The Evolution of Hierarchical Triple Star-Systems

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Hierarchical Triple Star-Systems Toonen et al. RESEARCH The evolution of hierarchical triple star-systems S. Toonen*, A. Hamers and S. Portegies Zwart Abstract Field stars are frequently formed in pairs, and many of these binaries are part of triples or even higher-order systems. Even though, the principles of single stellar evolution and binary evolution, have been accepted for a long time, the long-term evolution of stellar triples is poorly understood. The presence of a third star in an orbit around a binary system can significantly alter the evolution of those stars and the binary system. The rich dynamical behaviour in three-body systems can give rise to Lidov-Kozai cycles, in which the eccentricity of the inner orbit and the inclination between the inner and outer orbit vary periodically. In turn, this can lead to an enhancement of tidal effects (tidal friction), gravitational-wave emission and stellar interactions such as mass transfer and collisions. The lack of a self-consistent treatment of triple evolution, including both three-body dynamics as well as stellar evolution, hinders the systematic study and general understanding of the long-term evolution of triple systems. In this paper, we aim to address some of these hiatus, by discussing the dominant physical processes of hierarchical triple evolution, and presenting heuristic recipes for these processes. To improve our understanding on hierarchical stellar triples, these descriptions are implemented in a public source code TrES which combines three-body dynamics (based on the secular approach) with stellar evolution and their mutual influences. Note that modelling through a phase of stable mass transfer in an eccentric orbit is currently not implemented in TrES , but can be implemented with the appropriate methodology at a later stage. Keywords: binaries (including multiple): close; stars: evolution 1 Introduction The theoretical studies of triples can classically be di- The majority of stars are members of multiple sys- vided into three-body dynamics and stellar evolution, tems. These include binaries, triples, and higher order which both are often discussed separately. Three-body hierarchies. The evolution of single stars and binaries dynamics is generally governed by the gravitational have been studied extensively and there is general con- orbital evolution, whereas the stellar evolution is gov- sensus over the dominant physical processes (Postnov erned by the internal nuclear burning processes in the and Yungelson, 2014; Toonen et al., 2014). Many ex- individual stars and their mutual influence. otic systems, however, cannot easily be explained by Typical examples of studies that focused on the binary evolution, and these have often been attributed three-body dynamics include Fabrycky and Tremaine to the evolution of triples, for example low-mass X-ray (2007); Ford et al.(2000); Liu et al.(2015a); Naoz and binaries (Eggleton and Verbunt, 1986) and blue strag- Fabrycky(2014); Naoz et al.(2013), and stellar evo- glers (Perets and Fabrycky, 2009). Our lack of a clear lution studies include Eggleton and Kiseleva(1996); understanding of triple evolution hinders the system- Iben and Tutukov(1999); Kuranov et al.(2001). In- arXiv:1612.06172v1 [astro-ph.SR] 19 Dec 2016 atic exploration of these curious objects. At the same terdisciplinary studies, in which the mutual interaction time triples are fairly common; Our nearest neighbour between the dynamics and stellar aspects are taken α Cen is a triple star system (Tokovinin, 2014a), but into account are rare (Hamers et al., 2013; Kratter more importantly ∼ 10% of the low-mass stars are in and Perets, 2012; Michaely and Perets, 2014; Naoz triples (Moe and Di Stefano, 2016; Raghavan et al., et al., 2016; Perets and Kratter, 2012; Shappee and 2010; Tokovinin, 2008, 2014b) a fraction that gradu- Thompson, 2013), but demonstrate the richness of the ally increases (Duch^eneand Kraus, 2013) to ∼ 50% interacting regime. The lack of a self consistent treat- for spectral type B stars (Moe and Di Stefano, 2016; ment hinders a systematic study of triple systems. This Remage Evans, 2011; Sana et al., 2014). makes it hard to judge the importance of this interact- ing regime, or how many curious evolutionary products * Correspondence: [email protected] can be attributed to triple evolution. Here we discuss Leiden Observatory, Leiden University, PO Box 9513 Leiden, The Netherlands triple evolution in a broader context in order to ad- Full list of author information is available at the end of the article dress some of these hiatus. Toonen et al. Page 2 of 40 Table 1 Necessary parameters to describe a single star system, a binary and a triple. For stellar parameters, age and metallicity 2.1.1 Timescales of each star can be added. The