Sailing II: Laser Manual
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Armed Sloop Welcome Crew Training Manual
HMAS WELCOME ARMED SLOOP WELCOME CREW TRAINING MANUAL Discovery Center ~ Great Lakes 13268 S. West Bayshore Drive Traverse City, Michigan 49684 231-946-2647 [email protected] (c) Maritime Heritage Alliance 2011 1 1770's WELCOME History of the 1770's British Armed Sloop, WELCOME About mid 1700’s John Askin came over from Ireland to fight for the British in the American Colonies during the French and Indian War (in Europe known as the Seven Years War). When the war ended he had an opportunity to go back to Ireland, but stayed here and set up his own business. He and a partner formed a trading company that eventually went bankrupt and Askin spent over 10 years paying off his debt. He then formed a new company called the Southwest Fur Trading Company; his territory was from Montreal on the east to Minnesota on the west including all of the Northern Great Lakes. He had three boats built: Welcome, Felicity and Archange. Welcome is believed to be the first vessel he had constructed for his fur trade. Felicity and Archange were named after his daughter and wife. The origin of Welcome’s name is not known. He had two wives, a European wife in Detroit and an Indian wife up in the Straits. His wife in Detroit knew about the Indian wife and had accepted this and in turn she also made sure that all the children of his Indian wife received schooling. Felicity married a man by the name of Brush (Brush Street in Detroit is named after him). -
Mast Furling Installation Guide
NORTH SAILS MAST FURLING INSTALLATION GUIDE Congratulations on purchasing your new North Mast Furling Mainsail. This guide is intended to help better understand the key construction elements, usage and installation of your sail. If you have any questions after reading this document and before installing your sail, please contact your North Sails representative. It is best to have two people installing the sail which can be accomplished in less than one hour. Your boat needs facing directly into the wind and ideally the wind speed should be less than 8 knots. Step 1 Unpack your Sail Begin by removing your North Sails Purchasers Pack including your Quality Control and Warranty information. Reserve for future reference. Locate and identify the battens (if any) and reserve for installation later. Step 2 Attach the Mainsail Tack Begin by unrolling your mainsail on the side deck from luff to leech. Lift the mainsail tack area and attach to your tack fitting. Your new Mast Furling mainsail incorporates a North Sails exclusive Rope Tack. This feature is designed to provide a soft and easily furled corner attachment. The sail has less patching the normal corner, but has the Spectra/Dyneema rope splayed and sewn into the sail to proved strength. Please ensure the tack rope is connected to a smooth hook or shackle to ensure durability and that no chafing occurs. NOTE: If your mainsail has a Crab Claw Cutaway and two webbing attachment points – Please read the Stowaway Mast Furling Mainsail installation guide. Step 2 www.northsails.com Step 3 Attach the Mainsail Clew Lift the mainsail clew to the end of the boom and run the outhaul line through the clew block. -
Oceanis 46.1
Oceanis 46.1 General Equipment list - Europe GENERAL SPECIFICATIONS________________________ • L.O.A 14,60m 47’11’’ • Hull length 13,65m 44’9’’ • L.W.L. 13,24m 43’5’’ • Beam 4,50m 14’9’’ • Deep draft (Cast iron) 2,35m 7’9’’ • Deep ballast weight 2 735kg 6,028 lbs • Shallow draft (Cast iron) 1,75m 5’9’’ • Shallow ballast weight 3 061kg 6,746 lbs • Performance draft (Cast iron/Lead) 2,65m 8’8’’ • Ballast weight performance 2 576kg 5,678 lbs • Air draft 20,31m 66’8’’ • Air draft (Mast Performance) 21,31m 69’11’’ • Light displacement 10 597kg 23,356 lbs • Fuel capacity (standard) 200L 53 US Gal • Fuel capacity (Option) 200L 53 US Gal • Fresh water capacity (standard) 370L 98 US Gal • Fresh water capacity (Option) 200L 53 US Gal • Engine power (standard) 57 HP 57 HP • Engine power (Option) 80 HP 80 HP ARCHITECTS / DESIGNERS ________________________ • Naval Architect: Pascal Conq • Outside & interior design: Nauta Design EC CERTIFICATION _______________________________ 3 cabins 2 heads version: • Category A - 10 people • Category B - 11 people • Category C - 12 people STANDARD SAILS DIMENSIONS ____________________ • Furling mainsail (standard) 44,50m² 479 sq/ft • Self-tacking jib (standard) 40,42m² 435 sq/ft 3 cabins 3 heads version: • Classic mainsail 54m² 581 sq/ft • Furling genoa (109 %) 52,16m² 561sq/ft • Code 0 102m² 1,098 sq/ft • Asymmetric spinnaker 152m² 1,636 sq/ft •I 17,72m 58’2’’ •J 5,72m 18’9’’ • P - Roller furling mast 16,57m 54’4’’ • P - Classical mast 16,82m 55’2’’ •E 5,630m 18’6’’ 4 cabins 2 heads version: PERFORMANCE (Extended -
2015 Vx One Draft Class Rules
