It All Sticks Together—The APP-Related Family of Proteins and Alzheimer's

Total Page:16

File Type:pdf, Size:1020Kb

It All Sticks Together—The APP-Related Family of Proteins and Alzheimer's Molecular Psychiatry (1999) 4, 524–528 1999 Stockton Press All rights reserved 1359–4184/99 $15.00 PROGRESS It all sticks together—the APP-related family of proteins and Alzheimer’s disease TA Bayer1, R Cappai2, CL Masters2, K Beyreuther3 and G Multhaup3 1Department of Psychiatry, University of Bonn Medical Center, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany; 2Department of Pathology, University of Melbourne, Parkville, Victoria 3052, Australia; 3ZMBH, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany In the present review, we shall discuss the pros and cons of a possible functional relationship and contribution of the APP family members (APP, APLP1 and APLP2) to the development of Alzheimer’s disease: (1) APP, APLP1 and APLP2 are highly homologous proteins with similar protein domain organization. (2) All APP family proteins have been found to be aggregated in typical Alzheimer’s disease lesions. (3) Several other proteins have been implied to provide a functional link among the APP-related proteins. In normal adult brain APP, APLP1 and APLP2 are involved in synaptic processes important for memory function. We hypothesize that the functional loss of members of the APP family contributes to the gradual cognitive decline in Alzheimer’s disease patients. Keywords: APP; APLP1; APLP2 The neuropathological hallmarks of Alzheimer’s dis- gene has been located at chromosome 19q13.1 and ease (AD) include neurofibrillary tangles, neuritic pla- shown to consist of 17 exons.14 APP, APLP1 and ques, and congophilic angiopathy. While tangles are APLP2 have the structure of type I integral membrane predominantly composed of an abnormally phos- glycoproteins with a major extracellular component phorylated tau protein, ␤-amyloid has been identified and a short cytoplasmatic tail3 (Figure 1), are highly as a major component of both neuritic plaques and blood vessels with amyloid angiopathy in AD. Since the purification and characterization of cerebral amy- loid protein from senile plaques in AD and in older persons with Down syndrome,1,2 the protein compo- nents of plaques have received considerable interest. The ␤-amyloid precipitates are aggregates of 39- to 43- residues ␤A4 peptide,3,4 which originate from a larger ␤-amyloid precursor protein (APP). The discovery of amyloid precursor-like proteins related to APP classi- fies APP as a member of a multigene family.5–8 The highly homologous nature of the proteins raises the possibility of a functional relationship. Wasco et al6 isolated the human APLP2 gene, which has been assigned to chromosome 11 q23–q25.9 The mouse APLP2 promoter lacks a typical TATA box, is GC-rich, and contains several sequences for transcription factor Figure 1 The APP protein family and domain organization 10,11 binding. The mouse APLP1 genomic structure is illustrated. SP denotes the signal peptide domain; CYS the revealed 17 exons and a 5Ј region that contains puta- conserved cysteine-rich domain; Acidic the less conserved tive binding sites for AP-1, heat-shock protein, and Sp1 acidic domain; Glycosylation the N- and O-glycosylation devoid of apparent TATA and CCAAT boxes.12 Human domain; ␤A4 the ␤A4/␤-amyloid domain of APP; and TM APLP1 cDNA has been cloned recently,13 the protein indicates the transmembrane domain. The extracellular was found in human CSF suggesting that soluble domain on the aminoterminal site of the transmembrane APLP1 is released from brain cells. The human APLP1 region reveals highest divergence (arrow). The KPI domain (exon 7), OX-2 domain (exon 8) and exon 15 of APP and KPI domain (homologous to APP exon 7) and a divergent region Correspondence: TA Bayer, PhD, Department of Psychiatry, Uni- of 12 amino acids on the NH2-terminal side of the transmem- versity of Bonn Medical Center, Sigmund-Freud-Strasse 25, brane domain (12-aa exon) of APLP2 are alternatively spliced. 53105 Bonn, Germany. E-mail: bayerȰuni-bonn.de No alternative splice variants have been described for APLP1. Received 2 December 1998; revised 1 March 1999; accepted 8 Note, the ␤A4 domain is absent in APLP1 and APLP2. Not March 1999 drawn to scale. APP and Alzheimer’s disease TA Bayer et al 525 STAR Sequence alignment of the human APP superfamily. The sequences were extracted from the Swissprot data base. Alignment with Megalign (Lasergene, DNA Figure 2 Inc, Madison, WI, USA). Black boxes denote residues that match the Consensus exactly. APP and Alzheimer’s disease TA Bayer et al 526 homologous proteins (Figure 2) evolved from the com- within the first week after birth. The survivors showed mon ancestor APLP1 (Figure 3). The ␤A4/␤-amyloid deficits in balance and/or strength, but appeared heal- domain, however is unique to APP and absent in other thy up to 13 months of age.30 Recently, Rassoulzadegan members of the superfamily. APP is alternatively et al31 investigated a large APLP2 deletion in the gen- spliced (exons 