia Wu,* Lauren S. Collier-Hyams,* Young-Man Kwon,* Jason M. -
Chlamydia Trachomatis-Containing Vacuole Serves As Deubiquitination
RESEARCH ARTICLE Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense Annette Fischer1, Kelly S Harrison2, Yesid Ramirez3, Daniela Auer1, Suvagata Roy Chowdhury1, Bhupesh K Prusty1, Florian Sauer3, Zoe Dimond2, Caroline Kisker3, P Scott Hefty2, Thomas Rudel1* 1Department of Microbiology, Biocenter, University of Wu¨ rzburg, Wu¨ rzburg, Germany; 2Department of Molecular Biosciences, University of Kansas, lawrence, United States; 3Rudolf Virchow Center for Experimental Biomedicine, University of Wu¨ rzburg, Wu¨ rzburg, Germany Abstract Obligate intracellular Chlamydia trachomatis replicate in a membrane-bound vacuole called inclusion, which serves as a signaling interface with the host cell. Here, we show that the chlamydial deubiquitinating enzyme (Cdu) 1 localizes in the inclusion membrane and faces the cytosol with the active deubiquitinating enzyme domain. The structure of this domain revealed high similarity to mammalian deubiquitinases with a unique a-helix close to the substrate-binding pocket. We identified the apoptosis regulator Mcl-1 as a target that interacts with Cdu1 and is stabilized by deubiquitination at the chlamydial inclusion. A chlamydial transposon insertion mutant in the Cdu1-encoding gene exhibited increased Mcl-1 and inclusion ubiquitination and reduced Mcl- 1 stabilization. Additionally, inactivation of Cdu1 led to increased sensitivity of C. trachomatis for IFNg and impaired infection in mice. Thus, the chlamydial inclusion serves as an enriched site for a *For correspondence: thomas. deubiquitinating activity exerting a function in selective stabilization of host proteins and [email protected]. protection from host defense. de DOI: 10.7554/eLife.21465.001 Competing interests: The authors declare that no competing interests exist. -
The COP9 Signalosome Variant CSNCSN7A Stabilizes the Deubiquitylating Enzyme CYLD Impeding Hepatic Steatosis
Article The COP9 Signalosome Variant CSNCSN7A Stabilizes the Deubiquitylating Enzyme CYLD Impeding Hepatic Steatosis Xiaohua Huang 1,* , Dawadschargal Dubiel 2 and Wolfgang Dubiel 2,3,*,† 1 Charité—Universitätsmedizin Berlin, Chirurgische Klinik, Campus Charité Mitte|Campus Virchow-Klinikum, Experimentelle Chirurgie und Regenerative Medizin, Augustenburger Platz 1, 13353 Berlin, Germany 2 Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; [email protected] 3 State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang’an South Road, Xiamen 361102, China * Correspondence: [email protected] (X.H.); [email protected] (W.D.) † Lead Contact. Abstract: Hepatic steatosis is a consequence of distorted lipid storage and plays a vital role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). This study aimed to explore the role of the COP9 signalosome (CSN) in the development of hepatic steatosis and its interplay with the deubiquitylating enzyme (DUB) cylindromatosis (CYLD). CSN occurs as CSNCSN7A and CSNCSN7B variants regulating the ubiquitin proteasome system. It is a deneddylating complex and associates with other DUBs. CYLD cleaves Lys63-ubiquitin chains, regulating a signal cascade that mitigates hepatic steatosis. CSN subunits CSN1 and CSN7B, as well as CYLD, were downregulated with specific siRNA in HepG2 cells and human primary hepatocytes. The same cells were transfected Citation: Huang, X.; Dubiel, D.; with Flag-CSN7A or Flag-CSN7B for pulldowns. Hepatic steatosis in cell culture was induced Dubiel, W. The COP9 Signalosome by palmitic acid (PA). Downregulation of CSN subunits led to reduced PPAR-γ expression. -
