Transcriptome Analysis of Brachypodium During Fungal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genome Sequence for Rye (Secale Cereale L.)
The Plant Journal (2017) 89, 853–869 doi: 10.1111/tpj.13436 RESOURCE Towards a whole-genome sequence for rye (Secale cereale L.) Eva Bauer1,*, Thomas Schmutzer2, Ivan Barilar3, Martin Mascher2, Heidrun Gundlach4, Mihaela M. Martis4,†, Sven O. Twardziok4, Bernd Hackauf5, Andres Gordillo6, Peer Wilde6, Malthe Schmidt6, Viktor Korzun6, Klaus F.X. Mayer4, Karl Schmid3, Chris-Carolin Schon€ 1 and Uwe Scholz2,* 1Technical University of Munich, Plant Breeding, Liesel-Beckmann-Str. 2, 85354 Freising, Germany, 2Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Stadt Seeland, Germany, 3Universitat€ Hohenheim, Crop Biodiversity and Breeding Informatics, Fruwirthstr. 21, 70599 Stuttgart, Germany, 4Helmholtz Zentrum Munchen,€ Plant Genome and Systems Biology, Ingolstadter€ Landstraße 1, 85764 Neuherberg, Germany, 5Julius Kuhn-Institute,€ Institute for Breeding Research on Agricultural Crops, Rudolf-Schick-Platz 3a, 18190 Sanitz, Germany, and 6KWS LOCHOW GMBH, Ferdinand-von-Lochow-Str. 5, 29303 Bergen, Germany Received 3 August 2016; revised 8 November 2016; accepted 21 November 2016; published online 26 November 2016. *For correspondence (e-mails [email protected] and [email protected]). E.B. and T.S. are co-first authors. †Present address: NBIS (National Bioinformatics Infrastructure Sweden), Division of Cell Biology, Department of Clinical and Experimental Medicine, Linkoping€ University, 558185 Linkoping,€ Sweden. SUMMARY We report on a whole-genome draft sequence of rye (Secale cereale L.). Rye is a diploid Triticeae species clo- sely related to wheat and barley, and an important crop for food and feed in Central and Eastern Europe. Through whole-genome shotgun sequencing of the 7.9-Gbp genome of the winter rye inbred line Lo7 we obtained a de novo assembly represented by 1.29 million scaffolds covering a total length of 2.8 Gbp. -
Structural Characteristics of Scbx Genes Controlling the Biosynthesis of Hydroxamic Acids in Rye (Secale Cereale L.)
J Appl Genetics (2015) 56:287–298 DOI 10.1007/s13353-015-0271-z PLANT GENETICS • ORIGINAL PAPER Structural characteristics of ScBx genes controlling the biosynthesis of hydroxamic acids in rye (Secale cereale L.) Beata Bakera & Bogna Makowska & Jolanta Groszyk & Michał Niziołek & Wacław Orczyk & Hanna Bolibok-Brągoszewska & Aneta Hromada-Judycka & Monika Rakoczy-Trojanowska Received: 15 July 2014 /Revised: 12 January 2015 /Accepted: 13 January 2015 /Published online: 10 February 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Benzoxazinoids (BX) are major secondary metab- analyses of the resulting contigs were used to examine the olites of gramineous plants that play an important role in dis- structure and other features of these genes, including their ease resistance and allelopathy. They also have many other promoters, introns and 3’UTRs. Comparative analysis unique properties including anti-bacterial and anti-fungal ac- showed that the ScBx genes are similar to those of other tivity, and the ability to reduce alfa–amylase activity. The bio- Poaceae species, especially to the TaBx genes. The polymor- synthesis and modification of BX are controlled by the genes phisms present both in the coding sequences and non-coding Bx1 ÷ Bx10, GT and glu, and the majority of these Bx genes regions of ScBx in relation to other Bx genes are predicted to have been mapped in maize, wheat and rye. However, the have an impact on the expression, structure and properties of genetic basis of BX biosynthesis remains largely the encoded proteins. uncharacterized apart from some data from maize and wheat. -
Download.Jsp (Accessed on 30 May 2021)