table shows that as the Fundamental timescales of stellar evolution are the dy- multiplicity of a stellar system increases from one to three, the problem becomes significantly more complicated. namical (τdyn), thermal (τth), and nuclear timescale (τnucl). The dynamical timescale is the characteristic Parameters Stellar Orbital Single star m - time that it would take for a star to collapse under its Binary m1, m2 a, e own gravitational attraction without the presence of Triple m1, m2, m3 imutual, ain, ein, gin, hin internal pressure: aout, eout, gout, hout r R3 τ = ; (1) In this paper we discuss the principle complexities dyn Gm of triple evolution in a broader context (Sect.2). We start by presenting an overview of the evolution of sin- where R and m are the radius and mass of the star. gle stars and binaries, and how to extend these to It is a measure of the timescale on which a star would triple evolution. In the second part of this paper we expand or contract if the hydrostatic equilibrium of present heuristic recipes for simulating their evolution the star is disturbed. This can happen for example (Sect.3). These recipes combine three-body dynam- because of sudden mass loss. ics with stellar evolution and their mutual influences, A related timescale is the time required for the Sun such as tidal interactions and mass transfer. These to radiate all its thermal energy content at its current descriptions are summarized in a public source code luminosity: TrES with which triple evolution can be studied. Gm2R τ = ; (2) 2 Background th L We will give a brief overview of isolated binary evolu- tion (Sect. 2.2) and isolated triple evolution (Sect. 2.3). where L is the luminosity of the star. In other words, We discuss in particular under what circumstances when the thermal equilibrium of a star is disturbed, triple evolution differs from binary evolution and what the star will move to a new equilibrium on a thermal the consequences are of these differences. We start with (or Kelvin{Helmholtz) timescale a brief summary of single star evolution with a focus Finally, the nuclear timescale represents the time re- on those aspects that are relevant for binary and triple quired for the star to exhaust its supply of nuclear fuel evolution. at its current luminosity: 2.1 Single stellar evolution c2m τ = nucl ; (3) Hydrostatic and thermal equilibrium in a star give rise nucl L to temperatures and pressures that allow for nuclear burning, and consequently the emission of the starlight where is the efficiency of nuclear energy production, that we observe. Cycles of nuclear burning and exhaus- c is the speed of light, and mnucl is the amount of tion of fuel regulate the evolution of a star, and sets mass available as fuel. For core hydrogen burning, = the various phases during the stellar lifetime. 0:007 and Mnucl ≈ 0:1M. Assuming a mass-luminosity The evolution of a star is predominantly determined relation of L / M α, with empirically α ≈ 3 − 4 (e.g. by a single parameter, namely the stellar mass (Tbl.1). Eker et al., 2015; Salaris and Cassisi, 2005), it follows It depends only slightly on the initial chemical compo- that massive stars live shorter and evolve faster than sition or the amount of core overshooting[1]. low-mass stars. For the Sun, τdyn ≈ 30 min, τth ≈ 30 Myr, and [1] Overshooting refers to a chemically mixed region τnucl ≈ 10 Gyr. Typically, τdyn < τth < τnucl, which beyond the boundary of the convective core (e.g. allows us to quantitatively predict the structure and Maeder and Meynet, 1991; Massevitch et al., 1979; evolution of stars in broad terms. Stothers, 1963), as predicted by basic stellar evolution- ary theory, i.e. the Schwarzschild criterion. A possible 2.1.2 Hertzsprung-Russell diagram mechanism is convection carrying material beyond the The Hertzsprung-Russell (HR) diagram in Fig.1 boundary due to residual velocity. For the effects of shows seven evolutionary tracks for stars of different overshooting on stellar evolution, see e.g. Bressan et al. masses. The longest phase of stellar evolution is known (2015). as the main-sequence (MS), in which nuclear burning Toonen et al. Page 3 of 40 Figure 1 Hertzsprung-Russell diagram Evolutionary tracks for to a few thousand Kelvin; the shift to the right in the seven stars in the HR-diagram with masses 1, 1.5, 2.5, 4, 6.5, HR-diagram is truncated when helium ignites. 10, and 15M at solar metallicity. Specific moments in the During helium burning the stellar tracks make a evolution of the stars are noted by blue circles as explained in the text. The tracks are calculated with SeBa (Portegies Zwart loop in the HR-diagram, also known as the horizon- and Verbunt, 1996; Toonen et al., 2012). The dashed lines tal branch. This branch is marked in Fig.1 by a blue show lines of constant radii by means of the circle at its maximum effective temperature. The loop Stefan{Boltzmann law.