Microrna-29B-2-5P Inhibits Cell Proliferation by Directly Targeting
Li et al. BMC Cancer (2018) 18:681 https://doi.org/10.1186/s12885-018-4526-z RESEARCH ARTICLE Open Access MicroRNA-29b-2-5p inhibits cell proliferation by directly targeting Cbl-b in pancreatic ductal adenocarcinoma Ce Li1,2, Qian Dong3, Xiaofang Che1,2, Ling Xu1,2, Zhi Li1,2, Yibo Fan1,2, Kezuo Hou1,2, Shuo Wang1,2, Jinglei Qu1,2, Lu Xu1,2, Ti Wen1,2, Xianghong Yang4, Xiujuan Qu1,2* and Yunpeng Liu1,2* Abstract Background: MicroRNAs can be used in the prognosis of malignancies; however, their regulatory mechanisms are unknown, especially in pancreatic ductal adenocarcinoma (PDAC). Methods: In 120 PDAC specimens, miRNA levels were assessed by quantitative real time polymerase chain reaction (qRT-PCR). Then, the role of miR-29b-2-5p in cell proliferation was evaluated both in vitro (Trypan blue staining and cell cycle analysis in the two PDAC cell lines SW1990 and Capan-2) and in vivo using a xenograft mouse model. Next, bioinformatics methods, a luciferase reporter assay, Western blot, and immunohistochemistry (IHC) were applied to assess the biological effects of Cbl-b inhibition by miR-29b-2-5p. Moreover, the relationship between Cbl-b and p53 was evaluated by immunoprecipitation (IP), Western blot, and immunofluorescence. Results: From the 120 PDAC patients who underwent surgical resection, ten patients with longest survival and ten with shortest survival were selected. We found that high miR-29b-2-5p expression was associated with good prognosis (p = 0.02). The validation cohort confirmed miR-29b-2-5p as an independent prognostic factor in PDAC (n = 100, 95% CI = 0.305–0.756, p = 0.002). -
NEDD8 Acts As a 'Molecular Switch' Defining the Functional Selectivity Of
scientificscientificreport report NEDD8 acts as a ‘molecular switch’ defining the functional selectivity of VHL Ryan C. Russell & Michael Ohh+ Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada The von Hippel–Lindau (VHL) tumour suppressor protein is (HIF), which is the main transcription factor that activates the important in the E3 ubiquitin ligase ECV (Elongin B/C–CUL2– expression of many hypoxia-inducible genes to counter VHL)-mediated destruction of hypoxia-inducible factor and the the detrimental effects of compromised oxygen availability promotion of fibronectin (FN) extracellular matrix assembly. (Kaelin, 2002), and as a positive regulator of fibronectin (FN) Although the precise molecular mechanism controlling the extracellular matrix (ECM) assembly (Roberts & Ohh, 2008). selectivity of VHL function remains unknown, a failure in either ECV (Elongin B/C–CUL2–VHL) is an SCF (SKP1/CDC53 or process is associated with oncogenic progression. Here, we show CUL1/F-box protein)-like E3 ubiquitin ligase in which VHL acts as that VHL performs its FN-associated function independently of a substrate-conferring component that recruits the a-subunits of the ECV complex, highlighting the autonomy of these pathways. HIF. These have been modified with hydroxyl groups on Furthermore, we show that NEDD8, a ubiquitin-like molecule, conserved prolyl residues within the oxygen-dependent degrada- acts as a ‘molecular switch’ in which its covalent conjugation to tion domain (ODD) by a class of prolyl hydroxylases in an oxygen- VHL prohibits the engagement of the scaffold component CUL2 dependent manner (Kaelin, 2002). This mechanistic insight and, concomitantly, activates the association with FN. -