agronomy Article Morphological, Genetic and Biochemical Evaluation of Dasypyrum villosum (L.) P. Candargy in the Gene Bank Collection VojtˇechHolubec 1,* ,Václav Dvoˇráˇcek 2 , Leona Svobodová Leišová 3 and Sezai Ercisli 4 1 Department of Gene Bank, Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic 2 Department of Product Quality, Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic; [email protected] 3 Department of Molecular Biology, Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic; [email protected] 4 Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum 25240, Turkey; [email protected] * Correspondence: [email protected]; Tel.: +42-02-3302-2497 Abstract: The Dasypyrum villosum gene bank collection, comprising 32 accessions, was characterized morphologically and genetically for resistance to leaf diseases and for quality parameters of seeds with specific accent to protein polymorphism and protein and starch composition. The collected material represented nearly the whole distribution area in the Mediterranean. For SSR analysis, a set of 40 SSR markers for wheat was selected. A matrix of distances between genotypes was calculated using Simple Matching dissimilarity coefficient in the DARwin software. The collection was scored for resistance to powdery mildew, brown, stripe and stem rusts. A modified SDS-PAGE method Citation: Holubec, V.; Dvoˇráˇcek,V.; with clear interpretation of high and low molecular glutenin subunits (HMW, LMW) was used for Svobodová Leišová, L.; Ercisli, S. Morphological, Genetic and characterization of accessions. Morphological phenotyping revealed considerable diversity allowing Biochemical Evaluation of Dasypyrum the distinguishing of clusters tracing the geographical origin of accessions. Genetic diversity showed villosum (L.) P. -
The Genetic Background of Benzoxazinoid Biosynthesis in Cereals
Acta Physiol Plant (2015) 37:176 DOI 10.1007/s11738-015-1927-3 REVIEW The genetic background of benzoxazinoid biosynthesis in cereals 1 1 1 B. Makowska • B. Bakera • M. Rakoczy-Trojanowska Received: 8 July 2014 / Revised: 11 May 2015 / Accepted: 22 July 2015 / Published online: 6 August 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Benzoxazinoids (BXs) are important com- Occurrence, characterization and biological role pounds in plant defense. Their allelopathic, nematode of BXs suppressive and antimicrobial properties are well known. BXs are found in monocot plants and in a few Benzoxazinoids (BXs) are protective and allelophatic sec- species of dicots. Over 50 years of study have led to ondary metabolites found in numerous species belonging to the characterization of the chromosomal locations and the Poaceae family, including maize, rye, wheat (Niemeyer coding sequences of almost all the genes involved in 1988a;Gru¨netal.2005;Nomuraetal.2007;Freyetal. BX biosynthesis in a number of cereal species: 2009; Chu et al. 2011; Sue et al. 2011), the wheat progen- ZmBx1–ZmBx10a7c in maize, TaBx1–TaBx5, TaGT itors Triticum urartu, Aegilops speltoides, Aegilops squar- and Taglu in wheat, ScBx17ScBx5, ScBx6-like, ScGT rosa (Niemeyer 1988b), and wild barleys: Hordeum and Scglu in rye. So far, the ortholog of the maize Bx7 roshevitzii, Hordeum flexuosum, Hordeum brachyantherum, gene has not been identified in the other investigated Hordeum lechleri (Gru¨netal.2005) and in genera—Chus- species. This review aims to summarize the available quea, Elymus, Arudo (Zu`n˜iga et al. 1983), Coix (Nagao et al. -
Large Trees, Supertrees and the Grass Phylogeny
LARGE TREES, SUPERTREES AND THE GRASS PHYLOGENY Thesis submitted to the University of Dublin, Trinity College for the Degree of Doctor of Philosophy (Ph.D.) by Nicolas Salamin Department of Botany University of Dublin, Trinity College 2002 Research conducted under the supervision of Dr. Trevor R. Hodkinson Department of Botany, University of Dublin, Trinity College Dr. Vincent Savolainen Jodrell Laboratory, Molecular Systematics Section, Royal Botanic Gardens, Kew, London DECLARATION I thereby certify that this thesis has not been submitted as an exercise for a degree at any other University. This thesis contains research based on my own work, except where otherwise stated. I grant full permission to the Library of Trinity College to lend or copy this thesis upon request. SIGNED: ACKNOWLEDGMENTS I wish to thank Trevor Hodkinson and Vincent Savolainen for all the encouragement they gave me during the last three years. They provided very useful advice on scientific papers, presentation lectures and all aspects of the supervision of this thesis. It has been a great experience to work in Ireland, and I am especially grateful to Trevor for the warm welcome and all the help he gave me, at work or outside work, since the beginning of this Ph.D. in the Botany Department. I will always remember his patience and kindness to me at this time. I am also grateful to Vincent for his help and warm welcome during the different periods of time I stayed in London, but especially for all he did for me since my B.Sc. at the University of Lausanne. I wish also to thank Prof. -