Recommended publications
  • Stsci Newsletter: 1997 Volume 014 Issue 01
    January 1997 • Volume 14, Number 1 SPACE TELESCOPE SCIENCE INSTITUTE Highlights of this issue: • AURA science and functional awards to Leitherer and Hanisch — pages 1 and 23 • Cycle 7 to be extended — page 5 • Cycle 7 approved Newsletter program listing — pages 7-13 Astronomy with HST Climbing the Starburst Distance Ladder C. Leitherer Massive stars are an important and powerful star formation events in sometimes dominant energy source for galaxies. Even the most luminous star- a galaxy. Their high luminosity, both in forming regions in our Galaxy are tiny light and mechanical energy, makes on a cosmic scale. They are not them detectable up to cosmological dominated by the properties of an distances. Stars ~100 times more entire population but by individual massive than the Sun are one million stars. Therefore stochastic effects times more luminous. Except for stars prevail. Extinction represents a severe of transient brightness, like novae and problem when a reliable census of the supernovae, hot, massive stars are Galactic high-mass star-formation the most luminous stellar objects in history is atempted, especially since the universe. massive stars belong to the extreme Massive stars are, however, Population I, with correspondingly extremely rare: The number of stars small vertical scale heights. Moreover, formed per unit mass interval is the proximity of Galactic regions — roughly proportional to the -2.35 although advantageous for detailed power of mass. We expect to find very studies of individual stars — makes it few massive stars compared to, say, difficult to obtain integrated properties, solar-type stars. This is consistent with such as total emission-line fluxes of observations in our solar neighbor- the ionized gas.
    [Show full text]
  • Lennon Reunion, Page 6 “There Will Be a Huge Transformation of the Page 2 July 4, 2013 TORRANCE TRIBUNE Calendar People FRIDAY, JULY 5 Torrance Blvd
    The Weekly Newspaper of Torrance Herald Publications - Torrance, El Segundo, Manhattan Beach, Hawthorne, Lawndale, & Inglewood Community Newspapers Since 1911 - (310) 322-1830 - Vol. 3, No. 26 - July 4, 2013 Torrance Salutes Independence Inside Day Sans Fireworks Show This Issue Business & Professional ......................10 Calendar...............................2 Classifieds ...........................9 Crossword/Sudoku ............9 Police Reports ....................3 Politically Speaking ...........4 Real Estate. .......................12 The fourth of July, the most American of holidays, was again marked without parades or city-sponsored fireworks due to budget cuts but it did not stop residents from celebrating. Seen here is a skydiver with the American flag at the Torrance Centennial Celebration. Photo by TerriAnn Ferren. Sports ...................................5 City Council Previews Del Amo TerriAnn in Torrance .........6 Fashion Center Renovations By Dylan Little mall. The mall will not look anywhere near and going to other places in Southern California On Tuesday, the Torrance City Council heard how it looks today,” said Scotto. “When 2015 to shop, they’re going to stop in Torrance at a presentation from Simon Property Group on comes around, I think people will be extremely our Del Amo Mall. Come Thanksgiving this planned upgrades to the Del Amo Fashion pleased with the results we’re going to have year, we’ll get the first taste of that with the Center. Chuck Davis with Simon Property Group with this mall. Instead of driving by our mall See City Council, page 2 made a PowerPoint presentation that showed a nearly unrecognizable mall. One of the major Weekend changes was to divide the mall into the “Fashion Center” (focusing on clothes and high-end retail) TerriAnn: A Lennon and “Market Square” (focusing on home goods Forecast and furniture).
    [Show full text]
  • Can There Be Additional Rocky Planets in the Habitable Zone of Tight Binary
    Mon. Not. R. Astron. Soc. 000, 1–10 () Printed 24 September 2018 (MN LATEX style file v2.2) Can there be additional rocky planets in the Habitable Zone of tight binary stars with a known gas giant? B. Funk1⋆, E. Pilat-Lohinger1 and S. Eggl2 1Institute for Astronomy, University of Vienna, Vienna, Austria 2IMCCE, Observatoire de Paris, Paris, France ABSTRACT Locating planets in Habitable Zones (HZs) around other stars is a growing field in contem- porary astronomy. Since a large percentage of all G-M stars in the solar neighborhood are expected to be part of binary or multiple stellar systems, investigations of whether habitable planets are likely to be discovered in such environments are of prime interest to the scientific community. As current exoplanet statistics predicts that the chances are higher to find new worlds in systems that are already known to have planets, we examine four known extrasolar planetary systems in tight binaries in order to determine their capacity to host additional hab- itable terrestrial planets. Those systems are Gliese 86, γ Cephei, HD 41004 and HD 196885. In the case of γ Cephei, our results suggest that only the M dwarf companion could host ad- ditional potentially habitable worlds. Neither could we identify stable, potentially habitable regions around HD 196885A. HD 196885 B can be considered a slightly more promising tar- get in the search forEarth-twins.Gliese 86 A turned out to be a very good candidate, assuming that the system’s history has not been excessively violent. For HD 41004 we have identified admissible stable orbits for habitable planets, but those strongly depend on the parameters of the system.