7, 8 and 15), which gives rise to at least omic locus, suggesting a role of APLP2 in mitotic segre- eight isoforms expressed in a cell-type specific manner. gation of the genome and establishment of a proper APLP2 has two alternatively spliced exons, one com- nuclear structure. Increased expression of cell-associa- prises the Kunitz protease inhibitor domain encoding ted APLP2, but not APLP1, was detected in ␤A4- exon and a 12-amino acid long exon situated adjacent treated APP−/− and APP+/+ neuronal cell cultures but 15–17 to the transmembrane domain. The latter not in H2O2-treated cultures. These findings demon- resembles the tissue-specific alternative splicing of strate that ␤A4 toxicity does not require an interaction exon 15 of APP, corresponding to 18 residues and was of the ␤A4 peptide with the parental molecule (APP) first reported in leukocytes.18 APP isoforms termed L- and is therefore distinct from prion protein neurotoxic- APP that lack sequences encoded by exon 15 are modi- ity that is dependent on the expression of the parental fied by chondroitin sulfate glycosaminoglycans (CS- cellular prion protein, and that APLP2 expression may GAG), whereas the APLP2-763 isoform which contains be functionally triggered by ␤A4.32 the 12-amino acids insert is not modified by CS-GAG.19 Induction of apoptosis by trophic factor withdrawal Studies on the protein level and quantitative mRNA upregulated APP and APLP2 protein synthesis, and the analysis revealed an AD-associated increase in the pro- alternative splicing pattern of APP in neuronal PC12 portion of APP exon 7 encoded Kunitz-type serine pro- cells.33 The members of the APP gene family have been tease inhibitory-containing isoforms.20,21 The Kunitz- implicated in neuronal differentiation, since mRNA type serine protease inhibitory sequence (KPI) in the levels increased after retinoic acid induction of human APP gene diverged from its ancestral gene about 270 neuroblastoma cells (SH-SY5Y) of both APLP2 and million years ago and was inserted into the gene soon APP, whereas the increase in APLP1 mRNA expression after duplication.22 No APLP1 spliced transcripts have was significantly higher.34 Phosphorylation-dependent been discovered so far. Detailed alternative splicing regulation of APLP2 in the cytoplasmic domain by pro- patterns of APP and APLP2 have been previously tein kinase C and cdc2 kinase appears to be similar to described and reviewed by Sandbrink et al.23 that of APP. APLP1 has been shown to be phosphoryl- APLP2 is widely expressed in neural and non-neural ated by protein kinase C.35 tissues.6,24,25 In situ hybridization and quantitative The hypothesis of environmental toxins for AD has polymerase chain reaction revealed that APLP2 and received growing attention in the past years. The APP mRNA are expressed in similar, if not identical, identification of a copper (II) binding site in APP and neuronal populations and at similar levels. APLP2 APLP2 has been suggested to be involved in electron appears to mature through the same unusual transfer and radical reactions.36,37 A strong heparin- secretory/cleavage pathway as APP,8 and is found in binding site within a region conserved in rodent and post-synaptic compartments.24,26 Evidence that APP human APP, APLP1 and APLP2, was identified in the and APLP2 have a shared cellular activity besides the carbohydrate domain suggesting a role in cell KPI domain comes from the observation that recombi- adhesion.38 APP and its homologues behave as a family nant human APLP2 expressed in the yeast Pichia pas- of zinc-modulated, heparin-binding proteins.39 toris can stimulate neurite outgrowth.27 Tranfection Additionally, a conserved zinc (II) binding site was experiments of mouse APLP2 cDNA revealed that demonstrated to interact with the heparin-binding APLP2 is modified by CS-GAG at a region with little site.40 homology to APP, suggesting functional regulation, A role of APLP1 and APLP2 in AD has gained further which has been suggested to have a role in axonal interest with the discovery that both proteins are pathfinding and/or synaptogenesis in the olfactory present in typical AD-associated lesions. Crain et al25 bulb and embryonic neurons.19,28,29 APLP1 is increased showed that APLP2 antibodies label dystrophic neur- during cortical synaptic development, suggesting a role ites, a subset of plaques, neurons and reactive astro- in synaptogenesis or synaptic maturation.26 cytes in AD, which was confirmed by others.41,42 More A role in axonal pathfinding has been challenged by recently, our group reported43 that APLP1 protein also Koch et al30 who studied APLP2 knock-out mice, precipitates in a subpopulation of neuritic plaques, a which failed to show impairment of axonal outgrowth finding, which was supported recently.42 of olfactory neurons following bulbectomy. Eighty per Several proteins have been implied to provide a cent of APP and APLP2 double knock-out mice died functional link among the family of APP-related pro- Figure 3 Phylogenetic tree of APP, APLP1 and APLP2 and ancestral relationships between sequences.