2015 VX ONE DRAFT CLASS RULES The VX ONE was designed in 2011 by Brian Bennett and Roger Martin Yacht Design and was adopted as a class association in April 2012. Copyright © VX ONE Class Association CLASS RULES / INDEX Section D – Hull PART I – ADMINISTRATION D.1 Manufacturers ......................... 13 Section A – General D.2 Measurement ........................... 13 A.1 Language .................................... 4 D.3 Materials, Construction and A.2 Abbreviations ............................. 4 Dimensions .............................. 13 A.3 Authorities .................................. 4 Section E – Hull Appendages A.4 Administration of the Class ....... 4 E.1 Manufacturers ......................... 13 A.5 International Rules ..................... 4 E.2 Parts ........................................ 13 A.6 Class Rules Changes .................... 4 E.3 Materials, Construction and A.7 Class Rules Amendments ............ 4 Dimensions ............................... 13 A.8 Class Rules Interpretation .......... 5 E.4 Keel Assembly .......................... 14 A.9 Class Fee and Build Plaque ......... 5 E.5 Rudder, Tiller and A.10 Licensed Manufacturers ............. 5 Tiller Extension ........................ 14 A.11 Hull, Sail and Bow Numbers ....... 5 Section F – Rig Section B – Boat Eligibility F.1 Manufacturers ......................... 14 B.1 Class Rules .................................. 6 F.2 Parts ........................................ 14 B.2 Class Association Markings ........ 6 F.3 Measurement ......................... -
To Download the Draft 2021-2026 CCMP Update (Pdf)
1 2 3 4 DRAFT 5 6 7 SARASOTA BAY ESTUARY PROGRAM 8 Comprehensive Conservation and Management Plan 9 10 Update 2021 11 12 13 14 15 16 17 18 19 20 Last Updated: June 2, 2021 21 ACKNOWLEDGEMENTS 22 The Sarasota Bay Estuary Program (SBEP) Comprehensive Conservation and Management Plan 23 (CCMP) was first adopted in 1995, then updated in 2010 and 2014. It was developed in part with 24 funds provided by the US Environmental Protection Agency, Region 4 through a cooperative 25 agreement. 26 This 2021–2026 CCMP Update was developed under the direction of Darcy Young by SBEP staff, 27 including Dr. David Tomasko, Mark Alderson, Dr. Jay Leverone, Darcy Young, Michael Dexter, and 28 Christine Quigley, as well as the Management Conference. Strategic planning support, facilitation, 29 research, writing, and mapping were provided by Shafer Consulting. Graphic design and document 30 production was provided by Cross Ink. SBEP staff and members of SBEP’s Technical Advisory 31 Committee, Citizen Advisory Committee, Management Board, and Policy Board provided critical 32 input and review. This Update greatly benefited from guidance and review by Felicia Burks, SBEP’s 33 Program Officer in EPA Region IV, Noemi Mercado, EPA Headquarters, Washington DC, and their 34 colleagues. This Update was approved by SBEP’s Policy Board in [Month 2021. Front Matter 2 35 ABOUT THE SARASOTA BAY ESTUARY PROGRAM 36 The Sarasota Bay Estuary Program is dedicated to restoring our area’s greatest and most important 37 natural asset – Sarasota Bay. We strive to improve water quality, increase wildlife habitat, and 38 enhance the natural resources of the area for use and enjoyment by the public. -
Oceanis 41.1
Oceanis 41.1 General Equipment list - Europe GENERAL SPECIFICATIONS________________________ • L.O.A 12,43m 40’9’’ • Hull length 11,98m 39’4’’ • L.W.L. 11,37m 37’4’’ • Beam 4,20m 13’9’’ • Deep draft 2,19m 7’2’’ • Deep ballast weight 2 300kg 5,071 lbs • Shallow draft 1,68m 5’6’’ • Shallow ballast weight 2 537kg 5,592 lbs • Air draft 18,86m 61’11’’ • Light displacement 7 836kg 17,271 lbs • Fuel capacity 200L 53 US Gal • Fresh water capacity (standard) 240L 63 US Gal • Fresh water capacity (option) 330L 87 US Gal • Engine power 45 HP 45 HP ARCHITECTS / DESIGNERS ________________________ • Naval Architect: Finot - Conq And associes • Outside & interior design: Nauta Design EC CERTIFICATION _______________________________ • Category A - 8 people • Category B - 9 people • Category C - 12 people STANDARD SAIL LAYOUT AND AREA _______________ • Mainsail (Classic) 40m² 430 sq ft • Mainsail (Furler) 33m² 355 sq ft 2 cabins 1 head version: • Genoa (106 %) 42m² 452 sq ft • Code 0 78,30m² 843 sq ft • Self-tacking jib 33m² 355 sq ft • Asymmetric spinnaker 129m² 1,388 sq ft • Staysail (On furler) 20,90m² 225 sq ft •I 16,03m 52’7’’ •J 5,17m 17’ •P 15,40m 50’6’’ •E 4,71m 15’5’’ 2 cabins 2 heads version 3 cabins 1 head version 3 cabins 2 heads version June 10, 2019 - (non-binding document) Code Bénéteau V12621 (G) Eng Oceanis 41.1 General Equipment list - Europe STANDARD EQUIPMENT MOORING LINES - MOORING • Self-draining chain locker - Clench bolt - Hatch cover CONSTRUCTION _________________________________ • Single roller stainless steel bow fitting with -
GLIDING and SAIL-PLANING a Beginner's Handbook