    [Show full text]
  • Biosignatures Search in Habitable Planets
    galaxies Review Biosignatures Search in Habitable Planets Riccardo Claudi 1,* and Eleonora Alei 1,2 1 INAF-Astronomical Observatory of Padova, Vicolo Osservatorio, 5, 35122 Padova, Italy 2 Physics and Astronomy Department, Padova University, 35131 Padova, Italy * Correspondence: [email protected] Received: 2 August 2019; Accepted: 25 September 2019; Published: 29 September 2019 Abstract: The search for life has had a new enthusiastic restart in the last two decades thanks to the large number of new worlds discovered. The about 4100 exoplanets found so far, show a large diversity of planets, from hot giants to rocky planets orbiting small and cold stars. Most of them are very different from those of the Solar System and one of the striking case is that of the super-Earths, rocky planets with masses ranging between 1 and 10 M⊕ with dimensions up to twice those of Earth. In the right environment, these planets could be the cradle of alien life that could modify the chemical composition of their atmospheres. So, the search for life signatures requires as the first step the knowledge of planet atmospheres, the main objective of future exoplanetary space explorations. Indeed, the quest for the determination of the chemical composition of those planetary atmospheres rises also more general interest than that given by the mere directory of the atmospheric compounds. It opens out to the more general speculation on what such detection might tell us about the presence of life on those planets. As, for now, we have only one example of life in the universe, we are bound to study terrestrial organisms to assess possibilities of life on other planets and guide our search for possible extinct or extant life on other planetary bodies.
    [Show full text]
  • GU Monocerotis: a High-Mass Eclipsing Overcontact Binary in the Young Open Cluster Dolidze 25? J
    A&A 590, A45 (2016) Astronomy DOI: 10.1051/0004-6361/201628224 & c ESO 2016 Astrophysics GU Monocerotis: A high-mass eclipsing overcontact binary in the young open cluster Dolidze 25? J. Lorenzo1, I. Negueruela1, F. Vilardell2, S. Simón-Díaz3; 4, P. Pastor5, and M. Méndez Majuelos6 1 Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Escuela Politécnica Superior, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain e-mail: [email protected] 2 Institut d’Estudis Espacials de Catalunya, Edifici Nexus, c/ Capitá, 2−4, desp. 201, 08034 Barcelona, Spain 3 Instituto de Astrofísica de Canarias, Vía Láctea s/n, 38200 La Laguna, Tenerife, Spain 4 Departamento de Astrofísica, Universidad de La Laguna, Facultad de Física y Matemáticas, Avda. Astrofísico Francisco Sánchez s/n, 38205 La Laguna, Tenerife, Spain 5 Departamento de Lenguajes y Sistemas Informáticos, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain 6 Departamento de Ciencias, IES Arroyo Hondo, c/ Maestro Manuel Casal 2, 11520 Rota, Cádiz, Spain Received 30 January 2016 / Accepted 3 March 2016 ABSTRACT Context. The eclipsing binary GU Mon is located in the star-forming cluster Dolidze 25, which has the lowest metallicity measured in a Milky Way young cluster. Aims. GU Mon has been identified as a short-period eclipsing binary with two early B-type components. We set out to derive its orbital and stellar parameters. Methods. We present a comprehensive analysis, including B and V light curves and 11 high-resolution spectra, to verify the orbital period and determine parameters.