Recommended publications
  • Using Evolutionary Conserved Modules in Gene Networks As a Strategy to Leverage High Throughput Gene Expression Queries Jeanne M
    Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 9-2010 Using Evolutionary Conserved Modules in Gene Networks as a Strategy to Leverage High Throughput Gene Expression Queries Jeanne M. Serb Iowa State University, [email protected] Megan C. Orr Iowa State University M. Heather West Greenlee Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/eeob_ag_pubs Part of the Ecology and Evolutionary Biology Commons, Genetics Commons, and the Systems Biology Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ eeob_ag_pubs/19. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Using Evolutionary Conserved Modules in Gene Networks as a Strategy to Leverage High Throughput Gene Expression Queries Abstract Background: Large-scale gene expression studies have not yielded the expected insight into genetic networks that control complex processes. These anticipated discoveries have been limited not by technology, but by a lack of effective strategies to investigate the data in a manageable and meaningful way. Previous work suggests that using a pre-determined seednetwork of gene relationships to query large-scale expression datasets is an effective way to generate candidate genes for further study and network expansion or enrichment.
    [Show full text]
  • A Potential Role for APLP2 in Axogenesis
    The Journal of Neuroscience, October 1995, 15(10): 63144326 Distribution of an APP Homolog, APLP2, in the Mouse Olfactory System: A Potential Role for APLP2 in Axogenesis Gopal Thinakaran,1,5 Cheryl A. Kitt, 1,5 A. Jane I. Roskams,” Hilda H. Slunt,1,5 Eliezer Masliah,’ Cornelia von Koch,2,5 Stephen D. Ginsberg,i,5 Gabriele V. Ronnett,‘s4 Randall Ft. Reed,233I6 Donald L. Price,‘,2.4,5 and Sangram S. Sisodiaiz5 ‘Departments of Pathology, 2Neuroscience, 3Molecular Biology and Genetics, and 4Neurology, 5Neuropathology Laboratory, and the 6Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205 and ‘Departments of Neurosciences and Pathology and Neuroscience, University of California at San Diego, La Jolla, California 92093 Deposition of l3-amyloid (AS) in senile plaques is a major APLP2, alternative splicing, chondroitin sulfate glycosami- pathological characteristic of Alzheimer’s disease. Ap is noglycan, glomeruli, olfactory epithelium, o/factory sen- generated by proteolytic processing of amyloici precursor sory neurons] proteins (APP). APP is a member of a family of related poly- peptides that includes amyloid precursor-like proteins A principal pathological feature of Alzheimer’s disease is the APLPl and APLPS. To examine the distribution of APLP2 deposition of Al3 in brain parenchyma (Glenner and Wong, in the nervous system, we generated antibodies specific 1984; Masters et al., 1985). Al3, an -4 kDa polypeptide, is for APLPS and used these reagents in immunocytochemi- derived from larger type I integral membrane glycoproteins, cal and biochemical studies of the rodent nervous system. termed the amyloid precursor proteins (APP) (Kang et al., 1987; In this report, we document that in cortex and hippocam- Kitaguchi et al., 1988; Ponte et al., 1988; Tanzi et al., 1988; pus, APLPS is enriched in postsynaptic compartments.