Variation of Nitrate Reductase Genes in Selected Grass Species
Variation of nitrate reductase genes in selected grass species Jizhong Zhou, Andrzej Kilian, Robert L. Warner, and Andris Kleinhofs Abstract: In order to study the variation of nitrate reductase (NR) genes among grass species, gene number, intron size and number, and the heme-hinge fragment sequence of 25 grass species were compared. Genomic DNA cut with six restriction enzymes and hybridized with the barley NAD(P)H and NADH NR gene probes revealed a single NAD(P)H NR gene copy and two or more NADH NR gene copies per haploid genome in most of the species examined. Major exceptions were Hordeum vulgare, H. vulgare ssp. spontaneum, and Avena strigosa, which appeared to have a single NADH NR gene copy. The NADH NR gene intron number and lengths were examined by polymerase chain reaction amplification. Introns I and I11 appeared to be absent in at least one of the NADH NR genes in the grass species, while intron I1 varied from 0.8 to 2.4 kilobases in length. The NADH NR gene heme-hinge regions were amplified and sequenced. The estimated average overall nucleotide substitution rate in the sequenced region was 7.8 X lo-'' substitutions/site per year. The synonymous substitution rate was 2.11 X substitutions/synonymous site per year and the nonsynonymous substitution rate was 4.10 X lo-'' substitutions/nonsynonymous site per year. Phylogenetic analyses showed that all of the wild Hordeum species examined clustered in a group separate from H. vulgare and H. vulgare ssp. spontaneum. Key words: nitrate reductase gene, gene copy number, intron, molecular phylogeny, grasses. -
Application of the ISSR Method to Estimate the Genetic Similarity of Dasypyrum Villosum (L.) P
Biodiv. Res. Conserv. 21: 7-12, 2011 BRC www.brc.amu.edu.pl DOI 10.2478/v10119-011-0002-1 Application of the ISSR method to estimate the genetic similarity of Dasypyrum villosum (L.) P. Candargy Greek populations to Triticum and Secale species Agnieszka Grπdzielewska Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland, e-mail: [email protected] Abstract: In the study, the genetic similarity between Dasypyrum villosum L. (P.) Candargy and Triticum L. and Secale L. species was studied on the basis of ISSR markers. As a very polymorphic, effective and reproducible method, ISSR can be successfully employed to evaluate polymorphism between and inside different species. The polymorphic information content values (PIC) of ISSR method ranged from 0.57 to 0.87, with the mean value of 0.7. The genetic similarity of the forms analyzed ranged from 0.27 to 0.97, with the mean value of 0.47, indicating their high diversity. A higher similarity of Dasypyrum villosum to Triticum species, in comparison with Secale was found ñ the mean Dice genetic similarity index between genera was calculated at 0.40 for Dasypyrum and Triticum, and at 0.31 for Dasypyrum and Secale. Key words: Dasypyrum villosum, Secale, Triticum, ISSR, molecular markers, genetic similarity 1. Introduction the quality improvement of wheat (De Pace et al. 2001). Dasypyrum villosum (L.) P. Candargy, is a cross- Most researchers, on the basis of the similarity of pollinating, annual diploid grass (2n=2x=14, VV) from morphology, place Dasypyrum near the Triticum/Agro- the tribe Triticeae, native to the north-eastern part of pyron complex and Secale (Sakamoto 1973; West et al. -
Production of Embryo-Callus-Regenerated Hybrids Between Triticum Aestivum and Agropyron Cristatum Possessing One B Chromosome Q Chen, J Jahier, Y Cauderon