Recombinant Human NEDD8 E1/APPBP1/UBA3 Protein Catalog Number: ATGP1425
Recombinant human NEDD8 E1/APPBP1/UBA3 protein Catalog Number: ATGP1425 PRODUCT INPORMATION Expression system E.coli Domain 1-463aa UniProt No. Q8TBC4 NCBI Accession No. AAH22853 Alternative Names NEDD8-activating enzyme E1 catalytic subunit, uBE1C PRODUCT SPECIFICATION Molecular Weight 54.4 kDa (487aa) Concentration 1mg/ml (determined by Bradford assay) Formulation Liquid in. 20mM Tris-HCl buffer (pH 8.0) containing 20% glycerol, 1mM DTT Purity > 90% by SDS-PAGE Tag His-Tag Application SDS-PAGE Storage Condition Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles. BACKGROUND Description uBA3, also known as NEDD8-activating enzyme E1 catalytic subunit, is the catalytic subunit of the dimeric uBA3- NAE1 E1 enzyme. E1 activates NEDD8 by first adenylating its C-terminal glycine residue with ATP, thereafter linking this residue to the side chain of the catalytic cysteine, yielding a NEDD8-uBA3 thioester and free AMP. E1 finally transfers NEDD8 to the catalytic cysteine of uBE2M. Recombinant human uBA3 protein, fused to His-tag at N-terminus, was expressed in E. coli and purified by using conventional chromatography. 1 Recombinant human NEDD8 E1/APPBP1/UBA3 protein Catalog Number: ATGP1425 Amino acid Sequence MGSSHHHHHH SSGLVPRGSH MGSHMADGEE PERKRRRIEE LLAEKMAVDG GCGDTGDWEG RWNHVKKFLE RSGPFTHPDF EPSTESLQFL LDTCKVLVIG AGGLGCELLK NLALSGFRQI HVIDMDTIDV SNLNRQFLFR PKDIGRPKAE VAAEFLNDRV PNCNVVPHFN KIQDFNDTFY RQFHIIVCGL DSIIARRWIN GMLISLLNYE DGVLDPSSIV PLIDGGTEGF KGNARVILPG MTACIECTLE LYPPQVNFPM CTIASMPRLP EHCIEYVRML QWPKEQPFGE GVPLDGDDPE HIQWIFQKSL ERASQYNIRG VTYRLTQGVV KRIIPAVAST NAVIAAVCAT EVFKIATSAY IPLNNYLVFN DVDGLYTYTF EAERKENCPA CSQLPQNIQF SPSAKLQEVL DYLTNSASLQ MKSPAITATL EGKNRTLYLQ SVTSIEERTR PNLSKTLKEL GLVDGQELAV ADVTTPQTVL FKLHFTS General References Gong L., et al. -
MSD® Ubiquitinated MDM2 Assay Whole Cell Lysate
® MSD Ubiquitinated MDM2 Assay Whole Cell Lysate Kit For quantitative determination in human, mouse, and rat whole cell lysate samples Alzheimer’s Disease MDM2 BioProcess Cardiac Cell Signaling Clinical Immunology Cytokines Hypoxia Immunogenicity Inflammation Metabolic Oncology Toxicology Vascular MDM2 (murine double minute 2), an E3 ubiquitin ligase and a negative regulator of p53, is a 56 kDa oncoprotein which is ubiquitinated and phosphorylated. MDM2 contains an amino terminal p53 interaction domain, an acidic domain in the region of amino acids 250–300 (phosphorylation in this region is believed to play a role in MDM2 regulation), and a carboxy-terminal RING domain Catalog Numbers 1 containing a Cis2-His2-Cis4 consensus motif which binds zinc and is responsible for the E3 ubiquitin ligase activity of MDM2. MDM2 Ubiquitinated MDM2 Whole degradation is controlled by self-ubiquitination, phosphorylation, and potentially through ubiquitination by other, not yet identified, E3 2 3 Cell Lysate Kit ligases. DNA damage and cellular stress trigger MDM2 degradation, releasing p53 from MDM2-mediated negative regulation. 4 Kit size Deletion of MDM2 in mouse models is lethal in a p53 dependent manner, and overexpression of MDM2 is seen in many cancers with 5 1 plate K152FJD-1 non-mutated p53 leading to the conclusion that MDM2 is oncogenic by way of p53 inactivation. Because of the important role p53 5 plates K152FJD-2 tumor suppression plays in many different forms of cancer, there has been extensive research on the interactions between MDM2 and 20 plates K152FJD-3 p53 and considerable interest in identifying drugs capable of modulating the MDM2‒p53 interaction.