    [Show full text]
  • Uvsat: a Concept of an Ultraviolet/Optical Photometric Satellite
    UVSat: a concept of an ultraviolet/optical photometric satellite A. Pigulski1, A. Baran2, M. Bzowski3, H. Cugier1, B. Czerny4, J. Daszy´nska-Daszkiewicz1, W. Dziembowski5·6, G. Handler5, Z. Ko laczkowski1, M. Kr´olikowska3, J. Krzesi´nski2, G. Maciejewski7, G. Michalska1, J. Molenda-Zakowicz_ 1, P. Moskalik5, A. Niedzielski7, E. Niemczura1, J. Ostrowski1, A. Pamyatnykh5, M. Ratajczak1, S. Rucinski8, M. Siwak2, R. Smolec5, S. Szutowicz3, T. Tomov7,L. Wyrzykowski6, S. Zo la9 and M. Sarna5 1. Instytut Astronomiczny, Uniwersytet Wroc lawski, Kopernika 11, 51-622 Wroc law, Poland 2. Instytut Fizyki Uniwersytetu Pedagogicznego, Podchora_zych, 2, 30-084 Krak´ow, Poland 3. Centrum Bada´nKosmicznych PAN, Bartycka 18a, 00-716 Warszawa, Poland 4. Centrum Fizyki Teoretycznej PAN, Al. Lotnik´ow 32/46, 02-668 Warszawa, Poland 5. Centrum Astronomiczne im. M. Kopernika PAN, Bartycka 18, 00-716 Warszawa, Poland 6. Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Al. Ujazdowskie 4, 00-478 Warszawa, Poland 7. Centrum Astronomii, Wydzia lFizyki, Astronomii i Informatyki Stosowanej, Uniwersytet Miko laja Kopernika, Grudziadzka, 5, 87-100 Toru´n, Poland 8. Department of Astronomy & Astrophysics, University of Toronto, 50 St. George Street, Toronto, Canada 9. Obserwatorium Astronomiczne Uniwersytetu Jagiello´nskiego, Orla 171, 30-244 Krak´ow, Poland Time-series photometry from space in the ultraviolet can be presently done with only a few platforms, none of which is able to provide wide-field long-term high- cadence photometry. We present a concept of UVSat, a twin space telescope which will be capable to perform this kind of photometry, filling an observational niche. The satellite will host two telescopes, one for observations in the ultravi- olet, the other for observations in the optical band.
    [Show full text]
  • A New Universe to Discover: a Guide to Careers in Astronomy
    A New Universe to Discover A Guide to Careers in Astronomy Published by The American Astronomical Society What are Astronomy and Astrophysics? Ever since Galileo first turned his new-fangled one-inch “spyglass” on the moon in 1609, the popular image of the astronomer has been someone who peers through a telescope at the night sky. But astronomers virtually never put eye to lens these days. The main source of astronomical data is still photons (particles of light) from space, but the tools used to gather and analyze them are now so sophisticated that it’s no longer necessary (or even possible, in most cases) for a human eye to look through them. But for all the high-tech gadgetry, the 21st-Century astronomer is still trying to answer the same fundamental questions that puzzled Galileo: How does the universe work, and where did it come from? Webster’s dictionary defines “astronomy” as “the science that deals with the material universe beyond the earth’s atmosphere.” This definition is broad enough to include great theoretical physicists like Isaac Newton, Albert Einstein, and Stephen Hawking as well as astronomers like Copernicus, Johanes Kepler, Fred Hoyle, Edwin Hubble, Carl Sagan, Vera Rubin, and Margaret Burbidge. In fact, the words “astronomy” and “astrophysics” are pretty much interchangeable these days. Whatever you call them, astronomers seek the answers to many fascinating and fundamental questions. Among them: *Is there life beyond earth? *How did the sun and the planets form? *How old are the stars? *What exactly are dark matter and dark energy? *How did the Universe begin, and how will it end? Astronomy is a physical (non-biological) science, like physics and chemistry.
    [Show full text]
  • Arxiv:0908.2624V1 [Astro-Ph.SR] 18 Aug 2009
    Astronomy & Astrophysics Review manuscript No. (will be inserted by the editor) Accurate masses and radii of normal stars: Modern results and applications G. Torres · J. Andersen · A. Gim´enez Received: date / Accepted: date Abstract This paper presents and discusses a critical compilation of accurate, fun- damental determinations of stellar masses and radii. We have identified 95 detached binary systems containing 190 stars (94 eclipsing systems, and α Centauri) that satisfy our criterion that the mass and radius of both stars be known to ±3% or better. All are non-interacting systems, so the stars should have evolved as if they were single. This sample more than doubles that of the earlier similar review by Andersen (1991), extends the mass range at both ends and, for the first time, includes an extragalactic binary. In every case, we have examined the original data and recomputed the stellar parameters with a consistent set of assumptions and physical constants. To these we add interstellar reddening, effective temperature, metal abundance, rotational velocity and apsidal motion determinations when available, and we compute a number of other physical parameters, notably luminosity and distance. These accurate physical parameters reveal the effects of stellar evolution with un- precedented clarity, and we discuss the use of the data in observational tests of stellar evolution models in some detail. Earlier findings of significant structural differences between moderately fast-rotating, mildly active stars and single stars, ascribed to the presence of strong magnetic and spot activity, are confirmed beyond doubt. We also show how the best data can be used to test prescriptions for the subtle interplay be- tween convection, diffusion, and other non-classical effects in stellar models.