    [Show full text]
  • APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans
    Tkatchenko, A. V., Tkatchenko, T. V., Guggenheim, J. A., Verhoeven, V. J. M., Hysi, P. G., Wojciechowski, R., Singh, P. K., Kumar, A., Thinakaran, G., Williams, C. (2015). APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans. PLoS Genetics, 11(8), [e1005432]. https://doi.org/10.1371/journal.pgen.1005432 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1371/journal.pgen.1005432 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Public Library of Science at http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005432. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ RESEARCH ARTICLE APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans Andrei V. Tkatchenko1,2☯*, Tatiana V. Tkatchenko1☯, Jeremy A. Guggenheim3☯, Virginie J. M. Verhoeven4,5, Pirro G. Hysi6, Robert Wojciechowski7,8, Pawan Kumar Singh9, Ashok Kumar9,10, Gopal Thinakaran11, Consortium for Refractive Error and Myopia (CREAM)¶, Cathy Williams12 1 Department of Ophthalmology, Columbia University, New York, New York, United
    [Show full text]
  • Interaction of the Amyloid Precursor Protein-Like Protein 1 (APLP1) E2 Domain with Heparan Sulfate Involves Two Distinct Binding Modes ISSN 1399-0047
    research papers Interaction of the amyloid precursor protein-like protein 1 (APLP1) E2 domain with heparan sulfate involves two distinct binding modes ISSN 1399-0047 Sven O. Dahms,a* Magnus C. Mayer,b,c Dirk Roeser,a Gerd Multhaupd and Manuel E. Thana* Received 1 October 2014 aProtein Crystallography Group, Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena, Germany, Accepted 10 December 2014 bInstitute of Chemistry and Biochemistry, Freie Universita¨t Berlin, Thielallee 63, 14195 Berlin, Germany, cMiltenyi Biotec GmbH, Robert-Koch-Strasse 1, 17166 Teterow, Germany, and dDepartment of Pharmacology and Therapeutics, McGill University Montreal, Montreal, Quebec H3G 1Y6, Canada. *Correspondence e-mail: [email protected], [email protected] Keywords: APP-like protein 1; heparan sulfate binding domain; protein heparin complex; Alzheimer’s disease. Beyond the pathology of Alzheimer’s disease, the members of the amyloid precursor protein (APP) family are essential for neuronal development and cell PDB references: apo APLP1 E2, 4rd9; APLP1 E2 homeostasis in mammals. APP and its paralogues APP-like protein 1 (APLP1) in complex with dp12, 4rda and APP-like protein 2 (APLP2) contain the highly conserved heparan sulfate (HS) binding domain E2, which effects various (patho)physiological functions. Supporting information: this article has Here, two crystal structures of the E2 domain of APLP1 are presented in the apo supporting information at journals.iucr.org/d form and in complex with a heparin dodecasaccharide at 2.5 A˚ resolution. The apo structure of APLP1 E2 revealed an unfolded and hence flexible N-terminal helix A. The (APLP1 E2)2–(heparin)2 complex structure revealed two distinct binding modes, with APLP1 E2 explicitly recognizing the heparin terminus but also interacting with a continuous heparin chain.
    [Show full text]
  • The Human Genome Project
    TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 Contents FOREWORD . 2 THE GENOME PROJECT—WHY THE DOE? . 4 A bold but logical step INTRODUCING THE HUMAN GENOME . 6 The recipe for life Some definitions . 6 A plan of action . 8 EXPLORING THE GENOMIC LANDSCAPE . 10 Mapping the terrain Two giant steps: Chromosomes 16 and 19 . 12 Getting down to details: Sequencing the genome . 16 Shotguns and transposons . 20 How good is good enough? . 26 Sidebar: Tools of the Trade . 17 Sidebar: The Mighty Mouse . 24 BEYOND BIOLOGY . 27 Instrumentation and informatics Smaller is better—And other developments . 27 Dealing with the data . 30 ETHICAL, LEGAL, AND SOCIAL IMPLICATIONS . 32 An essential dimension of genome research Foreword T THE END OF THE ROAD in Little has been rapid, and it is now generally agreed Cottonwood Canyon, near Salt that this international project will produce Lake City, Alta is a place of the complete sequence of the human genome near-mythic renown among by the year 2005. A skiers. In time it may well And what is more important, the value assume similar status among molecular of the project also appears beyond doubt. geneticists. In December 1984, a conference Genome research is revolutionizing biology there, co-sponsored by the U.S. Department and biotechnology, and providing a vital of Energy, pondered a single question: Does thrust to the increasingly broad scope of the modern DNA research offer a way of detect- biological sciences.