Production of embryo-callus-regenerated hybrids between Triticum aestivum and Agropyron cristatum possessing one B chromosome Q Chen, J Jahier, Y Cauderon To cite this version: Q Chen, J Jahier, Y Cauderon. Production of embryo-callus-regenerated hybrids between Triticum aestivum and Agropyron cristatum possessing one B chromosome. Agronomie, EDP Sciences, 1992, 12 (7), pp.551-555. hal-00885499 HAL Id: hal-00885499 https://hal.archives-ouvertes.fr/hal-00885499 Submitted on 1 Jan 1992 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Plant improvement Production of embryo-callus-regenerated hybrids between Triticum aestivum and Agropyron cristatum possessing one B chromosome Q Chen J Jahier Y Cauderon 1 INRA, Station d’Amélioration des Plantes, BP 29, 35650 Le Rheu; 2 INRA, Station d’Amélioration des Plantes, 78026 Versailles Cedex, France (Received 13 February 1992; accepted 18 May 1992) Summary — Plant regeneration from immature intergeneric embryos through direct callus induction was investigated in the case of hybridization between T aestivum cv Chinese Spring (2n = 6x = 42, AABBDD) and A cristatum 4x with one B chromosome (2n = 4x = 28 + 1 B, PPPP). Twenty-three abnormal immature hybrid embryos were directly cul- tured on MS solid medium with 2 mg / L 2,4-D to induce calli which were then transferred to hormone free MS medium for plant regeneration. -
Eremopyrum(Ledeb.) Jaub. & Spach, a New Genus for the Flora of Western
Acta Botanica Malacitana 43 (2018). 125-127 Nota corta DOI: http://dx.doi.org/10.24310/abm.v43i0.3798 Miguel Cueto et al. Eremopyrum, a new genus in the Iberian Peninsula 125 Eremopyrum (Ledeb.) Jaub. & Spach, a new genus for the flora of western Europe (Iberian Peninsula) Miguel Cueto1*, Julián Fuentes2 & Gabriel Blanca3 1Departamento de Biología y Geología, CECOUAL, Universidad de Almería, ES-04120 Almería, Spain. 2C/ Castillo 5, bajo F, ES-18140 La Zubia, Granada, Spain. 3Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, C/ Fuentenueva s/n, ES-18001 Granada, Spain. Correspondencia Eremopyrum (Ledeb.) Jaub. & Spach, un nuevo género para la flora de Europa M. Cueto occidental (Península Ibérica) e-mail: [email protected] Recibido: 25 diciembre 2017 Key words: Flora, Europa, Poaceae, Eremopyrum. Aceptado: 9 mayo 2018 Publicado on-line: junio 2018 Palabras clave: Flora, Europa, Poaceae, Eremopyrum. Eremopyrum (Ledeb.) Jaub. & Spach was first eastern Europe. Melderis (1980), Blanca et al. recognized as a taxon by Ledebour (1829), who (2011), Ibn Tattou (2014) and The information treated it as Triticum sect. Eremopyrum. Bentham & system of the plants of Spain (Anthos, 2017) Hooker (1883) transferred it to Agropyron Gaertn., contains no indication of the presence of this genus leaving it as a section (Cabi & Dogan, 2010). in the Iberian Peninsula. Jaubert & Spach (1851) recognized Eremopyrum During the course of the plant collection as a genus, distinguishing it from Agropyron on by the authors in 2017 and 2018 in the Guadix the basis of its annual habit [Type: Eremopyrum Depression (Granada, Spain) a population of E. orientale (L.) Jaub. -
Expression and Function of the Chloroplast-Encoded Gene Matk
Expression and Function of the Chloroplast-encoded Gene matK. Michelle Marie Barthet Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Biological Sciences K. W. Hilu, Chair E. Beers G. Gillaspy J. Sible R. A. Walker February 9, 2006 Blacksburg, Virginia Keywords: MatK, chloroplast, maturase, fast-evolving, Orchidaceae Copyright 2006, Michelle Marie Barthet Expression and Function of the chloroplast-encoded gene matK. Michelle Marie Barthet ABSTRACT The chloroplast matK gene has been identified as a rapidly evolving gene at nucleotide and corresponding amino acid levels. The high number of nucleotide substitutions and length mutations in matK has provided a strong phylogenetic signal for resolving plant phylogenies at various taxonomic levels. However, these same features have raised questions as to whether matK produces a functional protein product. matK is the only proposed chloroplast-encoded group II intron maturase. There are 15 genes in the chloroplast that would require a maturase for RNA splicing. Six of these genes have introns that are not excised by a nuclear imported maturase, leaving MatK as the only candidate for processing introns in these genes. Very little research has been conducted concerning the expression and function of this important gene and its protein product. It has become crucial to understand matK expression in light of its significance in RNA processing and plant systematics. In this study, we examined the expression, function and evolution of MatK using a combination of molecular and genetic methods. Our findings indicate that matK RNA and protein is expressed in a variety of plant species, and expression of MatK protein is regulated by development. -