GLIDING AND SAIL-PLANING A Beginner's Handbook by F. STAMER Principal of the Rhon-Rositten Gesellschaft Flying School and A. LIPPISCH Principal of the Rhon-Rositten Gesellschaft Technical School Translated by G. E. STARTUP and FRANCES KINNEAR With 84 illustrations. 5s. net. f ttom % JBttfltttg p GLIDING AND SAIL-PLANING GLIDING AND SAIL-PLANING A Beginner's Handbook by F. STAMER Principal of the Rhon-Rositten Gesellschaft Flying School and A. LIPPISCH Principal of the Rhon-Rositten Gesellschaft Technical'School authorized translation by G. E. STARTUP and FRANCES KINNEAR WITH 84 ILLUSTRATIONS AND DIAGRAMS LONDON JOHN LANE THE BODLEY HEAD LTD, English edition first published in 1930 PRINTED IN GREAT BRITAIN BY THE BOWERING PRESS, PLYMOUTH Foreword THE motorless AIRPLANE, i.e. the GLIDER or SAIL PLANE, is steadily growing in popularity, and is, in the truest sense of the word, the flying sport of youth. This book represents the collective results of the writers' experiments since 1921 in motorless flight, and particularly in gliding, related in a way most likely to be useful to others. In flying, more than in anything, every experience and triumph individually won by hard endeavour should be triumph and experience won for all. Its aim is to state as clearly as possible all the beginner ought to know of Gliding and Gliding Machines. Hie theories it contains are explained in such a manner as to be easily under stood. The finest airmen are often hopelessly bad mathematicians and Flying as a Sport should, as far as possible, be made easy for everybody. FRITZ STAMER and ALEXANDER LIPPISCH. -
The International Flying Dutchman Class Book
THE INTERNATIONAL FLYING DUTCHMAN CLASS BOOK www.sailfd.org 1 2 Preface and acknowledgements for the “FLYING DUTCHMAN CLASS BOOK” by Alberto Barenghi, IFDCO President The Class Book is a basic and elegant instrument to show and testify the FD history, the Class life and all the people who have contributed to the development and the promotion of the “ultimate sailing dinghy”. Its contents show the development, charm and beauty of FD sailing; with a review of events, trophies, results and the role past champions . Included are the IFDCO Foundation Rules and its byelaws which describe how the structure of the Class operate . Moreover, 2002 was the 50th Anniversary of the FD birth: 50 years of technical deve- lopment, success and fame all over the world and of Class life is a particular event. This new edition of the Class Book is a good chance to celebrate the jubilee, to represent the FD evolution and the future prospects in the third millennium. The Class Book intends to charm and induce us to know and to be involved in the Class life. Please, let me assent to remember and to express my admiration for Conrad Gulcher: if we sail, love FD and enjoyed for more than 50 years, it is because Conrad conceived such a wonderful dinghy and realized his dream, launching FD in 1952. Conrad, looked to the future with an excellent far-sightedness, conceived a “high-perfor- mance dinghy”, which still represents a model of technologic development, fashionable 3 water-line, low minimum hull weight and performance . Conrad ‘s approach to a continuing development of FD, with regard to materials, fitting and rigging evolution, was basic for the FD success. -
J/22 Sailing MANUAL
J/22 Sailing MANUAL UCI SAILING PROGRAM Written by: Joyce Ibbetson Robert Koll Mary Thornton David Camerini Illustrations by: Sally Valarine and Knowlton Shore Copyright 2013 All Rights Reserved UCI J/22 Sailing Manual 2 Table of Contents 1. Introduction to the J/22 ......................................................... 3 How to use this manual ..................................................................... Background Information .................................................................... Getting to Know Your Boat ................................................................ Preparation and Rigging ..................................................................... 2. Sailing Well .......................................................................... 17 Points of Sail ....................................................................................... Skipper Responsibility ........................................................................ Basics of Sail Trim ............................................................................... Sailing Maneuvers .............................................................................. Sail Shape ........................................................................................... Understanding the Wind.................................................................... Weather and Lee Helm ...................................................................... Heavy Weather Sailing ...................................................................... -
The Physics of Sqiling Bryond