    [Show full text]
  • Systematic Elucidation of Neuron-Astrocyte Interaction in Models of Amyotrophic Lateral Sclerosis Using Multi-Modal Integrated Bioinformatics Workflow
    ARTICLE https://doi.org/10.1038/s41467-020-19177-y OPEN Systematic elucidation of neuron-astrocyte interaction in models of amyotrophic lateral sclerosis using multi-modal integrated bioinformatics workflow Vartika Mishra et al.# 1234567890():,; Cell-to-cell communications are critical determinants of pathophysiological phenotypes, but methodologies for their systematic elucidation are lacking. Herein, we propose an approach for the Systematic Elucidation and Assessment of Regulatory Cell-to-cell Interaction Net- works (SEARCHIN) to identify ligand-mediated interactions between distinct cellular com- partments. To test this approach, we selected a model of amyotrophic lateral sclerosis (ALS), in which astrocytes expressing mutant superoxide dismutase-1 (mutSOD1) kill wild-type motor neurons (MNs) by an unknown mechanism. Our integrative analysis that combines proteomics and regulatory network analysis infers the interaction between astrocyte-released amyloid precursor protein (APP) and death receptor-6 (DR6) on MNs as the top predicted ligand-receptor pair. The inferred deleterious role of APP and DR6 is confirmed in vitro in models of ALS. Moreover, the DR6 knockdown in MNs of transgenic mutSOD1 mice attenuates the ALS-like phenotype. Our results support the usefulness of integrative, systems biology approach to gain insights into complex neurobiological disease processes as in ALS and posit that the proposed methodology is not restricted to this biological context and could be used in a variety of other non-cell-autonomous communication
    [Show full text]
  • APLP2 Regulates Neuronal Stem Cell Differentiation During Cortical
    1268 Research Article APLP2 regulates neuronal stem cell differentiation during cortical development S. Ali M. Shariati1,2, Pierre Lau1,2, Bassem A. Hassan1,2, Ulrike Mu¨ ller3, Carlos G. Dotti1,2,4,*, Bart De Strooper1,2,* and Annette Ga¨rtner1,2,* 1KU Leuven, Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), 3000 Leuven, Belgium 2VIB Center for the Biology of Disease, 3000 Leuven, Belgium 3Institute of Pharmacy and Molecular Biotechnology, University Heidelberg, 69120 Heidelberg, Germany 4Centro de Biologı´a Molecular Severo Ochoa, CSIC/UAM, C/Nicola´s Cabrera 1, Campus de la Universidad Auto´noma de Madrid, 28049 Madrid, Spain *Authors for correspondence ([email protected]; [email protected]; [email protected]) Accepted 14 December 2012 Journal of Cell Science 126, 1268–1277 ß 2013. Published by The Company of Biologists Ltd doi: 10.1242/jcs.122440 Summary Expression of amyloid precursor protein (APP) and its two paralogues, APLP1 and APLP2 during brain development coincides with key cellular events such as neuronal differentiation and migration. However, genetic knockout and shRNA studies have led to contradictory conclusions about their role during embryonic brain development. To address this issue, we analysed in depth the role of APLP2 during neurogenesis by silencing APLP2 in vivo in an APP/APLP1 double knockout mouse background. We find that under these conditions cortical progenitors remain in their undifferentiated state much longer, displaying a higher number of mitotic cells. In addition, we show that neuron-specific APLP2 downregulation does not impact the speed or position of migrating excitatory cortical neurons.