Morphological and Genome-Wide Evidence for Natural Hybridisation Within the Genus Stipa (Poaceae)
www.nature.com/scientificreports OPEN Morphological and genome‑wide evidence for natural hybridisation within the genus Stipa (Poaceae) Evgenii Baiakhmetov1,2*, Arkadiusz Nowak3,4, Polina D. Gudkova2,5 & Marcin Nobis1* Hybridisation in the wild between closely related species is a common mechanism of speciation in the plant kingdom and, in particular, in the grass family. Here we explore the potential for natural hybridisation in Stipa (one of the largest genera in Poaceae) between genetically distant species at their distribution edges in Mountains of Central Asia using integrative taxonomy. Our research highlights the applicability of classical morphological and genome reduction approaches in studies on wild plant species. The obtained results revealed a new nothospecies, Stipa × lazkovii, which exhibits intermediate characters to S. krylovii and S. bungeana. A high-density DArTseq assay disclosed that S. × lazkovii is an F1 hybrid, and established that the plastid and mitochondrial DNA was inherited from S. bungeana. In addition, molecular markers detected a hybridisation event between morphologically and genetically distant species S. bungeana and probably S. glareosa. Moreover, our fndings demonstrated an uncertainty on the taxonomic status of S. bungeana that currently belongs to the section Leiostipa, but it is genetically closer to S. brevifora from the section Barbatae. Finally, we noticed a discrepancy between the current molecular data with the previous fndings on S. capillata and S. sareptana. Hybridisation in the wild between closely related species is a common mechanism of speciation in the plant kingdom1–7. Due to the prevalence of polyploidy found in angiosperms it has been estimated that around 11% of fowering plants may have arisen through hybridisation events 4. -
Ardabil-Tabriz, Iran, by the Members of Kyoto University Scientific Expedition to the Karakorani and Hindukush in 1955 (Sakamoto and Muramatsu, 1965)
INTERGENERIC HYBRIDISATION BETWEEN EREMOPYRUM ORIENTALE AND HENRARDIA PERSICA, AN EXAMPLE OF POLYPLOID SPECIES FORMATION* SADAO SAKAMOTO National Institute of Genetics, Misima, Japan Received5.iv.71 1. INTRODUCTION THE tribe Triticeae, Gramineae, includes about 14 genera. Among them Henrardia C. E. Hubbard represents a very small genus which contains two annual species, Hn. persica (Boiss.) C. E. Hubbard and Hn. pubescens (Bertol.) C. E. Hubbard (Hubbard, 1946). The chromosome numbers of both have been reported as 2n =14,for the former by Sakamoto and Muramatsu (1965) and for the latter by Bowden (1966). The two representatives have quite a characteristic morphology, different, according to Bor (1960), from other genera of the tribe by the following characters: spikelets 1-2-flowered, awnless, sunk into a jointed fragile spike-axis and closely appressed to it; florets enclosed in collateral glumes; lemmas thin, membranous, 3-5-nerved. Both species are distributed in Turkey (Anatolia) and from there have dispersed eastwards through Armenia and Transcaucasia to Russian Central Asia and southwards to Iraq, Iran, Afghanistan and Baluchistan (Hubbard, bc. cit.). In an attempt to clarify the genetic relationships between this odd looking genus and other genera of the tribe, Hn. persica was crossed as either female or male parent with Aegilops bicornis Jaub. et Spach, Ae. caudata L., Ae. cylindrica Host, Ae. ovata L., Ae. sharonensis Eig, Ae. squarrosa L., Ae umbellulata Zhuk., Agropron tsukushiense (Honda) Ohwi, Ereinopyrum bonaepartis (Spreng.) Nevski, Er. orientate (L.) Jaub. et Spach, Heteranthelium pi1ferum (Banks et Sol.) Hochst, Taeniatherum asperum (Simonkai) Nevski and Triticum boeoticum Boiss. From these crosses intergeneric hybrids were obtained so far only in crosses of Henrardia persica with Eremopyrum orientate.