Loss of Centromeric Histone H3 (CENH3) from PNAS PLUS Centromeres Precedes Uniparental Chromosome Elimination in Interspecific Barley Hybrids
Loss of centromeric histone H3 (CENH3) from PNAS PLUS centromeres precedes uniparental chromosome elimination in interspecific barley hybrids Maryam Saneia, Richard Pickeringb,1, Katrin Kumkea, Shuhei Nasudac, and Andreas Houbena,2 aLeibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany; bNew Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, New Zealand; and cLaboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, 606-8502 Kyoto, Japan Edited by Hugo K. Dooner, Waksman Institute, Rutgers University, Piscataway, NJ, and approved June 14, 2011 (received for review February 28, 2011) Uniparental chromosome elimination occurs in several interspecific elimination in interpecific hybrids, we analyzed the centromere- hybrids of plants. We studied the mechanism underlying selective specific histone H3 variant (CENH3) [originally called CENP-A elimination of the paternal chromosomes during the early develo- in humans (20) and HTR12 in Arabidopsis thaliana (21)] in pment of Hordeum vulgare × Hordeum bulbosum embryos. The chromosomally unstable and stable Hordeum vulgare × H. bul- following conclusions regarding the role of the centromere-specific bosum combinations. CENH3 was selected for our study because histone H3 variant (CENH3) in the process of chromosome elimina- in mammals (22), Caenorhabditis elegans (23), and Drosophila tion were drawn: (i) centromere inactivity of H. bulbosum chro- melanogaster (24), its loss results in the failure of centromere mosomes triggers the mitosis-dependent process of uniparental formation and chromosome segregation. A region in CENH3 × chromosome elimination in unstable H. vulgare H. bulbosum defined as the centromere targeting domain (CATD) is critical hybrids; (ii) centromeric loss of CENH3 protein rather than uniparen- for centromeric localization of CENH3 in various species (25– tal silencing of CENH3 genes causes centromere inactivity; (iii)in 27).
[Show full text]