    [Show full text]
  • Amyloid Precursor Protein and Amyloid Precursor-Like Protein 2 in Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 15 Amyloid precursor protein and amyloid precursor-like protein 2 in cancer Poomy Pandey1, Bailee Sliker1, Haley L. Peters1,6, Amit Tuli1,2,7, Jonathan Herskovitz1, Kaitlin Smits1, Abhilasha Purohit3, Rakesh K. Singh3,4, Jixin Dong1,4, Surinder K. Batra2,4, Donald W. Coulter4,5 and Joyce C. Solheim1,2,3,4 1 Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA 2 Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA 3 Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA 4 Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA 5 Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA 6 Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA 7 Wellcome Trust/DBT India Alliance Intermediate Fellow, CSIR-Institute of Microbial Technology, Chandigarh, India Correspondence to: Joyce C. Solheim, email: [email protected] Keywords: amyloid precursor protein, amyloid precursor-like protein 2, cancer, growth, migration Received: October 02, 2015 Accepted: January 23, 2016 Published: January 31, 2016 ABSTRACT Amyloid precursor protein (APP) and its family members amyloid precursor- like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are type 1 transmembrane glycoproteins that are highly conserved across species. The transcriptional regulation of APP and APLP2 is similar but not identical, and the cleavage of both proteins is regulated by phosphorylation. APP has been implicated in Alzheimer’s disease causation, and in addition to its importance in neurology, APP is deregulated in cancer cells.
    [Show full text]
  • The Human Β-Amyloid Precursor Protein: Biomolecular and Epigenetic Aspects
    BioMol Concepts 2015; 6(1): 11–32 Review Khue Vu Nguyen* The human β-amyloid precursor protein: biomolecular and epigenetic aspects Abstract: Beta-amyloid precursor protein (APP) is a mem- SAD in particular. Accurate quantification of various APP- brane-spanning protein with a large extracellular domain mRNA isoforms in brain tissues is needed, and antisense and a much smaller intracellular domain. APP plays a drugs are potential treatments. central role in Alzheimer’s disease (AD) pathogenesis: APP processing generates β-amyloid (Aβ) peptides, which Keywords: Alzheimer’s disease; autism; β-amyloid pre- are deposited as amyloid plaques in the brains of AD cursor protein; β-amyloid (Aβ) peptide; epigenetics; individuals; point mutations and duplications of APP are epistasis; fragile X syndrome; genomic rearrangenments; causal for a subset of early-onset familial AD (FAD) (onset HGprt; Lesch-Nyhan syndrome. age < 65 years old). However, these mutations in FAD rep- ∼ resent a very small percentage of cases ( 1%). Approxi- DOI 10.1515/bmc-2014-0041 mately 99% of AD cases are nonfamilial and late-onset, Received December 10, 2014; accepted January 22, 2015 i.e., sporadic AD (SAD) (onset age > 65 years old), and the pathophysiology of this disorder is not yet fully under- stood. APP is an extremely complex molecule that may be functionally important in its full-length configuration, as well as the source of numerous fragments with vary- Introduction ing effects on neural function, yet the normal function of The β-amyloid precursor protein (APP) belongs to a APP remains largely unknown. This article provides an family of evolutionary and structurally related proteins.
    [Show full text]
  • Building the Vertebrate Codex Using the Gene Breaking Protein Trap Library
    TOOLS AND RESOURCES Building the vertebrate codex using the gene breaking protein trap library Noriko Ichino1, MaKayla R Serres1, Rhianna M Urban1, Mark D Urban1, Anthony J Treichel1, Kyle J Schaefbauer1, Lauren E Greif1, Gaurav K Varshney2,3, Kimberly J Skuster1, Melissa S McNulty1, Camden L Daby1, Ying Wang4, Hsin-kai Liao4, Suzan El-Rass5, Yonghe Ding1,6, Weibin Liu1,6, Jennifer L Anderson7, Mark D Wishman1, Ankit Sabharwal1, Lisa A Schimmenti1,8,9, Sridhar Sivasubbu10, Darius Balciunas11, Matthias Hammerschmidt12, Steven Arthur Farber7, Xiao-Yan Wen5, Xiaolei Xu1,6, Maura McGrail4, Jeffrey J Essner4, Shawn M Burgess2, Karl J Clark1*, Stephen C Ekker1* 1Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States; 2Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, United States; 3Functional & Chemical Genomics Program, Oklahoma Medical Research Foundation, Oklahoma City, United States; 4Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States; 5Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto & University of Toronto, Toronto, Canada; 6Department of Cardiovascular Medicine, Mayo Clinic, Rochester, United States; 7Department of Embryology, Carnegie Institution for Science, Baltimore, United States; 8Department of Clinical Genomics, Mayo Clinic, Rochester, United States; 9Department of Otorhinolaryngology, Mayo Clinic, Rochester, United States; 10Genomics and Molecular Medicine Unit, CSIR– 11 *For correspondence: Institute of Genomics and Integrative Biology, Delhi, India; Department of [email protected] (KJC); Biology, Temple University, Philadelphia, United States; 12Institute of Zoology, [email protected] (SCE) Developmental Biology Unit, University of Cologne, Cologne, Germany Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands That Promote Axonal Growth
    Research Article: New Research Development Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth Jeremy S. Toma,1 Konstantina Karamboulas,1,ª Matthew J. Carr,1,2,ª Adelaida Kolaj,1,3 Scott A. Yuzwa,1 Neemat Mahmud,1,3 Mekayla A. Storer,1 David R. Kaplan,1,2,4 and Freda D. Miller1,2,3,4 https://doi.org/10.1523/ENEURO.0066-20.2020 1Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada, 2Institute of Medical Sciences University of Toronto, Toronto, Ontario M5G 1A8, Canada, 3Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada, and 4Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada Abstract Peripheral nerves provide a supportive growth environment for developing and regenerating axons and are es- sential for maintenance and repair of many non-neural tissues. This capacity has largely been ascribed to paracrine factors secreted by nerve-resident Schwann cells. Here, we used single-cell transcriptional profiling to identify ligands made by different injured rodent nerve cell types and have combined this with cell-surface mass spectrometry to computationally model potential paracrine interactions with peripheral neurons. These analyses show that peripheral nerves make many ligands predicted to act on peripheral and CNS neurons, in- cluding known and previously uncharacterized ligands. While Schwann cells are an important ligand source within injured nerves, more than half of the predicted ligands are made by nerve-resident mesenchymal cells, including the endoneurial cells most closely associated with peripheral axons. At least three of these mesen- chymal ligands, ANGPT1, CCL11, and VEGFC, promote growth when locally applied on sympathetic axons.
    [Show full text]
  • Keratinocytes from APP/APLP2-Deficient Mice Are Impaired in Proliferation, Adhesion and Migration in Vitro
    EXPERIMENTAL CELL RESEARCH 312 (2006) 1939– 1949 available at www.sciencedirect.com www.elsevier.com/locate/yexcr Research Article Keratinocytes from APP/APLP2-deficient mice are impaired in proliferation, adhesion and migration in vitro Christina Siemesa,1, Thomas Quasta,2, Christiane Kummera,3, Sven Wehnera,4, Gregor Kirfela, Ulrike Müllerb, Volker Herzoga,⁎ aInstitute of Cell Biology and Bonner Forum Biomedizin, University of Bonn, Ulrich-Haberlandstr. 61A, 53121 Bonn, Germany bMax Planck Institute for Brain Research, Deutschordenstr. 46, 60528 Frankfurt, Germany and Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany ARTICLE INFORMATION ABSTRACT Article Chronology: Growing evidence shows that the soluble N-terminal form (sAPPα) of the amyloid precursor Received 4 January 2006 protein (APP) represents an epidermal growth factor fostering keratinocyte proliferation, Revised version received migration and adhesion. APP is a member of a protein family including the two mammalian 22 February 2006 amyloid precursor-like proteins APLP1 and APLP2. In the mammalian epidermis, only APP Accepted 23 February 2006 and APLP2 are expressed. APP and APLP2-deficient mice die shortly after birth but do not Available online 11 April 2006 display a specific epidermal phenotype. In this report, we investigated the epidermis of APP and/or APLP2 knockout mice. Basal keratinocytes showed reduced proliferation in vivo by Abbreviations: about 40%. Likewise, isolated keratinocytes exhibited reduced proliferation rates in vitro, APP, β-amyloid precursor protein which could be completely rescued by either exogenously added recombinant sAPPα,orby APLP1, β-amyloid precursor co-culture with dermal fibroblasts derived from APP knockout mice. Moreover, APP- like protein 1 knockout keratinocytes revealed reduced migration velocity resulting from severely APLP2, β-amyloid precursor compromised cell substrate adhesion.
    [Show full text]