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]
  • GEORGE HERBIG and Early Stellar Evolution
    GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study.
    [Show full text]
  • Calibrating the Metallicity of M Dwarfs in Wide Physical Binaries with F-, G
    MNRAS 000, 1–49 (2018) Preprint 16 May 2018 Compiled using MNRAS LATEX style file v3.0 Calibrating the metallicity of M dwarfs in wide physical binaries with F-, G-, and K- primaries – I: High-resolution spectroscopy with HERMES: stellar parameters, abundances, and kinematics⋆ D. Montes1†, R. González-Peinado1, H. M. Tabernero2,1, J. A. Caballero3, E. Marfil1, F. J. Alonso-Floriano4,1, M. Cortés-Contreras3, J. I. González Hernández5,6, A. Klutsch7,1, and C. Moreno-Jódar8,1 1Departamento de Física de la Tierra y Astrofísica & UPARCOS-UCM (Unidad de Física de Partículas y del Cosmos de la UCM), Facultad de Ciencias Físicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain 2Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Apdo. 99 E-03080, Alicante, Spain 3Centro de Astrobiología (INTA–CSIC), ESAC campus, Camino Bajo del Castillo s/n, E-28691 Villanueva de la Cañada, Madrid, Spain 4Leiden Observatory, Leiden University, 2300 RA Leiden, Netherlands 5Instituto de Astrofísica de Canarias (IAC), Calle Vía Lácteas/n, E-38200 La Laguna, Tenerife, Spain 6Departamento Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain 7INAF - Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania, Italy 8Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Plaza de Cardenal Cisneros 3, E-28040, Madrid, Spain Accepted 2018 May 09. Received 2018 May 09; in original form 2018 March 02 ABSTRACT We investigated almost 500 stars distributed among 193 binary or multiple systems made of late-F, G-, or early-K primaries and late-K or M dwarf companion candidates.
    [Show full text]
  • Astronomy 2009 Index
    Astronomy Magazine 2009 Index Subject Index 1RXS J160929.1-210524 (star), 1:24 4C 60.07 (galaxy pair), 2:24 6dFGS (Six Degree Field Galaxy Survey), 8:18 21-centimeter (neutral hydrogen) tomography, 12:10 93 Minerva (asteroid), 12:18 2008 TC3 (asteroid), 1:24 2009 FH (asteroid), 7:19 A Abell 21 (Medusa Nebula), 3:70 Abell 1656 (Coma galaxy cluster), 3:8–9, 6:16 Allen Telescope Array (ATA) radio telescope, 12:10 ALMA (Atacama Large Millimeter/sub-millimeter Array), 4:21, 9:19 Alpha (α) Canis Majoris (Sirius) (star), 2:68, 10:77 Alpha (α) Orionis (star). See Betelgeuse (Alpha [α] Orionis) (star) Alpha Centauri (star), 2:78 amateur astronomy, 10:18, 11:48–53, 12:19, 56 Andromeda Galaxy (M31) merging with Milky Way, 3:51 midpoint between Milky Way Galaxy and, 1:62–63 ultraviolet images of, 12:22 Antarctic Neumayer Station III, 6:19 Anthe (moon of Saturn), 1:21 Aperture Spherical Telescope (FAST), 4:24 APEX (Atacama Pathfinder Experiment) radio telescope, 3:19 Apollo missions, 8:19 AR11005 (sunspot group), 11:79 Arches Cluster, 10:22 Ares launch system, 1:37, 3:19, 9:19 Ariane 5 rocket, 4:21 Arianespace SA, 4:21 Armstrong, Neil A., 2:20 Arp 147 (galaxy pair), 2:20 Arp 194 (galaxy group), 8:21 art, cosmology-inspired, 5:10 ASPERA (Astroparticle European Research Area), 1:26 asteroids. See also names of specific asteroids binary, 1:32–33 close approach to Earth, 6:22, 7:19 collision with Jupiter, 11:20 collisions with Earth, 1:24 composition of, 10:55 discovery of, 5:21 effect of environment on surface of, 8:22 measuring distant, 6:23 moons orbiting,
    [Show full text]