The physics of sqiling BryonD. Anderson Sqilsond keels,like oirplone wings, exploit Bernoulli's principle. Aerodynomicond hydrodynomicinsighis help designeri creqte fosterioilboots. BryonAnderson is on experimentolnucleor physicist ond,choirmon of the physicsdeportment ot KentSlote University in Kent,Ohio. He is olsoon ovocotionolsoilor who lecfuresond wrifesobout the intersectionbehyeen physics ond soiling. In addition to the recreational pleasure sailing af- side and lower on the downwind side. fords, it involves some interesting physics.Sailing starts with For downwind sailing, with the sail oriented perpen- the force of the wind on the sails.Analyzing that interaction dicular to the wind directiory the pressure increase on the up- yields some results not commonly known to non-sailors. It wind side is greater than the pressure decrease on the down- turns ou! for example, that downwind is not the fastestdi- wind side. As one turns the boat more and more into the rection for sailing. And there are aerodynamic issues.Sails direction from which the wind is coming, those differences and keels work by providing "lift" from the fluid passing reverse, so that with the wind perpendicular to the motion of around them. So optimizing keel and wing shapesinvolves the boat, the pressure decrease on the downwind side is wing theory. greater than the pressure increase on the upwind side. For a The resistance experienced by a moving sailboat in- boat sailing almost directly into the wind, the pressure de- cludes the effects of waves, eddiei, and turb-ulencein the crease on the downwind side is much greater than the in- water, and of the vortices produced in air by the sails.To re- crease on the upwind side. -
The Prediction of Porpoising Inception for Modern Planing Craft
UNCLASSIFIED AD NUMBER ADB240994 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited FROM Distribution: DTIC users only. AUTHORITY per document cover THIS PAGE IS UNCLASSIFIED A TRIDENT SCHOLAR PROJECT REPORT NO. 254 THE PREDICTION OF PORPOISING INCEPTION FOR MODERN PLANING CRAFT UNITED STATES NAVAL ACADEMY ANNAPOLIS, MARYLAND This document has been approved for public release and sale; its distribution is unlimited. REPORT DOCUMENTATION PAGE Form Approved I 0MBO no. 0704-0188 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS The prediction of porpoising inception for modern planing craft 6. AUTHOR(S) Tullio Celano, III 7. PERFORMING ORGANIZATIONS NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER USNA U.S. Naval Academy, Annapolis, MD Trident report; no. 254 (1998) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES Accepted by the U.S. Trident Scholar Committee 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12n. DISTRIBUTION CODE This document has been approved for public release; its distribution is UNLIMITED. 13. ABSTRACT (Maximum 200 woras) The purpose of this project was to study porpoising, one of the most common forms of dynamic instability found in planing boats. In descriptive terms, it is a coupled oscillation in pitch and heave that occurs in relatively calm water. These oscillations can be divergent in amplitude, leading to loss of control, injury to occupants or damage to the craft. The mechanics of porpoising have been studied sporadically from theoretical and experimental perspectives for many years. -
Olympic Broach: E No Good Very Bad Windiest Day Two Races in Athens Shatter an Olympic Medal Dream
November 30th 2014 by Lenny Rudow Olympic Broach: e No Good Very Bad Windiest Day Two races in Athens shatter an Olympic medal dream. Day two of sailing at the 2004 Olympics started out just like day one: sunny and gaspingly hot, with only about three knots of wind. And just like the day before, I called up to the committee boat, “Good morning—USA.” At this regatta, I checked in not as myself or as the skipper of a three-person team, but as an entire country. What a rush. I remember that moment perfectly, but it’s taken me 10 years to swallow my pride enough to write about what followed. And I’m only going to do it once, so listen up. Day two started out very light and ended up very windy. Fortunately our Olympic branding held up to the change in conditions better than we did. Photo: ©DanielForster STARTING STRONG Th e Saronic Gulf rippled and heat-shimmered beneath the light easterly, which we hoped would build to meet the fi ve-knot minimum in time for racing. In similar conditions the day before, we’d fi nished second in the very fi rst race of our week-long event. So I’d chosen the same clothing: white long-sleeved shirt, light-colored leggings, white USA hat. Liz had gone with short sleeves and Nancy sported a tank top, but we were unifi ed by our Team USA regatta pinnies. And in case we forgot our last names, all we had to do was look up—they’d been stuck on the mainsail in bold letters, just below a large American fl ag.